1
|
Xie C, Wang X, Zhang B, Liu J, Zhang P, Shen G, Yin X, Kong D, Yang J, Yao H, You X, Li Y. Co-composting of tail vegetable with flue-cured tobacco leaves: analysis of nitrogen transformation and estimation as a seed germination agent for halophyte. Front Microbiol 2024; 15:1433092. [PMID: 39296297 PMCID: PMC11408338 DOI: 10.3389/fmicb.2024.1433092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Resource utilization of tail vegetables has raised increasing concerns in the modern agriculture. However, the effect and related mechanisms of flue-cured tobacco leaves on the product quality, phytotoxicity and bacterially-mediated nitrogen (N) transformation process of tail vegetable composting were poorly understood. Amendments of high-dosed (5% and 10% w/w) tobacco leaves into the compost accelerated the heating process, prolonged the time of thermophilic stage, increased the peak temperature, thereby improving maturity and shortening composting duration. The tobacco leaf amendments at the 10% (w/w) increased the N conservation (TN and NH4-N content) of compost, due to the supply of N-containing nutrient and promotion of organic matter degradation by tobacco leaves. Besides, tobacco leaf amendments promoted the seed germination and root development of wild soybean, exhibiting the feasibility of composting product for promoting the growth of salt-tolerant plants, but no dose-dependent effect was found for tobacco leaf amendments. Addition of high dosed (5% and 10% w/w) tobacco leaves shifted the bacterial community towards lignocellulosic and N-fixing bacteria, contributing to increasing the compost maturity and N retention. PICRUSt 2 functional prediction revealed that N-related bacterial metabolism (i.e., hydroxylamine oxidation and denitrifying process) was enhanced in the tobacco leaf treatments, which contributed to N retention and elevated nutrient quality of composting. To the best knowledge, this was the first study to explore the effect of tobacco waste additives on the nutrient transformation and halophyte growth promotion of organic waste composting. These findings will deepen the understanding of microbially-mediated N transformation and composting processes involving flue-cured tobacco leaves.
Collapse
Affiliation(s)
- Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | | | - Jiantao Liu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Peng Zhang
- Plant Functional Component Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guangcai Shen
- Tobacco Baoshan Industrial Co., Ltd., Baoshan, China
| | - Xingsheng Yin
- Tobacco Baoshan Industrial Co., Ltd., Baoshan, China
| | - Decai Kong
- Tobacco Shandong Industrial Co., Ltd., Jinan, China
| | - Junjie Yang
- Tobacco Shandong Industrial Co., Ltd., Jinan, China
| | - Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| |
Collapse
|
2
|
Shen Q, Wang S, Wang H, Liang J, Zhao Q, Cheng K, Imran M, Xue J, Mao Z. Revolutionizing food science with mass spectrometry imaging: A comprehensive review of applications and challenges. Compr Rev Food Sci Food Saf 2024; 23:e13398. [PMID: 38925595 DOI: 10.1111/1541-4337.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Food science encounters increasing complexity and challenges, necessitating more efficient, accurate, and sensitive analytical techniques. Mass spectrometry imaging (MSI) emerges as a revolutionary tool, offering more molecular-level insights. This review delves into MSI's applications and challenges in food science. It introduces MSI principles and instruments such as matrix-assisted laser desorption/ionization, desorption electrospray ionization, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry, highlighting their application in chemical composition analysis, variety identification, authenticity assessment, endogenous substance, exogenous contaminant and residue analysis, quality control, and process monitoring in food processing and food storage. Despite its potential, MSI faces hurdles such as the complexity and cost of instrumentation, complexity in sample preparation, limited analytical capabilities, and lack of standardization of MSI for food samples. While MSI has a wide range of applications in food analysis and can provide more comprehensive and accurate analytical results, challenges persist, demanding further research and solutions. The future development directions include miniaturization of imaging devices, high-resolution and high-speed MSI, multiomics and multimodal data fusion, as well as the application of data analysis and artificial intelligence. These findings and conclusions provide valuable references and insights for the field of food science and offer theoretical and methodological support for further research and practice in food science.
Collapse
Affiliation(s)
- Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Shitong Wang
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Honghai Wang
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou, China
| | - Qiaoling Zhao
- Zhoushan Institute of Food & Drug Control, Zhoushan, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Muhammad Imran
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Zhujun Mao
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Wang Y, Yang F, Fu Y, He X, Tian H, Yang L, Wu M, Cao J, Liu J. A point-of-care testing platform for on-site identification of genetically modified crops. LAB ON A CHIP 2024; 24:2622-2632. [PMID: 38644672 DOI: 10.1039/d4lc00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Genetically modified (GM) food is still highly controversial nowadays. Due to the disparate policies and attitudes worldwide, demands for a rapid, cost-effective and user-friendly GM crop identification method are increasingly significant for import administration, market supervision, etc. However, as the most-recognized methods, nucleic acid-based identification approaches require bulky instruments, long turn-around times and trained personnel, which are only suitable in laboratories. To fulfil the urgent needs of on-site testing, we develop a point-of-care testing platform that is able to identify 12 types of GM crops in less than 40 minutes without using laboratory settings. Our system integrates sample pre-treatment modules in a microfluidic chip, performs DNA amplification via a battery-powered portable kit, and presents results via eye-recognized colorimetric change. A paraffin-based reflow method and a slip plate-based fluid switch are developed to encapsulate and release amplification primers in individual microwells on demand, thus enabling identification of varied targets simultaneously. Our system offers an efficient, affordable and convenient tool for GM crop identification, thus it will not only benefit customs and market administration bureaus, but also satisfy demands of numerous consumers.
