1
|
Schuster-Little N, McCabe M, Nenninger K, Safavi-Sohi R, Whelan RJ, Hilliard TS. Generational Diet-Induced Obesity Remodels the Omental Adipose Proteome in Female Mice. Nutrients 2024; 16:3086. [PMID: 39339686 PMCID: PMC11435095 DOI: 10.3390/nu16183086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity, a complex condition that involves genetic, environmental, and behavioral factors, is a non-infectious pandemic that affects over 650 million adults worldwide with a rapidly growing prevalence. A major contributor is the consumption of high-fat diets, an increasingly common feature of modern diets. Maternal obesity results in an increased risk of offspring developing obesity and related health problems; however, the impact of maternal diet on the adipose tissue composition of offspring has not been evaluated. Here, we designed a generational diet-induced obesity study in female C57BL/6 mice that included maternal cohorts and their female offspring fed either a control diet (10% fat) or a high-fat diet (45% fat) and examined the visceral adipose proteome. Solubilizing proteins from adipose tissue is challenging due to the need for high concentrations of detergents; however, the use of a detergent-compatible sample preparation strategy based on suspension trapping (S-Trap) enabled label-free quantitative bottom-up analysis of the adipose proteome. We identified differentially expressed proteins related to lipid metabolism, inflammatory disease, immune response, and cancer, providing valuable molecular-level insight into how maternal obesity impacts the health of offspring. Data are available via ProteomeXchange with the identifier PXD042092.
Collapse
Affiliation(s)
- Naviya Schuster-Little
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; (N.S.-L.); (R.J.W.)
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Morgan McCabe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.M.); (K.N.); (R.S.-S.)
| | - Kayla Nenninger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.M.); (K.N.); (R.S.-S.)
| | - Reihaneh Safavi-Sohi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.M.); (K.N.); (R.S.-S.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Rebecca J. Whelan
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; (N.S.-L.); (R.J.W.)
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Tyvette S. Hilliard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.M.); (K.N.); (R.S.-S.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| |
Collapse
|
2
|
Leng Y, Tian T, Tang B, Ma Y, Li Z, Shi Q, Liu J, Zhou Y, Wang W, Huang C, Zhao X, Feng W, Liu Y, Liang J, Liu T, Liu S, Ren Q, Liu J, Zhang T, Zhou J, Huang Q, Zhang Y, Yin B, Xu Y, Liu L, Shen L, Zhao H. The oncogenic role and regulatory mechanism of ACAA2 in human ovarian cancer. Mol Carcinog 2024; 63:1362-1377. [PMID: 38656551 DOI: 10.1002/mc.23729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
Acetyl-CoAacyltransferase2 (ACAA2) is a key enzyme in the fatty acid oxidation pathway that catalyzes the final step of mitochondrial β oxidation, which plays an important role in fatty acid metabolism. The expression of ACAA2 is closely related to the occurrence and malignant progression of tumors. However, the function of ACAA2 in ovarian cancer is unclear. The expression level and prognostic value of ACAA2 were analyzed by databases. Gain and loss of function were carried out to explore the function of ACAA2 in ovarian cancer. RNA-seq and bioinformatics methods were applied to illustrate the regulatory mechanism of ACAA2. ACAA2 overexpression promoted the growth, proliferation, migration, and invasion of ovarian cancer, and ACAA2 knockdown inhibited the malignant progression of ovarian cancer as well as the ability of subcutaneous tumor formation in nude mice. At the same time, we found that OGT can induce glycosylation modification of ACAA2 and regulate the karyoplasmic distribution of ACAA2. OGT plays a vital role in ovarian cancer as a function of oncogenes. In addition, through RNA-seq sequencing, we found that ACAA2 regulates the expression of DIXDC1. ACAA2 regulated the malignant progression of ovarian cancer through the WNT/β-Catenin signaling pathway probably. ACAA2 is an oncogene in ovarian cancer and has the potential to be a target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Yahui Leng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tian Tian
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bingbing Tang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yongqing Ma
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zihang Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qin Shi
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiaqi Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yang Zhou
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wenlong Wang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chengyang Huang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xuan Zhao
- The Second Clinical College, Xi'an Medical University, Xi'an, China
| | - Wenxiao Feng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yanni Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jingyin Liang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tianhui Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Song Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qiulei Ren
