1
|
Wang Q, Xin BS, Kou WL, Gao LN, Zhang GX, Qiao YJ, Yao GD, Huang XX, Song SJ. Discovery of isopentenyl flavonoids with inhibitory activity against hepatocellular carcinoma cells based on DeepSAT. PHYTOCHEMISTRY 2025; 234:114437. [PMID: 39952575 DOI: 10.1016/j.phytochem.2025.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Isopentenyl flavonoids were isolated from Daphne giraldii Nitsche and their pharmacological activity was further studied to enrich its chemical composition. Seventeen isopentenyl flavonoids (1a/1b-3a/3b and 4-14), including thirteen undescribed compounds (1a/1b-3a/3b and 4-10), were obtained from D. giraldii under the guidance of HSQC-based DeepSAT. Their structures and configurations were established by comprehensive spectroscopic analysis, ECD, and GFN2NMR methods. Moreover, all compounds were evaluated for potential cytotoxicity against hepatocellular carcinoma HepG2 and Hep3B cell lines. Among them, undescribed compound 3 exhibited potent growth-inhibitory activities against HepG2 and Hep3B cells due to the presence of a unique isopentene group and pyran ring structure, with half-maximal inhibitory concentration values of IC50 = 17.55 ± 1.65 μM and IC50 = 1.12 ± 0.08 μM, respectively. Morphological and staining analyses suggested compound 11 induced apoptosis in HepG2 and Hep3B cells, indicating that the isopentene group at the C-8 position was the active group.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ben-Song Xin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Wen-Long Kou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Li-Na Gao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Gu-Xue Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan-Jiao Qiao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai, Shandong, 264005, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Zhang Z, Wang S, Liu Q, Cao G, Liu Y. Extraction, purification, structural characteristics, and pharmacological activities of the polysaccharides from corn silk: A review. Int J Biol Macromol 2024; 274:133433. [PMID: 38936581 DOI: 10.1016/j.ijbiomac.2024.133433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Corn silk is widely used as a traditional Chinese medicine possessing multiple beneficial effects, whose active ingredient is corn silk polysaccharide (CSP). CSP is abundant in corn silk, and has a variety of bioactivities, such as antioxidant, hypoglycemic, hypolipidemic, hepatorenal-protective, antitumor, anti-fatigue, immunomodulating, and anti-ischemia-reperfusion injury effects. Moreover, CSP ameliorates diabetes, diabetes nephropathy, and hyperlipidemia. This review aimed to comprehensively and systematically summarize recent information on the extraction, purification, structural characterization, biological activity, potential mechanism, and toxicity of CSP. Thus, it could provide a reference for the further use of CSP and discuss the future prospects of CSP research and development.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Company, Ltd, Jinan 250109, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
3
|
Li JY, Wang XY, Han MJ, Bai M, Huang XX. Target isolation of diverse sesquiterpenoid from the stems of Daphne genkwa based on molecular networking. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-12. [PMID: 38529763 DOI: 10.1080/10286020.2024.2325033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Guiding by LC-MS/MS analysis and the Global Natural Products Social (GNPS) Molecular Networking, three undescribed sesquiterpenoids, stedapgens A-C, and two known analogues were discovered in the barks of Daphne genkwa Sieb. et Zucc. The structures were determined by analysis of their spectroscopic data and quantum-chemical calculations. All the isolated novel compounds were tested for their acetylcholinesterase inhibitory activities with IC50 = 0.754 ± 0.059, 0.696 ± 0.026, and 0.337 ± 0.023 μg/ml. Among them, stedapgen A displayed promising inhibitory activities against AChE, and the binding sites were predicted by molecular docking.
Collapse
Affiliation(s)
- Jia-Yi Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Yi Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mei-Juan Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Basic Science Research Center Base (Pharmaceutical Science), Shandong Province, Yantai University, Yantai 264005, China
| |
Collapse
|
4
|
Zhao P, Li SF, Hou JY, Qin SY, Li JY, Zhou XF, Liu X, Hao JL, Lin B, Huang XX, Song SJ. Four pairs of neolignan enantiomers with distinctive isochroman moiety from the fruits of Crataegus pinnatifida and their protective activities against H 2O 2-induced SH-SY5Y cells. PHYTOCHEMISTRY 2024; 218:113933. [PMID: 38029952 DOI: 10.1016/j.phytochem.2023.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Four pairs of neolignan enantiomers (±)-1- (±)-4 with a distinctive isochroman moiety, including seven undescribed compounds, were isolated and identified from the fruits of Crataegus pinnatifida. Structural characterization of these compounds was established through comprehensive spectroscopic analyses, as well as quantum chemical calculations of ECD and NMR data. The preliminary bioassay displayed that compounds (+)-2 and (±)-3 exerted protective activities against H2O2-induced human neuroblastoma SH-SY5Y cells compared with the positive control. These bioactive compounds could be potential candidates for further pharmaceutical applications.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research &Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery &Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shi-Fang Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research &Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery &Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiao-Yang Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research &Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery &Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shu-Yan Qin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research &Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery &Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jia-Yi Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research &Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery &Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Fang Zhou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research &Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery &Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xuan Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research &Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery &Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jin-Le Hao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research &Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery &Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research &Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery &Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
5
|
Qin S, Li Y, Shao H, Yu Y, Yang Y, Zeng Y, Huang J, Hu JM, Yang L. Interaction mechanism between luteoloside and corn silk glycans and the synergistic role in hypoglycemic activity. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:10. [PMID: 38225526 PMCID: PMC10789705 DOI: 10.1007/s13659-024-00428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
As the two most principal active substances in the corn silk, polysaccharides and flavonoids, the mechanism of interaction between them has been a topic of intense research. This study provides an in-depth investigation of the interaction mechanism between corn silk glycans and luteoloside (LUT) and the synergistic role that result from this interaction. The interaction mechanism was evaluated by isothermal titration calorimetry (ITC) and circular dichroism (CD), and the synergistic role was evaluated by the expression of glucose transporters (GLUT-1), insulin secretion and surface plasmon resonance (SPR). CD and ITC results indicated that the interaction between CSGs and LUT mainly driven by the Cotton effects, enthalpy and entropy-driven. This interaction precipitated the formation of complexes (CSGs/LUT complexes) between corn silk glycans (CSGs) with four different molecular weights and luteoloside (LUT). Furthermore, the CSGs and LUT play a synergistic role in glucose regulation through GLUT-1 expression and insulin secretion experiments, compared to single luteoloside group.
