1
|
Fan W, Zhang S, Yang N, Li Y, Zhang X, Niu C, Liu X, Wang B. Studies on the synthesis, crystal structures, biological activities and molecular docking of novel natural methylxanthine derivatives containing piperazine moiety. Mol Divers 2025; 29:2129-2142. [PMID: 39511124 DOI: 10.1007/s11030-024-10972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 11/15/2024]
Abstract
A series of novel methylxanthine Mannich base derivatives containing substituted piperazine groups were synthesized through Mannich reaction. The structures of these new compounds were confirmed by NMR, HRMS or elemental analyses, and X-ray single crystal diffraction. Bioassay results showed that some of the compounds exhibit favorable fungicidal and insecticidal potentials. Particularly, compounds IIk, IIq, IIs and compounds If, IIk against Physalospora piricola and Rhizoctonia cerealis, respectively, were comparable with Azoxystrobin and Chlorothalonil; compound Ik exhibited higher potency than Triflumuron against Plutella xylostella L., suggesting its potential as a lead compound for further development in insecticidal applications. Despite possessing weak herbicidal activities, the target compounds, especially the methylxanthine S-Mannich base derivatives I displayed remarkable inhibitory activities toward ketol-acid reductoisomerase (KARI); compounds Ib, If, and Ik which had Ki values of 2.41-8.08 µmol/L can be novel potent KARI inhibitors for deeper exploration. The SARs were analyzed in detail. The molecular docking studies on the highly active inhibitors with KARI provided possible binding modes between inhibitor and the target enzyme. The physicochemical parameter predictions indicated that compounds Ik, IIk, IIq and IIs have "druglike structure" features. The research results in this article may bring a new inspiration to the extensive explorations on new methylxanthine derivatives in pesticide area.
Collapse
Affiliation(s)
- Wenqi Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shuyun Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yonghong Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinghai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| | - Baolei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Zhang W, Jin X, Chen W, Hao S, Du X. Design, synthesis, herbicidal activity, and the molecular docking study of novel phenylpyrazole derivatives with strobilurin moieties. RSC Adv 2025; 15:16088-16096. [PMID: 40370840 PMCID: PMC12076197 DOI: 10.1039/d5ra02377g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025] Open
Abstract
Phenylpyrazole derivatives were innovatively designed and synthesized to fabricate novel herbicides containing strobilurin moieties. These resulting compounds were analyzed by nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (HRMS), exhibiting high herbicidal properties against Amaranthus retroflexus. The target compounds were synthesized through cyclization, chlorination, Vilsmeier-Hack reaction, Suzuki coupling reaction, and esterification reactions. The experimental conditions were mild, and the starting materials were easy to obtain, with a separation yield of approximately 80%. Moreover, herbicidal activity of the title compounds was studied via a pot culture experiment. Compounds 7a, 7b, 7e-7g, 7i, and 7l demonstrated good inhibition on A. retroflexus, which was inferior to that of fomesafen at 150 g a.i./hm2. The docking results indicated that the binding energies of compound 7f with protoporphyrinogen oxidase (PPO) were both negative and spontaneous, with numerous interaction active sites. Thus, it is speculated that compound 7f is a PPO inhibitor.