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiakun Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Te Zhang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Junsuo Zhou
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qian Huang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yaling Zhang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bin Yin
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuewen Xu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Liaoyuan Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Shen
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongyan Zhao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
3
|
Ayalew W, Wu X, Tarekegn GM, Sisay Tessema T, Naboulsi R, Van Damme R, Bongcam-Rudloff E, Edea Z, Chu M, Enquahone S, Liang C, Yan P. Whole Genome Scan Uncovers Candidate Genes Related to Milk Production Traits in Barka Cattle. Int J Mol Sci 2024; 25:6142. [PMID: 38892330 PMCID: PMC11172929 DOI: 10.3390/ijms25116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, our primary aim was to explore the genomic landscape of Barka cattle, a breed recognized for high milk production in a semi-arid environment, by focusing on genes with known roles in milk production traits. We employed genome-wide analysis and three selective sweep detection methods (ZFST, θπ ratio, and ZHp) to identify candidate genes associated with milk production and composition traits. Notably, ACAA1, P4HTM, and SLC4A4 were consistently identified by all methods. Functional annotation highlighted their roles in crucial biological processes such as fatty acid metabolism, mammary gland development, and milk protein synthesis. These findings contribute to understanding the genetic basis of milk production in Barka cattle, presenting opportunities for enhancing dairy cattle production in tropical climates. Further validation through genome-wide association studies and transcriptomic analyses is essential to fully exploit these candidate genes for selective breeding and genetic improvement in tropical dairy cattle.
Collapse
Affiliation(s)
- Wondossen Ayalew
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Getinet Mekuriaw Tarekegn
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Scotland’s Rural College (SRUC), Easter Bush Campus, Roslin Institute Building, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Rakan Naboulsi
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Tomtebodavägen 18A, 17177 Stockholm, Sweden
| | - Renaud Van Damme
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (E.B.-R.)
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (E.B.-R.)
| | - Zewdu Edea
- Ethiopian Bio and Emerging Technology Institute, Addis Ababa P.O. Box 5954, Ethiopia;
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Solomon Enquahone
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| |
Collapse
|
4
|
Xiao M, Ruan Y, Huang J, Dai L, Xu J, Xu H. Association analysis between Acetyl-Coenzyme A Acyltransferase-1 gene polymorphism and growth traits in Xiangsu pigs. Front Genet 2024; 15:1346903. [PMID: 38756449 PMCID: PMC11096523 DOI: 10.3389/fgene.2024.1346903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Acetyl-Coenzyme A Acyltransferase-1 (ACAA1) is a peroxisomal acyltransferase involved in fatty acid metabolism. Current evidence does not precisely reveal the effect of the ACAA1 gene on pig growth performance. Methods The present study assessed the mRNA expression levels of the ACAA1 gene in the heart, liver, spleen, lung, kidney of 6-month-old Xiangsu pigs and in the longissimus dorsi muscle at different growth stages (newborn, 6 months and 12 months of age) using RT-qPCR. The relationship between single-nucleotide polymorphisms (SNPs) of ACAA1 gene and growth traits in 6-month-old and 12-month-old Xiangsu pigs was investigated on 184 healthy Xiangsu pigs using Sanger sequencing. Results The ACAA1 gene was expressed in heart, liver, spleen, lung, kidney, and longissimus dorsi muscle of 6-month-old pigs, with the highest level of expression in the liver. ACAA1 gene expression in the longissimus dorsi muscle decreased with age (p < 0.01). In addition, four SNPs were identified in the ACAA1 gene, including exon g.48810 A>G (rs343060194), intron g.51546 T>C (rs319197012), exon g.55035 T>C (rs333279910), and exon g.55088 C>T (rs322138947). Hardy-Weinberg equilibrium (p > 0.05) was found for the four SNPs, and linkage disequilibrium (LD) analysis revealed a strong LD between g.55035 T>C (rs333279910) and g.55088 C>T (rs322138947) (r 2 = 1.000). Association analysis showed that g.48810 A>G (rs343060194), g.51546 T>C (rs319197012), g.55035 T>C (rs333279910), and g.55088 C>T (rs322138947) varied in body weight, body length, body height, abdominal circumference, leg and hip circumference and living backfat thickness between 6-month-old and 12-month-old Xiangsu pigs. Conclusion These findings strongly demonstrate that the ACAA1 gene can be exploited for marker-assisted selection to improve growth-related phenotypes in Xiangsu pigs and present new candidate genes for molecular pig breeding.
