1
|
Chen LJ, Ying RN, Wang XQ, Xie DT, Dong J, Lin HY, Da-Wei W, Yang GF. Discovery of Triketone-Indazolones as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibiting-Based Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1112-1121. [PMID: 39811931 DOI: 10.1021/acs.jafc.4c08544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial herbicide target in current research, playing an important role in the comprehensive management of resistant weeds. However, the limited crop selectivity and less effectiveness against grass weeds of many existing HPPD inhibitors, limit their further application. To address these issues, a series of novel HPPD inhibitors with fused ring structures were designed and synthesized by introducing an electron-rich indazolone ring and combining it with the classical triketone pharmacophore structure. The cocrystal structure of representative compound III-7 complexed with Arabidopsis thaliana HPPD (AtHPPD) was obtained at 2.0 Å resolution to guide the optimization of the designed inhibitor. The optimization results showed that 5-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,4-dimethyl-2-(3-(methylthio)phenyl)-1,2-dihydro-3H-indazol-3-one, III-15, was the most active AtHPPD inhibitor, with an IC50 value of 12 nM, nearly 30 times higher efficacy than mesotrione. Greenhouse herbicidal activity tests demonstrated that compound III-15 exhibited excellent herbicidal potency at 30-120 g ai/ha. Notably, it maintained high safety for peanuts even at 120 g ai/ha. Our results showed that compound III-15 is promising as a new candidate HPPD herbicide for use in the peanut fields.
Collapse
Affiliation(s)
- Li-Jun Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Ning Ying
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Xian-Quan Wang
- Shandong Cynda (chemical) CO., Ltd., Boxing Economic Development, Shandong, Binzhou 256500, PR China
| | - Ding-Tao Xie
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jin Dong
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Hong-Yan Lin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Wang Da-Wei
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
2
|
Sun S, Li Y, Wang W, Kou S, Huo J, An Z, Zhu L, Li K, Chen L, Zhang J. Discovery of novel Propionamide-Pyrazole-Carboxylates as Transketolase-inhibiting herbicidal candidates. PEST MANAGEMENT SCIENCE 2024; 80:4897-4905. [PMID: 38808579 DOI: 10.1002/ps.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Transketolase (TKL, EC 2.2.1.1) is a key enzyme in the pentose phosphate pathway and Calvin cycle, and is expected to act as a herbicidal site-of-action. On the basis of TKL, we designed and synthesized a series of 1-oxy-propionamide-pyrazole-3-carboxylate analogues and evaluated their herbicidal activities. RESULTS Methyl 1-methyl-5-((1-oxo-1-((4-(trifluoromethyl)phenyl)amino)propan-2-yl)oxy)-1H-pyrazole-3-carboxylate (C23) and methyl 1-methyl-5-((1-oxo-1-((perfluorophenyl)amino)propan-2-yl)oxy)-1H-pyrazole-3-carboxylate (C33) were found to provide better growth-inhibition activities against Digitaria sanguinalis root than those of nicosulfuron, mesotrione and pretilachlor at 200 mg L-1 using the small-cup method. These compounds were also identified as promising compounds in pre-emergence and postemergence herbicidal-activity experiments, with relatively good inhibitory effects toward Amaranthus retroflexus and D. sanguinalis at 150 g ai ha-1. In addition, enzyme inhibition assays and molecular docking studies revealed that C23 and C33 interact favourably with SvTKL (Setaria viridis TKL). CONCLUSION C23 and C33 are promising lead TKL inhibitors for the optimization of new herbicides. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Susu Sun
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Yaze Li
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Wenfei Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Jinqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Lin Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Kaiwen Li
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| |
Collapse
|
3
|
Ma T, Gao S, Zhao LX, Ye F, Fu Y. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Molecular Design to Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17125-17137. [PMID: 39047218 DOI: 10.1021/acs.jafc.4c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Weed resistance is a critical issue in crop production. Among the known herbicides, 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are crucial for addressing weed resistance. HPPD inhibitors constitute a pivotal aspect of contemporary crop protection strategies. The advantages of these herbicides are their broad weed spectrum, flexible application, and excellent compatibility with other herbicides. They also exhibit satisfactory crop selectivity and low toxicity and are environmentally friendly. An increasing number of new HPPD inhibitors have been designed by combining computer-aided drug design with conventional design approaches. Herein, the molecular design and structural features of innovative HPPD inhibitors are reviewed to guide the development of new HPPD inhibitors possessing an enhanced biological efficacy.