Collapse
Affiliation(s)
- Yangyang Wang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Furui Yang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yingyi Fu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xin He
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Haowei Tian
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Lili Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Mengxi Wu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Junshan Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
4
|
Wittek O, Jahreis B, Römpp A. MALDI MS Imaging of Chickpea Seeds ( Cicer arietinum) and Crab's Eye Vine ( Abrus precatorius) after Tryptic Digestion Allows Spatially Resolved Identification of Plant Proteins. Anal Chem 2023; 95:14972-14980. [PMID: 37749896 PMCID: PMC10568532 DOI: 10.1021/acs.analchem.3c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) imaging following in situ enzymatic digestion is a versatile analytical method for the untargeted investigation of protein distributions, which has rarely been used for plants so far. The present study describes a workflow for in situ tryptic digestion of plant seed tissue for MALDI MS imaging. Substantial modifications to the sample preparation procedure for mammalian tissues were necessary to cater to the specific properties of plant materials. For the first time, distributions of tryptic peptides were successfully visualized in plant tissue using MS imaging with accurate mass detection. Sixteen proteins were visualized and identified in chickpea seeds showing different distribution patterns, e.g., in the cotyledons, radicle, or testa. All tryptic peptides were detected with a mass resolution higher than 60,000 as well as a mass accuracy better than 1.5 ppm root-mean-square error and were matched to results from complementary liquid chromatography-MS/MS (LC-MS/MS) data. The developed method was also applied to crab's eye vine seeds for targeted MS imaging of the toxic protein abrin, showing the presence of abrin-a in all compartments. Abrin (59 kDa), as well as the majority of proteins visualized in chickpeas, was larger than 50 kDa and would thus not be readily accessible by top-down MS imaging. Since antibodies for plant proteins are often not readily available, in situ digestion MS imaging provides unique information, as it makes the distribution and identification of larger proteins in plant tissues accessible in an untargeted manner. This opens up new possibilities in the field of plant science as well as to assess the nutritional quality and/or safety of crops.
Collapse
Affiliation(s)
| | - Bastian Jahreis
- Bioanalytical Sciences and
Food Analysis, University of Bayreuth, Universitaetsstrasse 30, D-95447 Bayreuth, Germany
| | - Andreas Römpp
- Bioanalytical Sciences and
Food Analysis, University of Bayreuth, Universitaetsstrasse 30, D-95447 Bayreuth, Germany
| |
Collapse
|
5
|
Molinari MDC, Fuganti-Pagliarini R, Yu Y, Florentino LH, Mertz-Henning LM, Lima RN, Bittencourt DMDC, Freire MO, Rech E. Exploring the Proteomic Profile of Soybean Bran: Unlocking the Potential for Improving Protein Quality and Quantity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2704. [PMID: 37514318 PMCID: PMC10383420 DOI: 10.3390/plants12142704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Soybean is a rich source of vegetal protein for both animal and human consumption. Despite the high levels of protein in soybean seeds, industrial processing to obtain soybean bran significantly decreases the final protein content of the byproducts. To overcome this problem, cultivars with higher protein contents must be developed. However, selecting the target proteins is difficult because of the lack of information on the proteome profile of soybean bran. Therefore, this study obtained the comparative proteomic profiles of both natural coatless seeds and defatted bran from an elite tropical-soybean cultivar. Thus, their extracts were characterized using LC-MS/MS and a total of 550 proteins were identified. Among these, 526 proteins were detected in coatless seeds and 319 proteins in defatted bran. Moreover, a total of 139 proteins were identified as presenting different levels of content in coatless seeds and defatted bran. Among them, only 46 were retained after the seed processing. These proteins were clustered in several important metabolic pathways, such as amino-acid biosynthesis, sugar biosynthesis, and antioxidant activity, meaning that they could act as targets for bioactive products or genome editing to improve protein quality and quantity in soybean grains. These findings can enhance our understanding regarding protein robustness for both soybean crops and the commercial bran improvement because target proteins must remain intact after processing and must be bioactive when overexpressed. Overall, the soybean bran proteomic profile was explored for the first time, providing a valuable catalogue of target proteins that can tolerate the industrial process.
Collapse
Affiliation(s)
| | | | - Yanbao Yu
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Lilian Hasegawa Florentino
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology in Synthetic Biology, Distrito Federal 70770-917, Brazil
| | | | - Rayane Nunes Lima
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology in Synthetic Biology, Distrito Federal 70770-917, Brazil
| | | | | | - Elibio Rech
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology in Synthetic Biology, Distrito Federal 70770-917, Brazil
| |
Collapse
|