1
|
Wang T, Sui J, Zhou Y, Wang L, Yang J, Chen F, Cui X, Yang Y, Zhang W. Difenoconazole Degradation by Novel Microbial Consortium TA01: Metabolic Pathway and Microbial Community Analysis. Int J Mol Sci 2025; 26:3142. [PMID: 40243894 PMCID: PMC11988721 DOI: 10.3390/ijms26073142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Difenoconazole, a broad-spectrum systemic fungicide, can effectively prevent and control plant diseases such as rice blast, leaf spot, and black spot caused by Colletotrichum godetiae, Alternaria alternata, and Neopestalotiopsis rosae. However, its residual accumulation in the environment may pose potential toxicity risks to non-target organisms. In this study, a highly efficient DIF-degrading microbial consortium TA01 was enriched from long-term pesticide-contaminated soil by a laboratory-based adaptive evolution strategy. The microbial consortium TA01 was able to degrade 83.87% of 50 mg/L of DIF within 3 days. In addition, three intermediate metabolites were identified using HPLC-MS/MS, and the results indicated that the degradation of DIF by microbial consortium TA01 may involve catalytic reactions such as hydrolysis, dehalogenation, and hydroxylation. High-throughput sequencing results showed that Pantoea, Serratia, Ochrobactrum, and Bacillus were the dominant microbial members involved in the degradation process. Finally, bioremediation capacity experiments showed that inoculation with microbial consortium TA01 was able to accelerate the degradation of DIF in the water-sediment system. The findings of this study not only enrich the microbial resources available for DIF degradation but also offer new potential strategies for in situ remediation of DIF contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ye Yang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (T.W.); (J.S.); (Y.Z.); (L.W.); (J.Y.); (F.C.); (X.C.)
| | - Wenping Zhang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (T.W.); (J.S.); (Y.Z.); (L.W.); (J.Y.); (F.C.); (X.C.)
| |
Collapse
|
2
|
Gao X, Wu S, Lv G, Wang M, Li L, Liu Y, He F, Xiao J. The key metabolic genes and networks regulating the fruit acidity and flavonoid of Prunus mume revealed via transcriptomic and metabolomic analyses. FRONTIERS IN PLANT SCIENCE 2025; 16:1544500. [PMID: 39959350 PMCID: PMC11825340 DOI: 10.3389/fpls.2025.1544500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025]
Abstract
The acidic taste of Mei fruit (Prunus mume) is a major contributor to its quality, but its formation mechanism remains unclear. Here, we unraveled the networks of organic acid and flavonoid metabolism in two Mei fruit. The results showed that the differentially expressed genes were mainly concentrated in the processes of carbohydrate derivative binding, carboxylic acid, and organic acid metabolism. While the differentially accumulated metabolites were mainly associated with flavone and flavonol biosynthesis and amino acid and carbon metabolism. Moreover, we identified key metabolites, such as citric and succinic acids, which may be central to the development of acidity in Mei fruit, and determined that they are under the regulatory influence of specific genes, including galactinol-sucrose-galactosyltransferase 5, mitogen-activated protein kinase kinase kinase NPK1-like, glutamate receptor, and chalcone isomerase. Furthermore, transcription factors ERF027, bHLH92, bHLH35, and WRKY23 were identified as potential pivotal regulators within these networks. These results provide new insights into the metabolic regulation of acidity and flavonoid in Mei fruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiaxin Xiao
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in
the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
3
|
Wang J, Ren C, Wang J, Fu J, Yin Q, Huang Y, He Z. Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry-Based Metabolic Characterization of Mango Ripened by Different Methods. Foods 2024; 13:3548. [PMID: 39593964 PMCID: PMC11593038 DOI: 10.3390/foods13223548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
So far, the metabolic differences between tree-ripened and postharvest-ripened mangoes have largely remained unexplored. The aim of this study was to evaluate the chemical composition of nutrient substances in mangoes subjected to different ripening methods. An untargeted metabolomic approach based on ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was carried out to investigate the differences between artificially ripened and naturally ripened mangoes. The principal component analysis results indicate a clear separation between the different treatment groups. Variance analysis, fold change, and orthogonal partial least squares discriminant analysis (OPLS-DA) were employed to find potential markers. In total, 69 metabolites were identified, with significant variations in the abundance of organic acids, vitamins, carbohydrates, and polyphenols closely related to the ripening methods of mangoes. These results contribute to a better understanding of the metabolic changes in mangoes due to different ripening methods, which could be used to assist in evaluating the quality of mango fruit.