Collapse
Affiliation(s)
- Tengfei Ma
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Chen C, Lei Q, Geng W, Wang D, Gan X. Discovery of Novel Pyridazine Herbicides Targeting Phytoene Desaturase with Scaffold Hopping. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12425-12433. [PMID: 38781442 DOI: 10.1021/acs.jafc.3c09350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Phytoene desaturase (PDS) is a critical functional enzyme in blocking ζ-carotene biosynthesis and is one of the bleaching herbicide targets. At present, norflurazon (NRF) is the only commercial pyridazine herbicide targeting PDS. Therefore, developing new and diverse pyridazine herbicides targeting PDS is urgently required. In this study, diflufenican (BF) was used as the lead compound, and a scaffold-hopping strategy was employed to design and synthesize some pyridazine derivatives based on the action mode of BF and PDS. The preemergence herbicidal activity tests revealed that compound 6-chloro-N-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenoxy)pyridazine-4-carboxamide (B1) with 2,4-diF substitution in the benzeneamino ring showed 100% inhibition rates against the roots and stems of Echinochloa crus-galli and Portulaca oleracea at 100 μg/mL, superior to the inhibition rates of BF. Meanwhile, compound B1 demonstrated excellent postemergence herbicidal activity against broadleaf weeds, which was similar to that of BF (inhibition rate of 100%) but superior to that of NRF. This indicated that 6-Cl in the pyridazine ring is the key group for postemergence herbicidal activity. In addition, compound B1 could induce downregulation of PDS gene expression, 15-cis-phytoene accumulation, and Y(II) deficiency and prevent photosynthesis. Therefore, B1 can be considered as a promising candidate for developing high-efficiency PDS inhibitors.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, PR China
| | - Qiong Lei
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Wang Geng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Daoping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, PR China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
5
|
Zhang CQ, Gao S, Bo L, Song HM, Liu LM, Zheng MX, Fu Y, Ye F. Design, Synthesis, and Biological Activity of Novel Triketone-Containing Phenoxy Nicotinyl Inhibitors of HPPD. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11321-11330. [PMID: 38714361 DOI: 10.1021/acs.jafc.3c08705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial target enzyme in albino herbicides. The inhibition of HPPD activity interferes with the synthesis of carotenoids, blocking photosynthesis and resulting in bleaching and necrosis. To develop herbicides with excellent activity, a series of 3-hydroxy-2-(6-substituted phenoxynicotinoyl)-2-cyclohexen-1-one derivatives were designed via active substructure combination. The title compounds were characterized via infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The structure of compound III-17 was confirmed via single-crystal X-ray diffraction. Preliminary tests demonstrated that some compounds had good herbicidal activity. Crop safety tests revealed that compound III-29 was safer than the commercial herbicide mesotrione in wheat and peanuts. Moreover, the compound exhibited the highest inhibitory activity against Arabidopsis thaliana HPPD (AtHPPD), with a half-maximal inhibitory concentration of 0.19 μM, demonstrating superior activity compared with mesotrione (0.28 μM) in vitro. A three-dimensional quantitative structure-activity relationship study revealed that the introduction of smaller groups to the 5-position of cyclohexanedione and negative charges to the 3-position of the benzene ring enhanced the herbicidal activity. A molecular structure comparison demonstrated that compound III-29 was beneficial to plant absorption and conduction. Molecular docking and molecular dynamics simulations further verified the stability of the complex formed by compound III-29 and AtHPPD. Thus, this study may provide insights into the development of green and efficient herbicides.