Collapse
Affiliation(s)
- Wenliang Zhang
- Catalytic Hydrogenation Research Center, Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Zhejiang Green Pesticide Collaborative Innovation Center, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| | - Xiaodong Jin
- Taizhou Key Laboratory of Green Agrochemicals Development, Synwill Co., Ltd Taizhou 318000 Zhejiang China
| | - Wenwu Chen
- Zhejiang Hanghua Technology Co., Ltd Huzhou 313000 China
| | - Shulin Hao
- Catalytic Hydrogenation Research Center, Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Zhejiang Green Pesticide Collaborative Innovation Center, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
- Taizhou Key Laboratory of Green Agrochemicals Development, Synwill Co., Ltd Taizhou 318000 Zhejiang China
| | - Xiaohua Du
- Catalytic Hydrogenation Research Center, Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Zhejiang Green Pesticide Collaborative Innovation Center, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| |
Collapse
|
3
|
Liu Y, Tian Y, Peng H, Zhang F, Huang X, Chen G, Zhou L, Che Z. Design, Synthesis, and Anti-Oomycete and Antifungal Activities of Novel Paeonol Derivatives Containing a Pyrazole Ring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9533-9540. [PMID: 40211589 DOI: 10.1021/acs.jafc.4c11375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Paeonol is the main active ingredient in the Chinese medicinal herb peony root bark. To discover biorational natural product-based fungicides, 25 paeonol derivatives (5a-y) containing a pyrazole ring were designed and synthesized by ingeniously introducing a pyrazole five-membered heterocyclic ring, and their structures were well characterized by 1H NMR, 13C NMR, high-resolution mass spectrometer (HRMS), and m.p. The stereochemical configurations of six target compounds, 5c, 5f, 5g, 5o, 5s, and 5v, were unambiguously subjected to single-crystal X-ray diffraction. Furthermore, we evaluated the bioactivities of these target compounds as anti-oomycete and antifungal agents against two serious agricultural diseases, Phytophthora capsici and Fusarium graminearum. Among all tested compounds, (1) nine compounds 5b-d, 5f, 5g, 5r, 5s, 5u, 5w displayed promising anti-oomycete against P. capsici, with EC50 values ranging from 22.1 to 34.5 mg/L, and the protective effect of the target compounds against P. capsici in vivo further confirmed the above results. (2) Six compounds 5g, 5k, 5m, 5t, 5w, 5x displayed promising antifungal against F. graminearum, with EC50 values ranging from 38.2 to 86.0 mg/L. Moreover, some interesting results of structure-activity relationships were also observed. The results of this study pave the way for further design, synthesis, and development of paeonol derivatives as potential botanical anti-oomycete and antifungal agents in crop protection.
Collapse
Affiliation(s)
- Yibo Liu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuee Tian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Hong Peng
- Henan Provincial Plant Protection and Quarantine Station, Zhengzhou 450002, China
| | - Fulong Zhang
- Inner Mongolia KINGBO Biotech Co., Ltd., Bayannur, Inner Mongolia 015000, China
- Beijing KINGBO Biotech Co., Ltd., Beijing 100012, China
| | - Xiaobo Huang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Genqiang Chen
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Che
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
4
|
Tian GM, Yi MY, Yan TS, Liu SS, Huang J, Li H, Bao XP. Design, synthesis, X-ray crystal structure, and antifungal evaluation of new acetohydrazide derivatives containing a 4-thioquinazoline moiety. PEST MANAGEMENT SCIENCE 2025; 81:1624-1637. [PMID: 39629599 DOI: 10.1002/ps.8566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND To find efficient agricultural fungicides, 29 new 4-thioquinazoline-containing acetohydrazide derivatives were prepared and tested for their fungicidal properties. RESULTS All of the target compounds were characterized by 1H and 13C nuclear magnetic resonance and high-resolution mass spectrometry techniques, and the molecular structure of compound A2 was verified by single-crystal X-ray diffraction measurement. The experimental results revealed that many compounds from this series had impressive inhibition efficacies in vitro against the tested fungi. For example, compound A25 was identified as the best fungicidal agent against Rhizoctonia solani with an EC50 (half-maximal effective concentration) value of 0.66 μg mL-1, superior to those of the commercial fungicides chlorothalonil, carbendazim and boscalid. Additionally, this compound displayed favorable protection and curative activities in vivo against rice sheath blight caused by R. solani. Antifungal mechanistic studies on compound A25 indicated that this compound exerted its strong anti-R. solani effects probably through an effective inhibition of fungal succinate dehydrogenase activity [half-maximal inhibitory concentration (IC50) = 4.88 μm] and the impairment of cell membrane integrity, based on