1
|
Zou R, Li X, Zhou J, Wu C, Zhu K, Han Q, Huang J, Duan H. Design of Novel Furan β-Butenolide Compounds with Low Bee Toxicity Based on the Binding Pharmacophore Model to AChBP. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9963-9972. [PMID: 40203153 DOI: 10.1021/acs.jafc.5c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Developing novel-structured nAChR modulators is urgent due to the high bee toxicity of current neonicotinoids. In this work, a pharmacophore model of an nAChR modulator was generated, and a series of novel furan β-butenolide compounds were designed and synthesized. The bioassay study demonstrated that the insecticidal activity of compound 8c was the best (LC50 = 54.68 μg/mL) against Myzus persicae, possibly due to its binding mode being more similar to that of flupyradifurone, as well as its interactions with specific key residues (ARG55, TRP143, and TYR89) within Ls-AChBP. Notably, compound 8c also exhibited low acute contact toxicity to Apis mellifera. An innovative mutated AChBP model simulating bee nAChR was generated first in silico, and the low bee toxicity of compound 8c was attributed to the decrease of its binding energy with the mutated bee-like AChBP. This study presents an innovative approach to design and verify β-butenolide compounds as low-bee-toxicity insecticidal candidates.
Collapse
Affiliation(s)
- Renxuan Zou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Xiang Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Jinyang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Cong Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Kai Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Qing Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Jiaxing Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| |
Collapse
|
2
|
Zhang YC, Zhuang ZX, Zhang F, Song XY, Ye WN, Wu SF, Bass C, O'Reilly AO, Gao C. Contribution of Nilaparvata lugens Nicotinic Acetylcholine Receptor Subunits Toward Triflumezopyrim and Neonicotinoid Susceptibility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7054-7065. [PMID: 40184263 DOI: 10.1021/acs.est.5c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are the molecular targets of some important insecticides including triflumezopyrim and neonicotinoids. However, our understanding of insect nAChR pharmacology and the specific nAChR subunits targeted by these insecticides remains limited. Here, we cloned 11 nAChR subunit genes, comprising Nlα1 to Nlα8, Nlα10, Nlβ1 and Nlβ3, from Nilaparvata lugens, a highly damaging insect pest of rice crops worldwide. Analysis of the expression of these genes in different tissues of N. lugens by qPCR analysis identified the brain as the primary site of expression. Knock down of the expression of Nlα1, Nlα2, Nlα8 and Nlβ1 using RNAi reduced N. lugens sensitivity to triflumezopyrim, suggesting these genes encode potential target subunits for triflumezopyrim. Knock out of Nlα2 and Nlα8 nAChR subunits by CRISPR/Cas9 genome editing showed that their deletion significantly reduced the toxicity of triflumezopyrim toward N. lugens. Furthermore, the deletion of Nlα2 also increased N. lugens resistance to imidacloprid and dinotefuran. However, numerous attempts revealed that the Nlβ1 knockout was nonviable. In vitro expression of receptors composed of Drosophila homologous subunits showed that this all-insect nAChR was inhibited by nanomolar concentrations of triflumezopyrim. The present findings identify specific nAChR subunits that are important both as targets for monitoring resistance-associated mutations and as subjects for molecular studies aimed at developing novel insecticides targeting these essential ion channels.