Collapse
Affiliation(s)
- Shihui Qin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yanlang Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Huiyan Shao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yang Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yina Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yi Zeng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Jia Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - Liu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
6
|
Li JY, Dong SH, Zhang X, Liu ZJ, Hao JL, Lin B, Bai M, Huang XX, Song SJ. Structurally diverse terpenoids from Elephantopus scaber L. and their acetylcholinesterase inhibitory activities. PHYTOCHEMISTRY 2023; 216:113892. [PMID: 37813132 DOI: 10.1016/j.phytochem.2023.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023]
Abstract
Three undescribed compounds elephantopuscabers A-C, along with one previously reported compound spirowallichiione, were isolated from Elephantopus scaber L. Their structures were determined via extensive NMR spectroscopic analysis, quantum chemical calculations, and single-crystal X-ray diffraction crystallography. A plausible biosynthetic pathway for spirowallichiione was proposed. All the isolated compounds were tested for their acetylcholinesterase inhibitory activities. Among them, elephantopuscaber B and C displayed promising inhibitory activities against AChE, and the binding sites were predicted by molecular docking.
Collapse
Affiliation(s)
- Jia-Yi Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Shu-Hui Dong
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xin Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Zi-Jian Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jin-Le Hao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Basic Science Research Center Base (Pharmaceutical Science), Shandong province, Yantai University, Yantai, 264005, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| |
Collapse
|
7
|
Khan U, Hayat F, Khanum F, Shao Y, Iqbal S, Munir S, Abdin M, Li L, Ahmad RM, Qiu J, Xin Z. Optimizing extraction conditions and isolation of bound phenolic compounds from corn silk (Stigma maydis) and their antioxidant effects. J Food Sci 2023. [PMID: 37421346 DOI: 10.1111/1750-3841.16682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 07/10/2023]
Abstract
During the processing of maize, Stigma maydis, also known as corn silk, is normally discarded as waste. Phytochemical research was carried out on the S. maydis to use it as a valuable source of bioactive components. This research aimed to maximize the recovery of free and bound phenolic compounds from corn silk under optimal experimental conditions. Response surface design was operated to optimize the alkaline hydrolysis extraction of bound phytochemicals from corn silk based on total phenolic content and DPPH radical scavenging activity. The optimum conditions (i.e., NaOH concentration 2 M, digestion time 135 min, digestion temperature of 37.5°C, the solid-to-solvent ratio of 1:17.5, and acetone) were obtained. The optimum parameters were used to extract the corn silk. The structures of two compounds isolated from ethyl acetate extracts were then identified as friedelin (1) and (E)-4-(4-hydroxy-3-methoxyphenyl) but-3-en-2-one (2). The DPPH, H2 O2 , and ABTS % inhibition of the compounds is as follows: compound (1) 74.81%, 76.8%, 70.33% and compound (2) 70.37%, 56.70% and 57.46%, respectively. The current study has opened previously unexplored perspectives of the composition of bound compounds in corn silk and established the foundations for more effective processing and utilization of corn waste. PRACTICAL APPLICATION: Bound phenolic compounds from corn silk under optimal experimental conditions were obtained. Corn silk can be utilized as a type of medicinal herb as well as a source of inexpensive natural antioxidants.
Collapse
Affiliation(s)
- Ummara Khan
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Faisal Hayat
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Fakhara Khanum
- Department of Food Science and Technology, Faculty of Food Sciences, The University of Agriculture Dera Ismail Khan, Dera Ismail Khan, Pakistan
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shahid Iqbal
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, Florida, USA
| | - Sadia Munir
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Mohamed Abdin
- Agricultural Research Center, Food Technology Research Institute, Giza, Egypt
| | - Longxiang Li
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ramala Masood Ahmad
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jiarong Qiu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|