Collapse
Affiliation(s)
- Jishi Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.W.); (J.W.); (J.F.)
| | - Chaoqi Ren
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China;
| | - Jiafu Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.W.); (J.W.); (J.F.)
| | - Jiqiang Fu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.W.); (J.W.); (J.F.)
| | - Qingchun Yin
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, Institute of Food Testing, Hainan Academy of Inspection and Testing, State Administration for Market Regulation, Haikou 570311, China;
| | - Yongping Huang
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, Institute of Food Testing, Hainan Academy of Inspection and Testing, State Administration for Market Regulation, Haikou 570311, China;
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.W.); (J.W.); (J.F.)
| |
Collapse
|
4
|
Dong B. Recent advances in the toxicological effects of difenoconazole: A focus on toxic mechanisms in fish and mammals. CHEMOSPHERE 2024; 368:143751. [PMID: 39547292 DOI: 10.1016/j.chemosphere.2024.143751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
The toxicological study of pesticides at sub-lethal and environment-relevant concentrations has become increasingly crucial for human and environmental health. Toxic mechanisms of agrochemicals contribute to discovering green pesticides, assessing the hazards of pesticides comprehensively, and supporting legitimate regulatory decisions. However, the toxicological effects of difenoconazole are not yet fully understood despite being frequently detected in fruits, vegetables, waters, and soils and posing hazards to humans and the environment. This lack of knowledge could lead to flawed risk assessment and administrative oversight. Thus, the review aimed to provide some investigation perspectives for clarifying the toxicological effects of difenoconazole by synthesizing the toxic data of difenoconazole on various organisms, such as bees, Daphnia magna, fish, earthworms, mammals, and plants and summarizing the toxicological mechanisms of difenoconazole, especially in fish and mammals from peer-reviewed publications. Evidence revealed that difenoconazole caused multiple toxicological effects, including developmental toxicity, reproductive toxicity, endocrine disruption effects, neurotoxicity, and transgenerational toxicity. The toxic mechanisms involved in metabolic disturbance, oxidative stress, inflammation, apoptosis, and autophagy by activating reactive oxygen species-mediated signaling pathways and mitochondrial apoptosis routes, disturbing amino acids, lipid, and nucleotide metabolism, and regulating gene transcription and expression in mammals and fish. Based on the review, further studies better focus on the toxic differences of difenoconazole stereoisomers, the toxicological effects of transformation products of difenoconazole, and the mechanism of action of difenoconazole on sex-specific endocrine disruption effects, intestinal damage, and gut dysbacteriosis for its hazard assessment and management synthetically.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, China.
| |
Collapse
|
5
|
Ji Q, Wang X, Huang T, Wang X, Zhao Y. Honeybee (Apis mellifera L.) pollination enhances the yield and flavor quality of kiwifruit. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22139. [PMID: 39106355 DOI: 10.1002/arch.22139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Pollination is essential for achieving high yields and enhancing the quality of kiwifruit cultivation, both of which significantly influence growers' interests and consumers' preferences. However, compared to studies on yield, there are fewer studies exploring the impact of pollination methods on the flavor of kiwifruit Actinidia chinensis Planchon. This study examined the effects of bee (Apis mellifera L.) pollination and artificial pollination on the yield and flavor of kiwifruit in the main producing areas of China. Compared with those pollinated artificially, bee-pollinated kiwifruit exhibited a greater fruit set rate, heavier fruit weight, and greater number of seeds. Notably, the number of seeds was positively correlated with fruit weight in bee-pollinated kiwifruit, whereas no such correlation was detected in artificially pollinated fruit. Bee pollination not only enhanced the yield but also improved the flavor of kiwifruit. Specifically, bee-pollinated kiwifruit contained higher levels of sucrose and lower concentrations of glucose and fructose, while the acid content was less affected by pollination methods. Furthermore, significant differences were observed in the volatile organic compound (VOC) levels in kiwifruit subjected to different pollination treatments, with bee-pollinated fruit exhibiting a superior flavor. Our findings provide new insights into the beneficial role of bee pollination in enhancing kiwifruit yield and quality, underscoring the crucial importance of bees in kiwifruit pollination.