Collapse
Affiliation(s)
- Yan-Chao Zhang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| | - Zi-Xin Zhuang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| | - Fan Zhang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| | - Xiao-Yan Song
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| | - Wen-Nan Ye
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, U.K
| | - Andrias O O'Reilly
- School of Biological & Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Congfen Gao
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| |
Collapse
|
3
|
Huang M, Gong P, Yin C, Yang J, Liu S, Fu B, Wei X, Liang J, Xue H, He C, Du T, Wang C, Ji Y, Hu J, Zhang R, Belyakova NA, Zhang Y, Yang X. Cytochrome P450 CYP6EM1 confers resistance to thiamethoxam in the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) via detoxification metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106272. [PMID: 40015864 DOI: 10.1016/j.pestbp.2024.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 03/01/2025]
Abstract
The whitefly Bemisia tabaci (Hemiptera: Gennadius) is a notorious and highly polyphagous agricultural pest that is well known for its ability to transmit a wide range of serious plant pathogenic viruses. The field populations of B. tabaci in some areas have developed resistance to thiamethoxam. We found that high expression of CYP6EM1 can enhance the resistance of B. tabaci to dinotefuran. It is unclear whether CYP6EM1 is involved in the resistance of B. tabaci to the same neonicotinoid pesticide, thiamethoxam. The results of the present study demonstrated that the expression of CYP6EM1 could be induced within 9 h after the exposure of B. tabaci adults to thiamethoxam. Molecular docking analyses, with a binding energy of -6.13 cal/mol, revealed a strong binding affinity between thiamethoxam and the CYP6EM1 protein, implying that CYP6EM1 may be involved in thiamethoxam resistance. Compared with that in the susceptible strain, the mRNA expression level of the CYP6EM1 gene was significantly greater in thiamethoxam-resistant strains (R#1, 9.93-fold, P = 0.0008; R#2, 40.43-fold, P = 0.0013; R#3, 27.40-fold, P = 0.0002; R#4, 21.63-fold, P = 0.0003 and R#5, 28.65-fold, P = 0.0006). Loss and gain of function studies in vivo were performed via RNA interference and transgenic expression in Drosophila melanogaster, and the results confirmed the role of CYP6EM1 in conferring such resistance. An in vitro metabolism assay revealed that CYP6EM1 directly metabolized 15.60 % of thiamethoxam. This study provides solid evidence for the critical role of CYP6EM1 in the metabolism of thiamethoxam, which contributes to resistance. Our work provides a deeper understanding of the mechanism underlying neonicotinoid resistance and contributes valuable insights for the sustainable management of global pests such as whiteflies.
Collapse
Affiliation(s)
- Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, PR China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, PR China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, PR China
| | - JinYu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Natalia A Belyakova
- All-Russia Institute of Plant Protection, Russian Academy of Sciences, Podbelskogo 3, Pushkin, 196608 St. Petersburg, Russia
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, PR China.
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
4
|
Bandeira FO, Alves PRL, Hennig TB, Vaz VP, Vicentini DS, Juneau P, Dewez D, Matias WG. Individual and combined toxicity of polystyrene nanoplastics and clothianidin toward Daphnia magna, Lemna minor, Chlamydomonas reinhardtii, and Microcystis aeruginosa. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:470-483. [PMID: 39919234 DOI: 10.1093/etojnl/vgae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/23/2024] [Accepted: 10/01/2024] [Indexed: 02/09/2025]
Abstract
Nanoplastics (NPs) and neonicotinoids are common pollutants in aquatic ecosystems. Although their co-occurrence is expected in multiple environments, studies assessing their combined effects are still limited. This toxicological assessment investigated the potential effects of polystyrene NPs (PSNPs), clothianidin (CLO), and their mixtures on four aquatic species: the freshwater cladoceran Daphnia magna, the duckweed Lemna minor, the green algae Chlamydomonas reinhardtii, and the cyanobacteria Microcystis aeruginosa. Toxicological tests were performed following International Organization for Standardization and Organisation for Economic Co-operation and Development protocols. Acute, chronic (multigenerational) and swimming behavior tests were performed with D. magna, and growth inhibition tests were run with L. minor, C. reinhardtii, and M. aeruginosa. Abbott's model was used to predict the toxicological interactions of the mixtures for each one of the tested species. The D. magna immobility and swimming behavior tests revealed that the combined toxicities of PSNPs and CLO are decreased when the compounds are present as a mixture. Antagonistic interactions were also observed for C. reinhardtii growth, whereas for L. minor and M. aeruginosa, interactions ranged from antagonism to additivity. Chronic multigenerational tests with D. magna revealed that neonates obtained from the exposed parental generation showed a delay in the first brood during the recovery (nonexposure) phase, but this effect disappeared at the next generation, which indicates that microcrustaceans will probably be able to recover on a long-term scale if contamination is stopped. Our results provide new insights into the combined toxicity and ecological risk of NPs and neonicotinoids toward aquatic organisms.
