1
|
Momo J, Islam K, Biswas S, Rawoof A, Ahmad I, Vishesh, Ramchiary N. Multi-omics analysis of non-pungent ( Capsicum annuum) and fiery hot ghost chili ( C. chinense) provides insights into proteins involved in fruit development and metabolites biosynthesis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:453-475. [PMID: 40256276 PMCID: PMC12006620 DOI: 10.1007/s12298-025-01581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/22/2025]
Abstract
Global omics offer extensive insights into the diversity of essential biomolecules across various plant developmental stages. Despite advancements in high-throughput technologies, the integrated analysis of global omics such as proteomics, transcriptomics, and metabolomics, is yet to be fully explored in fruits of Capsicum species. In this study, we used an integrated omics approach to identify proteins involved in fruit development, and metabolite biosynthesis in the placenta and pericarp tissues of two contrasting genotypes belonging to ghost chili (Capsicum chinense) and C. annuum. The mass spectrometry analysis identified a total of 4,473 and 2,012 proteins from the pericarp and placenta tissues of Capsicum fruits. We observed expression of developmental stage-specific proteins, such as kinases, transferases, ion transporters, F-box proteins, and transcription factors that were enriched in the biosynthesis of primary and secondary metabolites. The abundance of these proteins corresponded with RNAseq data. Key proteins related to capsaicinoids biosynthesis, such as Acyltransferase 3, 3-oxoacyl-[acyl-carrier protein], 4-coumaroyl co-A ligase, and 3-ketoacyl-coA synthase 3, were identified in placenta of highly pungent ghost chili, along with J-domain proteins and transcription factors such as MYB101, MYB 14-like, bHLH112, NAC, and Cyt p450 CYP82D47, suggesting their role in capsaicinoids and secondary metabolites biosynthesis. Further, we observed a correlation of the expression of genes and proteins with the abundance of primary and secondary metabolites, such as carbohydrates, alcohols, fatty acids, phenolics, glycerides, polyamines, and amino acids. Our findings provide a novel multiomics resources for future functional studies, with potential applications in breeding programs. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01581-7.
Collapse
Affiliation(s)
- John Momo
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Khushbu Islam
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Souparna Biswas
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Abdul Rawoof
- Department of Biological Sciences and Biodiscovery Institute, University of North Texas, Denton, TX USA
| | - Ilyas Ahmad
- Department of Plant Sciences, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, 82072 USA
| | - Vishesh
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Nirala Ramchiary
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
2
|
Hareem M, Danish S, Obaid SA, Ansari MJ, Datta R. Mitigation of drought stress in chili plants (Capsicum annuum L.) using mango fruit waste biochar, fulvic acid and cobalt. Sci Rep 2024; 14:14270. [PMID: 38902414 PMCID: PMC11189930 DOI: 10.1038/s41598-024-65082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Drought stress can have negative impacts on crop productivity. It triggers the accumulation of reactive oxygen species, which causes oxidative stress. Limited water and nutrient uptake under drought stress also decreases plant growth. Using cobalt and fulvic acid with biochar in such scenarios can effectively promote plant growth. Cobalt (Co) is a component of various enzymes and co-enzymes. It can increase the concentration of flavonoids, total phenols, antioxidant enzymes (peroxidase, catalase, and polyphenol oxidase) and proline. Fulvic acid (FA), a constituent of soil organic matter, increases the accessibility of nutrients to plants. Biochar (BC) can enhance soil moisture retention, nutrient uptake, and plant productivity during drought stress. That's why the current study explored the influence of Co, FA and BC on chili plants under drought stress. This study involved 8 treatments, i.e., control, 4 g/L fulvic acid (4FA), 20 mg/L cobalt sulfate (20CoSO4), 4FA + 20CoSO4, 0.50%MFWBC (0.50 MFWBC), 4FA + 0.50MFWBC, 20CoSO4 + 0.50MFWBC, 4FA + 20CoSO4 + 0.50MFWBC. Results showed that 4 g/L FA + 20CoSO4 with 0.50MFWBC caused an increase in chili plant height (23.29%), plant dry weight (28.85%), fruit length (20.17%), fruit girth (21.41%) and fruit yield (25.13%) compared to control. The effectiveness of 4 g/L FA + 20CoSO4 with 0.50MFWBC was also confirmed by a significant increase in total chlorophyll contents, as well as nitrogen (N), phosphorus (P), and potassium (K) in leaves over control. In conclusion4g/L, FA + 20CoSO4 with 0.50MFWBC can potentially improve the growth of chili cultivated in drought stress. It is suggested that 4 g/L FA + 20CoSO4 with 0.50MFWBC be used to alleviate drought stress in chili plants.
Collapse
Affiliation(s)
- Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan
| | - Subhan Danish
- Pesticide Quality Control Laboratory, Agriculture Complex, Old Shujabad Road, Multan, Punjab, Pakistan.
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.
| |
Collapse
|
3
|
Hareem M, Danish S, Pervez M, Irshad U, Fahad S, Dawar K, Alharbi SA, Ansari MJ, Datta R. Optimizing chili production in drought stress: combining Zn-quantum dot biochar and proline for improved growth and yield. Sci Rep 2024; 14:6627. [PMID: 38503869 PMCID: PMC10951368 DOI: 10.1038/s41598-024-57204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The reduction in crop productivity due to drought stress, is a major concern in agriculture. Drought stress usually disrupts photosynthesis by triggering oxidative stress and generating reactive oxygen species (ROS). The use of zinc-quantum dot biochar (ZQDB) and proline (Pro) can be effective techniques to overcome this issue. Biochar has the potential to improve the water use efficiency while proline can play an imperative role in minimization of adverse impacts of ROS Proline, functioning as an osmotic protector, efficiently mitigates the adverse effects of heavy metals on plants by maintaining cellular structure, scavenging free radicals, and ensuring the stability of cellular integrity. That's why current study explored the impact of ZQDB and proline on chili growth under drought stress. Four treatments, i.e., control, 0.4%ZQDB, 0.1 mM Pro, and 0.4%ZQDB + Pro, were applied in 4 replications following the complete randomized design. Results exhibited that 0.4%ZQDB + Pro caused an increases in chili plant dry weight (29.28%), plant height (28.12%), fruit length (29.20%), fruit girth (59.81%), and fruit yield (55.78%) over control under drought stress. A significant increment in chlorophyll a (18.97%), chlorophyll b (49.02%), and total chlorophyll (26.67%), compared to control under drought stress, confirmed the effectiveness of 0.4%ZQDB + Pro. Furthermore, improvement in leaves N, P, and K concentration over control validated the efficacy of 0.4%ZQDB + Pro against drought stress. In conclusion, 0.4%ZQDB + Pro can mitigate drought stress in chili. More investigations are suggested to declare 0.4%ZQDB + Pro as promising amendment for mitigation of drought stress in other crops as well under changing climatic situations.
Collapse
Affiliation(s)
- Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Mahnoor Pervez
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Usman Irshad
- Department of Environmental Sciences, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.
| |
Collapse
|
4
|
Muñoz-Vargas MA, Taboada J, González-Gordo S, Palma JM, Corpas FJ. Characterization of leucine aminopeptidase (LAP) activity in sweet pepper fruits during ripening and its inhibition by nitration and reducing events. PLANT CELL REPORTS 2024; 43:92. [PMID: 38466441 PMCID: PMC10927865 DOI: 10.1007/s00299-024-03179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO-), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Jorge Taboada
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Salvador González-Gordo
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - José M Palma
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain.
| |
Collapse
|