1
|
Dou Y, Mäkinen M, Jänis J. High-Resolution Mass Spectrometry-Based Chemical Fingerprinting of Baijiu, a Traditional Chinese Liquor. ACS OMEGA 2024; 9:9443-9451. [PMID: 38434869 PMCID: PMC10905708 DOI: 10.1021/acsomega.3c08993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, coupled with electrospray ionization (ESI) or atmospheric-pressure photoionization (APPI), was employed for chemical fingerprinting of baijiu, a traditional Chinese liquor. Baijiu is the most consumed distilled alcoholic beverage globally, with over 10 billion liters sold annually. It is a white (transparent) spirit that exhibits similarities to dark spirits such as whisky or rum in terms of aroma and mouthfeel. In this study, direct-infusion FT-ICR mass spectrometry was used to analyze 10 commercially available baijiu liquors, enabling the examination of both volatile and nonvolatile constituents without the need for tedious sample extractions or compound derivatizations. The chemical fingerprints obtained by FT-ICR MS revealed substantial compositional diversity among different baijiu liquors, reflecting variations in the raw materials and production methods. The main compounds identified included a variety of acids, esters, aldehydes, lactones, terpenes, and phenolic compounds. The use of ESI and APPI provided complementary compositional information; while ESI demonstrated greater selectivity toward polar, aliphatic sample constituents, APPI also ionized semipolar and nonpolar (aromatic) ones.
Collapse
Affiliation(s)
- Yanning Dou
- Department of Chemistry, University of Eastern Finland, P.O.
Box 111, Joensuu FI-80101, Finland
| | - Marko Mäkinen
- Department of Chemistry, University of Eastern Finland, P.O.
Box 111, Joensuu FI-80101, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, P.O.
Box 111, Joensuu FI-80101, Finland
| |
Collapse
|
2
|
Nicolas S, Bois B, Billet K, Romanet R, Bahut F, Uhl J, Schmitt-Kopplin P, Gougeon RD. High-Resolution Mass Spectrometry-Based Metabolomics for Increased Grape Juice Metabolite Coverage. Foods 2023; 13:54. [PMID: 38201082 PMCID: PMC10778666 DOI: 10.3390/foods13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The composition of the juice from grape berries is at the basis of the definition of technological ripeness before harvest, historically evaluated from global sugar and acid contents. If many studies have contributed to the identification of other primary and secondary metabolites in whole berries, deepening knowledge about the chemical composition of the sole flesh of grape berries (i.e., without considering skins and seeds) at harvest is of primary interest when studying the enological potential of widespread grape varieties producing high-added-value wines. Here, we used non-targeted DI-FT-ICR-MS and RP-UHPLC-Q-ToF-MS analyses to explore the extent of metabolite coverage of up to 290 grape juices from four Vitis vinifera grape varieties, namely Chardonnay, Pinot noir, Meunier, and Aligoté, sampled at harvest from 91 vineyards in Europe and Argentina, over three successive vintages. SPE pretreatment of samples led to the identification of more than 4500 detected C,H,O,N,S-containing elemental compositions, likely associated with tens of thousands of distinct metabolites. We further revealed that a major part of this chemical diversity appears to be common to the different juices, as exemplified by Pinot noir and Chardonnay samples. However, it was possible to build significant models for the discrimination of Chardonnay from Pinot noir grape juices, and of Chardonnay from Aligoté grape juices, regardless of the geographical origin or the vintage. Therefore, this metabolomic approach opens access to a remarkable holistic molecular description of the instantaneous composition of such a biological matrix, which is the result of complex interplays among environmental, biochemical, and vine growing practices.
Collapse
Affiliation(s)
- Sébastien Nicolas
- Procédés Alimentaires et Microbiologiques, PAM UMR A 02.102, Université de Bourgogne-Institut Agro, Institut Universitaire de la Vigne et du Vin-Jules Guyot, F-21000 Dijon, France; (S.N.); (K.B.); (R.R.); (F.B.)
| | - Benjamin Bois
- Centre de Recherches de Climatologie, Biogéosciences UMR 6282, CNRS-Université de Bourgogne, Institut Universitaire de la Vigne et du Vin-Jules Guyot, F-21000 Dijon, France;
| | - Kevin Billet
- Procédés Alimentaires et Microbiologiques, PAM UMR A 02.102, Université de Bourgogne-Institut Agro, Institut Universitaire de la Vigne et du Vin-Jules Guyot, F-21000 Dijon, France; (S.N.); (K.B.); (R.R.); (F.B.)
| | - Rémy Romanet
- Procédés Alimentaires et Microbiologiques, PAM UMR A 02.102, Université de Bourgogne-Institut Agro, Institut Universitaire de la Vigne et du Vin-Jules Guyot, F-21000 Dijon, France; (S.N.); (K.B.); (R.R.); (F.B.)
- DIVVA Platform, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin-Jules Guyot, F-21000 Dijon, France
| | - Florian Bahut
- Procédés Alimentaires et Microbiologiques, PAM UMR A 02.102, Université de Bourgogne-Institut Agro, Institut Universitaire de la Vigne et du Vin-Jules Guyot, F-21000 Dijon, France; (S.N.); (K.B.); (R.R.); (F.B.)
| | - Jenny Uhl
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany (P.S.-K.)
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany (P.S.-K.)
- Analytische Lebensmittel Chemie, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Régis D. Gougeon
- Procédés Alimentaires et Microbiologiques, PAM UMR A 02.102, Université de Bourgogne-Institut Agro, Institut Universitaire de la Vigne et du Vin-Jules Guyot, F-21000 Dijon, France; (S.N.); (K.B.); (R.R.); (F.B.)
| |
Collapse
|
3
|
Moses T, Burgess K. Right in two: capabilities of ion mobility spectrometry for untargeted metabolomics. Front Mol Biosci 2023; 10:1230282. [PMID: 37602325 PMCID: PMC10436490 DOI: 10.3389/fmolb.2023.1230282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
This mini review focuses on the opportunities provided by current and emerging separation techniques for mass spectrometry metabolomics. The purpose of separation technologies in metabolomics is primarily to reduce complexity of the heterogeneous systems studied, and to provide concentration enrichment by increasing sensitivity towards the quantification of low abundance metabolites. For this reason, a wide variety of separation systems, from column chemistries to solvent compositions and multidimensional separations, have been applied in the field. Multidimensional separations are a common method in both proteomics applications and gas chromatography mass spectrometry, allowing orthogonal separations to further reduce analytical complexity and expand peak capacity. These applications contribute to exponential increases in run times concomitant with first dimension fractionation followed by second dimension separations. Multidimensional liquid chromatography to increase peak capacity in metabolomics, when compared to the potential of running additional samples or replicates and increasing statistical confidence, mean that uptake of these methods has been minimal. In contrast, in the last 15 years there have been significant advances in the resolution and sensitivity of ion mobility spectrometry, to the point where high-resolution separation of analytes based on their collision cross section approaches chromatographic separation, with minimal loss in sensitivity. Additionally, ion mobility separations can be performed on a chromatographic timescale with little reduction in instrument duty cycle. In this review, we compare ion mobility separation to liquid chromatographic separation, highlight the history of the use of ion mobility separations in metabolomics, outline the current state-of-the-art in the field, and discuss the future outlook of the technology. "Where there is one, you're bound to divide it. Right in two", James Maynard Keenan.
Collapse
Affiliation(s)
- Tessa Moses
- EdinOmics, RRID:SCR_021838, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
| | - Karl Burgess
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|