the results from enzymatic bioassays, molecular docking studies, and scanning and transmission electron microscopy observations. CONCLUSION Acetohydrazide derivatives containing the 4-thioquinazoline moiety had the potential to be employed as lead compounds for developing more efficient agricultural fungicides in the near future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guang-Min Tian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ming-Yan Yi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Tai-Sen Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song-Song Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Jian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiao-Ping Bao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Liu XH, Fu CH, Wang J, Wei YC, Tan CX, Weng JQ, Min LJ, Xu TM, Wu N. Novel 5-(Trifluoromethyl)-1,2,4-oxadiazole-Based Pyrimidin-4-ether Histone Deacetylase Inhibitors for Controlling Rust Disease: Design, Synthesis, Activity, and Structure-Activity Relationship. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4563-4573. [PMID: 39939838 DOI: 10.1021/acs.jafc.4c09039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Rust disease, an important plant pathogen, can lead to reduced crop or fruit production. Trifluoromethyloxadiazole (TFMO) is a class of histone deacetylase inhibitors (HDACs). Herein, a series of 5-(trifluoromethyl)-1,2,4-oxadiazole (TFMO)-based pyrimidin-4-ether derivatives were designed and synthesized. Antirust bioassay results of TFMOs showed that some of them possessed excellent activities against plant rust pathogens, such as Puccinia sorghi, Phakopsora pachyrhizi, and Puccinia rubigo. The most active compound, 3-(5-(((6-(difluoromethyl)pyrimidin-4-yl)oxy)methyl)thiophen-2-yl)-5-(trifluoromethyl)-1,2,4-oxadiazole (XII6), exhibited 50% control against P. pachyrhizi at 0.780 mg/L, which was significantly better than the commercial fungicide azoxystrobin (0%) at the same concentration. The field trial results indicated that the compound exhibited an excellent control effect against P. rubigo at 116 g a.i./ha. The acute toxic results indicated that compound XII6 has low toxicity. Furthermore, the enzyme activity results showed that compound XII6 is a strong, nonselective HDAC inhibitor. Finally, the structure-activity relationship was established, and the compound XII6-HDAC binding mode was carried out based on the crystal structure of hHDAC1, hHDAC4, and hHDAC6. This work provided an excellent fungicide against rust for further optimization.
Collapse
Affiliation(s)
- Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chen-Hao Fu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China
| | - Jian Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China
| | - You-Chang Wei
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China
| | - Cheng-Xia Tan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-Quan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Tian-Ming Xu
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China
| | - Ningjie Wu
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China
| |
Collapse
|
6
|
Chen Y, Gao J, Song Y, Zhang Y, Huang Y, Wang D, Chang X, Lv X. Design, Synthesis, and Biological Evaluation of Novel Aryl Sulfonamide Derivatives as Potential Succinate Dehydrogenase Inhibitors Targeting Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3854-3864. [PMID: 39919311 DOI: 10.1021/acs.jafc.4c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
In our pursuit of novel succinate dehydrogenase inhibitor (SDHI) fungicides for agriculture, we replaced the traditional amide structure with a sulfonamide framework and introduced various heterocyclic and aromatic rings at the sulfonamide's termini. This strategy yielded 30 synthesized compounds, which were screened for antifungal activity against eight phytopathogenic fungi. The biological assay results demonstrated that several target compounds exhibited significant in vitro antifungal activity. Notably, compound 2f showed remarkable antifungal activity against Valsa mali with an EC50 value of 0.56 mg/L, outperforming Boscalid (EC50 = 1.79 mg/L). In vivo experiments revealed that compound 2f provided significant protection to apple fruits, comparable to Boscalid. SEM analysis of compounds 2f and 3e showed that compound 2f disrupted the structure and morphology of fungal hypha analysis, which suggested that the terminal polyhalogen-substituted pyridine moieties might be pivotal regions influencing their antifungal efficacy. Molecular docking analysis revealed that compound 2f and Boscalid exhibited a comparable binding mode to SDH. Furthermore, detailed SDH inhibition assays confirmed the potential of 2f (IC50 = 2.51 μM) as prospective SDH inhibitors. RNA transcriptomic analysis indicated that the application of compound 2f could influence gene expression in fungi, thereby exerting a defensive effect against plant pathogenic fungi. Consequently, compound 2f shows promise for developing a novel and efficient agrochemical fungicide.