Collapse
Affiliation(s)
- Quanzhi Ji
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinyu Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yazhou Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Yue N, Zhang C, Li S, Wang H, Li X, Chen X, Jin F. Imidacloprid triggered changes in strawberry fruits on edible quality and phenolic profiles by applied at two growth stages. Food Res Int 2024; 179:114031. [PMID: 38342551 DOI: 10.1016/j.foodres.2024.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024]
Abstract
Increasing evidence showed that imidacloprid affects plants' abiotic or biotic stress tolerance. However, the effects of imidacloprid on the quality of fruits remain elusive. This work aimed to study the effects of imidacloprid applied at different growth stages on the edible quality and phenolic profile of strawberry fruit in the field experiment. For the first time, lower fruit quality was observed in the mature strawberry fruits after imidacloprid treatment at the fruit-bearing completion stage (five days after pollination). Compared to the control group, the mature strawberry fruit wights and the SCC/TA ratio declined about 18.2-30.0 % and 10.3-16.8 %, respectively. However, those attributes did not occur in the mature strawberry fruits by imidacloprid treatment at the fruit maturation stage (30 days after pollination). Among the 30 phenolic compounds, nine presented significant up-regulation or down-regulation after imidacloprid application at two different growth stages, suggesting that the application period played an essential role in evaluating the effects of imidacloprid on the quality of fruits. A significant effect on fruit quality was presented at the strawberry early growth stage treated by imidacloprid. This study provided a new insight into how and when imidacloprid affects the quality of strawberry fruits, contributing to the future's more scientific application of imidacloprid on strawberries.
Collapse
Affiliation(s)
- Ning Yue
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Zhang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Simeng Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongping Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohui Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueying Chen
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fen Jin
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
7
|
Liu Y, Liu R, Li F, Yu S, Nie Y, Li JQ, Pan C, Zhu W, Zhou Z, Diao J. Nano-selenium repaired the damage caused by fungicides on strawberry flavor quality and antioxidant capacity by regulating ABA biosynthesis and ripening-related transcription factors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105753. [PMID: 38225097 DOI: 10.1016/j.pestbp.2023.105753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Recently, studies have shown that pesticides may have adverse effects on the flavor quality of the fruits, but there is still a lack of appropriate methods to repair the damage. This study investigated the effects and mechanism of applying the emerging material, nano‑selenium, and two fungicides (Boscalid and Pydiflumetofen) alone or together on the flavor quality and antioxidant capacity of strawberries. The results showed that the two fungicides had a negative impact on strawberry color, flavor, antioxidant capacity and different enzymatic systems. The color damage was mainly attributed to the impact on anthocyanin content. Nano‑selenium alleviated the quality losses by increasing sugar-acid ratio, volatiles, anthocyanin levels, enzyme activities and DPPH scavenging ability and reducing ROS levels. Results also showed that these damage and repair processes were related to the regulation of flavor and ripening related transcription factors (including FaRIF, FaSnRK1, FaMYB10, FaMYB1, FaSnRK2.6 and FaABI1), the upregulation of genes on sugar-acid, volatile, and anthocyanin synthesis pathways, as well as the increase of sucrose and ABA signaling molecules. In addition, the application of nano-Se supplemented the selenium content in fruits, and was harmless to human health. This information is crucial for revealing the mechanisms of flavor damage caused by pesticides to strawberry and the repaired of nano‑selenium, and broadens the researching and applying of nano‑selenium in repairing the damage caused by pesticides.
Collapse
Affiliation(s)
- Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Feifei Li
- The Administrative Office of Beijing Shisanling Forestry Farm, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Jia-Qi Li
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Canping Pan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China.
| |
Collapse
|