Collapse
Affiliation(s)
- Felipe Ogliari Bandeira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Laboratory of Soil Ecotoxicology, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Thuanne Braúlio Hennig
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Vitor Pereira Vaz
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Ecotoxicology of Aquatic Microorganisms Laboratory-GRIL-EcotoQ-TOXEN, Department of Biological Sciences, University of Quebec at Montreal, Montréal, QC, Canada
| | - Denice Schulz Vicentini
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Philippe Juneau
- Ecotoxicology of Aquatic Microorganisms Laboratory-GRIL-EcotoQ-TOXEN, Department of Biological Sciences, University of Quebec at Montreal, Montréal, QC, Canada
| | - David Dewez
- Laboratory of Environmental & Analytical Biochemistry of Contaminants, Department of Chemistry, University of Quebec at Montreal, Montréal, QC, Canada
| | - William Gerson Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
5
|
Wu L, Li Y, Ding W, He H, Gao H, Gao Q, Li Y, Qiu L. Functional roles of nicotinic acetylcholine receptors in dinotefuran and flupyrimin toxicity and their sublethal effects on Sogatella furcifera (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2618-2627. [PMID: 39302975 DOI: 10.1093/jee/toae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), a serious rice pest, has developed significant resistance to a wide range of pesticides. Neonicotinoid insecticides are currently the primary choice for controlling S. furcifera, yet their impact on the species remains poorly understood. In this study, we investigated the binding sites of a conventional insecticide (dinotefuran) and a novel insecticide (flupyrimin), and evaluated their sublethal effects on S. furcifera. Our results revealed that the LC50 of dinotefuran and flupyrimin were 2.51 mg/L and 2.80 mg/L in third-instar S. furcifera, respectively. RNA interference (RNAi) knockdown of S. furcifera nicotinic acetylcholine receptor (nAChR) alpha2 subunit (Sfα2) and S. furcifera nAChR beta1 subunit (Sfβ1) significantly reduced the susceptibility to dinotefuran by 18.7% and 16.8%, respectively, but had no effect on flupyrimin. Reproduction of the F0 and F1 generations was significantly inhibited by the LC25 of both dinotefuran and flupyrimin. In the dinotefuran treatment at LC25, the intrinsic growth rate (r) and finite growth rate (λ) were reduced to 0.15 and 0.16 days, respectively; the mean generation time (T) increased to 27.77 days, and the relative fitness was only 0.76 compared to the control. Additionally, the relative fitness (Rf) of the flupyrimin-treated group was reduced to 0.93 and 0.86 times that of the control group. The population dynamics of S. furcifera are significantly affected by both dinotefuran and flupyrimin, making these insecticides valuable tools for integrated pest management and the rational use of insecticides.
Collapse
Affiliation(s)
- Ling Wu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yongqi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Hunan Agricultural University, Changsha, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hongshuai Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Lu H, Fu B, Tan Q, Hu J, Yang J, Wei X, Liang J, Wang C, Ji Y, Huang M, Xue H, Du H, Zhang R, Du T, He C, Yang X, Zhang Y. Field-evolved resistance to nitenpyram is associated with fitness costs in whitefly. PEST MANAGEMENT SCIENCE 2024; 80:5684-5693. [PMID: 38984846 DOI: 10.1002/ps.8286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Elucidating fitness cost associated with field-evolved insect resistance to insecticide is of particular importance to current sustainable pest control. The global pest whitefly Bemisia tabaci has developed resistance to many members of neonicotinoids, but little is known about whitefly resistance to neonicotinoid nitenpyram and its associated fitness cost. Using insecticide bioassay and life-table approach, this study aims to investigate nitenpyram resistance status in field-collected whitefly populations, and to explore whether such resistance is accompanied by a fitness cost. RESULTS The bioassay results revealed that 14 of 29 whitefly populations displayed moderate to extremely high resistance to nitenpyram, demonstrating a widespread field-evolved resistance to nitenpyram. This field-evolved resistance in the whitefly has increased gradually over the past 3 years from 2021 to 2023. Further life-table study showed that two resistant whitefly populations exhibited longer developmental time, shorter lifespans of adult, and lower fecundity compared with the most susceptible population. The relative fitness cost of the two resistant populations was calculated as 0.69 and 0.56 by using net productive rate R0, which suggests that nitenpyram resistance comes with fitness cost in the whitefly, especially on reproduction. CONCLUSION Overall, these results represent field-evolved high resistance to nitenpyram in the whitefly. The existing fitness costs associated with nitenpyram resistance are helpful to propose a suitable strategy for sustainable control of whiteflies by rotation or mixture of insecticide with different modes of action. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hantang Lu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qimei Tan