Collapse
Affiliation(s)
- Yao Chen
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Jie Gao
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Yaping Song
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Yu Zhang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Yamin Huang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Dandan Wang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xihao Chang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xianhai Lv
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, P. R. China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230001, P. R. China
| |
Collapse
|
7
|
Fei Q, Luo Y, Chen H, Wu W, Xu S. Design, synthesis, antifungal, and antibacterial evaluation of ferulic acid derivatives bearing amide moiety. Mol Divers 2024:10.1007/s11030-024-11076-4. [PMID: 39729179 DOI: 10.1007/s11030-024-11076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Natural compounds' derivatives as lead structures could effectively solve plant disease problems. In this article, amide compounds and amide ester compounds were synthetized through ferulic acid as the parent nucleus structure, and their biological activities in vitro and in vivo were evaluated. Compound 1q was screened out as the one with the best activity performance toward Xanthomonas axonopodis pv. citri (Xac), which displayed the inhibition rate of 100% and the EC50 as low as 4.56 μg/mL. The results of in vivo experiments on citrus leaves infected with Xac showed that compound 1q had a protective efficacy of 60.98% and a curative efficacy of 26.56%. The mechanism of action as well as molecular docking was previously studied using extracellular polysaccharide (EPS) content, bacterial membrane permeability, and scanning electron microscopy (SEM) observations. Experimental results show that compound 1q can become an antibacterial agent for preventing and managing plant diseases.
Collapse
Affiliation(s)
- Qiang Fei
- Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China
- School of Food Science and Engineering, Guiyang University, Guiyang, 550005, People's Republic of China
| | - Yanbi Luo
- Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China
- School of Food Science and Engineering, Guiyang University, Guiyang, 550005, People's Republic of China
| | - Haijiang Chen
- Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China
- School of Food Science and Engineering, Guiyang University, Guiyang, 550005, People's Republic of China
| | - Wenneng Wu
- Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China.
- School of Food Science and Engineering, Guiyang University, Guiyang, 550005, People's Republic of China.
| | - Su Xu
- Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China.
- School of Food Science and Engineering, Guiyang University, Guiyang, 550005, People's Republic of China.
| |
Collapse
|
8
|
Zhang W, Guo P, Zhang Y, Zhou Q, Sun Y, Xu H. Application of Difluoromethyl Isosteres in the Design of Pesticide Active Molecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21344-21363. [PMID: 39305256 DOI: 10.1021/acs.jafc.4c04239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Difluoromethyl (CF2H) groups have been found in many listed pesticides due to their unique physical and chemical properties and outstanding biological activity. In pesticide molecules, compared with the drastic changes brought by trifluoromethyl, difluoromethyl usually moderately regulates the metabolic stability, lipophilicity, bioavailability, and binding affinity of compounds. Therefore, difluoromethylation has become an effective means to modify the biological activity of pesticide molecules. This paper reviews the representative literatures and patents containing difluoromethyl groups in the past 10 years, and introduces the research progress. The aim is to provide an effective reference value for the study of difluoromethyl in pesticides.