Collapse
Affiliation(s)
- Chen-Qing Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Lin Bo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hao-Min Song
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Ming Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Mei-Xin Zheng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Chen M, Jiang X, Zhang L, Chen X, Wen Y, Gu Z, Li X, Zheng M. The emergence of machine learning force fields in drug design. Med Res Rev 2024; 44:1147-1182. [PMID: 38173298 DOI: 10.1002/med.22008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
In the field of molecular simulation for drug design, traditional molecular mechanic force fields and quantum chemical theories have been instrumental but limited in terms of scalability and computational efficiency. To overcome these limitations, machine learning force fields (MLFFs) have emerged as a powerful tool capable of balancing accuracy with efficiency. MLFFs rely on the relationship between molecular structures and potential energy, bypassing the need for a preconceived notion of interaction representations. Their accuracy depends on the machine learning models used, and the quality and volume of training data sets. With recent advances in equivariant neural networks and high-quality datasets, MLFFs have significantly improved their performance. This review explores MLFFs, emphasizing their potential in drug design. It elucidates MLFF principles, provides development and validation guidelines, and highlights successful MLFF implementations. It also addresses potential challenges in developing and applying MLFFs. The review concludes by illuminating the path ahead for MLFFs, outlining the challenges to be overcome and the opportunities to be harnessed. This inspires researchers to embrace MLFFs in their investigations as a new tool to perform molecular simulations in drug design.
Collapse
Affiliation(s)
- Mingan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Xinyu Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Lehan Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxu Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Yiming Wen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Zhiyong Gu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
7
|
Zeng X, Ma X, Dong J, Li B, Hua Liu S, Yin J, Yang GF. A Protocol for Activated Bioorthogonal Fluorescence Labeling and Imaging of 4-Hydroxyphenylpyruvate Dioxygenase in Plants. Angew Chem Int Ed Engl 2023; 62:e202312618. [PMID: 37795547 DOI: 10.1002/anie.202312618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a crucial role in the synthesis of nutrients needed to maintain optimal plant growth. Its level is closely linked to the extent of abiotic stress experienced by plants. Moreover, it is also the target of commercial herbicides. Therefore, labeling of HPPD in plants not only enables visualization of its tissue distribution and cellular uptake, it also facilitates assessment of abiotic stress of plants and provides information needed for the development of effective environmentally friendly herbicides. In this study, we created a method for fluorescence labeling of HPPD that avoids interference with the normal growth of plants. In this strategy, a perylene-linked dibenzyl-cyclooctyne undergoes strain-promoted azide-alkyne cycloaddition with an azide-containing HPPD ligand. The activation-based labeling process results in a significant emission enhancement caused by the change in the fluorescent forms from an excimer to a monomer. Notably, this activated bioorthogonal strategy is applicable to visualizing HPPD in Arabidopsis thaliana, and assessing its response to multiple abiotic stresses. Also, it can be employed to monitor in vivo levels and locations of HPPD in crops. Consequently, the labeling strategy will be a significant tool in investigations of HPPD-related abiotic stress mechanisms, discovering novel herbicides, and uncovering unknown biological functions.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Xiaoxie Ma
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Biao Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Sheng Hua Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Jun Yin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| |
Collapse
|
8
|
Zhang M, Cai H, Ling D, Pang C, Chang J, Jin Z, Chi YR. Herbicidal Activity of Beflubutamid Analogues as PDS Inhibitors and SAR Analysis and Degradation Dynamics in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37906815 DOI: 10.1021/acs.jafc.3c04733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In this work, a series of beflubutamid (BF) analogues' postemergent herbicidal activity was evaluated, and the structure-activity relationship (SAR) was discussed. At a dosage of 300 g ai/ha, compounds (Rac)-6h and (Rac)-6q showed excellent herbicidal activity against Amaranthus retroflexus, Abutilon theophrasti, and Medicago sativa, with inhibition rates of 90, 100, and 80% and 100, 100, and 100%, respectively, comparable to that of commercial herbicide BF, which showed inhibition rates of 90, 100, and 100%, respectively. Notably, at dosages of 150 and 300 g ai/ha, the chiral compounds (S)-6h and (S)-6q exhibited higher herbicidal activities than their racemates. Molecular docking results indicated that compounds (S)-BF and (S)-6h have stronger binding affinities with Oryza sativa phytoene desaturase (OsPDS), resulting in a higher herbicidal activity. Additionally, the degradation dynamics half-life of (S)-BF in wheat was determined to be 77.02 h. Consequently, compounds (S)-6h and (S)-6q are promising lead candidates for the development of highly effective herbicides.
Collapse
Affiliation(s)
- Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Hui Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Dan Ling
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Chen Pang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jinming Chang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|