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jinyu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Yin C, O’Reilly AO, Liu SN, Du TH, Gong PP, Zhang CJ, Wei XG, Yang J, Huang MJ, Fu BL, Liang JJ, Xue H, Hu JY, Ji Y, He C, Du H, Wang C, Zhang R, Tan QM, Lu HT, Xie W, Chu D, Zhou XG, Nauen R, Gui LY, Bass C, Yang X, Zhang YJ. Dual mutations in the whitefly nicotinic acetylcholine receptor β1 subunit confer target-site resistance to multiple neonicotinoid insecticides. PLoS Genet 2024; 20:e1011163. [PMID: 38377137 PMCID: PMC10906874 DOI: 10.1371/journal.pgen.1011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/01/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTβ1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dβ1 was replaced with BTβ1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dβ1 were replaced with the wildtype BTβ1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.
Collapse
Affiliation(s)
- Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Andrias O. O’Reilly
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Shao-Nan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tian-Hua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Pei-Pan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Cheng-Jia Zhang
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, P. R. China
| | - Xue-Gao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ming-Jiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Bu-Li Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jin-Jin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jin-Yu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qi-Mei Tan
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, P. R. China
| | - Han-Tang Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, School of Agriculture and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Lian-You Gui
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - You-Jun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
8
|
Shi C, Tian Y, Wang Y, Guo W, Jiang W. The interaction of nicotinic acetylcholine receptor subunits Ldα3, Ldα8 and Ldβ1 with neonicotinoids in Colorado potato beetle, Leptinotarsa decemlineata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105558. [PMID: 37666594 DOI: 10.1016/j.pestbp.2023.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 09/06/2023]
Abstract
The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is an extremely destructive notifiable quarantine pest. Over the last two decades, neonicotinoid insecticides, particularly thiamethoxam and imidacloprid, have been used to control it in Xinjiang, and local field populations have developed different levels of resistance in consequence. However, the contributions of nicotinic acetylcholine receptors (nAChRs) to neonicotinoid resistance are currently poorly understood in CPB. Previous studies have shown that nAChRα1, α3, α8 and β1 are major target subunits for neonicotinoids in some model and important agricultural insects including nAChRα1 subunit of L. decemlineata (Ldα1). In this study, the expression levels of Ldα3, Ldα8 and Ldβ1 following 72 h of treatments with median lethal doses of thiamethoxam and imidacloprid were compared using real-time quantitative PCR. These genes were then individually and simultaneously knocked down with Ldα1 by RNA interference (RNAi) using a double-stranded RNA (dsRNA) feeding method for six days to explore their roles in CPB susceptibility to imidacloprid and thiamethoxam. The results showed that the expressions of Ldα3, Ldα8 and Ldβ1 were significantly decreased by 36.99-74.89% after thiamethoxam and imidacloprid treatments, compared with the control. The significant downregulation of the target genes resulting from RNAi significantly reduced the mortality of adults exposed to thiamethoxam and imidacloprid by 34.53% -56.44% and 28.78%-43.93%, respectively. Furthermore, the adult survival rates were not affected by every dsRNA-feeding treatment, while the body weight of the test adults significantly deceased after four and six days of individual gene RNAi. This study showed that Ldα3, Ldα8 and Ldβ1 are down-regulated by thiamethoxam and imidacloprid and play important roles in the tolerance of CPB to neonicotinoids.
Collapse
Affiliation(s)
- Chengcheng Shi
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Yitong Tian
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Yaqi Wang
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Wenchao Guo
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry Agriculture P.R. China, Urumqi, China
| | - Weihua Jiang
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China.
| |
Collapse
|