Collapse
Affiliation(s)
- Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Lingang Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Li RR, Hu HH, Feng X, Hu CL, Ma YF, Cai B, Han LY, Ma Y. Polymorphism of ADAM12, DPP6 and PRKN genes and their associations with milk production traits in Holstein. Reprod Domest Anim 2024; 59:e14497. [PMID: 37917556 DOI: 10.1111/rda.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Milk production traits as the most important economic traits of dairy cows, they directly reflect the benefits of breeding and the economic benefits of pasture. In this study, A disintegrin and metalloproteinase-12 (ADAM12), Parkinson's disease gene 2 (PRKN) and dipeptidyl peptidase-like protein subtype 6 (DPP6) polymorphism in 384 Chinese Holstein cows were detected by time-of-flight mass spectrometry and through statistical analysis using software such as Popgene 32, SAS 9.4 and Origin 2022, the relationship between single nucleotide polymorphisms (SNPs) of three genes with four milk production traits such as daily milk yield (DMY), milk fat percentage (MFP), milk protein percentage (MPP) and somatic cell score (SCS) was verified at molecular level. The results showed that four polymorphic loci (116,467,133, 116,604,487, 116,618,268 and 116,835,111) of DPP6 gene, two polymorphic loci (97,665,052 and 97,159,837) of PRKN gene and two polymorphic loci (45,542,714 and 45,553,888) of ADAM12 gene were detected. PRKN-97665052, DPP6-116467133, ADAM12-45553888, DPP6-116604487 and DPP6-116835111 were all in Hardy-Weinberg equilibrium state (p > .05). ADAM12-45542714, PRKN-97159837 and PRKN-97665052 were moderately polymorphic (0.25 ≤ PIC <0.50) in Holstein. It is evident that the selection potential and genetic variation of these five loci are relatively large, and the genetic richness is relatively high. The correlation analysis of different genotypes between these eight loci and milk production traits of Holstein showed that ADAM12-45542714 and DPP6-116835111 (p < .01) had an extremely significant effects on the DMY of Chinese Holstein in Ningxia, while PRKN-97665052 had an extremely significant effect on MFP (p < .01). The effect of PRKN-97665052 and DPP6-116467133 on MPP of Holstein were extremely significant (p < .01). DPP6-116618268 had an extremely significant effect on the SCS of Holstein in Ningxia (p < .01), and AA genotype individuals showed a higher SCS than GG genotype individuals; the other two loci (ADAM12-45553888 and DPP6-116604487) had no significant effects on milk production traits of Holstein (p > .05). In addition, through the joint analysis of DPP6, PRKN and ADAM12 gene loci, it was found that the interaction effect between the three gene loci could significantly affect the DMY, SCS (p < .01) and MPP (p < .05). In conclusion, several different loci of DPP6, PRKN and ADAM12 genes can affect the milk production traits of Holstein to different degrees. PRKN, DPP6 and ADAM12 genes can be used as potential candidate genes for milk production traits of Holstein for marker-assisted selection, providing theoretical basis for breeding of Holstein.
Collapse
Affiliation(s)
- Rui-Rui Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Hong-Hong Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xue Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Chun-Li Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yan-Fen Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Bei Cai
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Li-Yun Han
- Ningxia Agriculture Reclamation Helanshan dairy Co.Ltd., Yinchuan, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|