Collapse
Affiliation(s)
- Wanjie Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Pengxiang Guo
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yannian Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Qin Zhou
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yan Sun
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
9
|
Yang X, Jiang S, Zhang M, Li T, Jin Z, Wu X, Chi YR. Discovery of novel piperidine-containing thymol derivatives as potent antifungal agents for crop protection. PEST MANAGEMENT SCIENCE 2024; 80:4906-4914. [PMID: 38817109 DOI: 10.1002/ps.8203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Plant fungal diseases pose a significant threat to crop production. The extensive use of chemical pesticides has led to growing environmental safety risks and pesticide resistance of various plant pathogens. Therefore, it is an urgent task to explore novel eco-friendly fungicidal agents with high efficacy to combat fungal infection. RESULTS In this study, we rationally designed a series of novel thymol derivatives by incorporation of the sulfonamide moiety and evaluated their biological activities against plant pathogenic fungi. The bioassay results underscored the remarkable in vitro antifungal activity of compounds 5m and 5t against Phytophthora capsici (P. capsici), with EC50 values of 8.420 and 8.414 μg/mL, respectively. Their efficacies were superior to that of widely used commercial fungicides azoxystrobin (AZO, 20.649 μg/mL) and cabendazim (CAB, 251.625 μg/mL). Furthermore, compound 5v exhibited excellent in vitro antifungal activity against Sclerotinia sclerotiorum (S. sclerotiorum), with an EC50 value of 12.829 μg/mL, significantly outperforming AZO (63.629 μg/mL). In vivo bioassays demonstrated the impactful activity of compound 5v against S. sclerotiorum, achieving over 98% curative and protective efficacies at the concentration of 200 μg/mL. Further mechanistic investigations unveiled that compound 5v induced mycelial shrinkage and collapse in S. sclerotiorum, resulting in organelle damage and the accumulation of antioxidant enzyme activity. CONCLUSION The significant antifungal efficacy of the prepared thymol derivatives shall encourage further exploration of compound 5v as a promising candidate to develop novel fungicides for crop protection. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Shichun Jiang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Meng Zhang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xingxing Wu
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Yin YM, Zhang XM, Shang XY, Gao ZH, Liang ZB, Wang DW, Xi Z. Discovery of Benzothiazol-2-ylthiophenylpyrazole-4-carboxamides as Novel Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17802-17812. [PMID: 39092526 DOI: 10.1021/acs.jafc.4c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Succinate dehydrogenase (SDH) has been considered an ideal target for discovering fungicides. To develop novel SDH inhibitors, in this work, 31 novel benzothiazol-2-ylthiophenylpyrazole-4-carboxamides were designed and synthesized using active fragment exchange and a link approach as promising SDH inhibitors. The findings from the tests on antifungal activity indicated that most of the synthesized compounds displayed remarkable inhibition against the fungi tested. Compound Ig N-(2-(((5-chlorobenzo[d]thiazol-2-yl)thio)methyl)phenyl)-3-(difluoromethyl)-1-methyl-1H-yrazole-4-carboxamide, with EC50 values against four kinds of fungi tested below 10 μg/mL and against Cercospora arachidicola even below 2 μg/mL, showed superior antifungal activity than that of commercial fungicide thifluzamide, and specifically compounds Ig and Im were found to show preventative potency of 90.6% and 81.3% against Rhizoctonia solani Kühn, respectively, similar to the positive fungicide thifluzamide. The molecular simulation studies suggested that hydrophobic interactions were the main driving forces between ligands and SDH. Encouragingly, we found that compound Ig can effectively promote the wheat seedlings and the growth of Arabidopsis thaliana. Our further studies indicated that compound Ig could stimulate nitrate reductase activity in planta and increase the biomass of plants.
Collapse
Affiliation(s)
- Yan-Ming Yin
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Ming Zhang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Yue Shang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zi-Han Gao
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zheng-Bei Liang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
11
|
Wang Z, Jiang W, Tang R, Liu H, Qian H, Guo T, Zhu J, Wu W, Xie W, Zhang J. Synthetic Modification and Insecticidal Activity of 4- epi-cis-Dihydroagarofuran Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15552-15560. [PMID: 38950523 DOI: 10.1021/acs.jafc.4c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
To synthesize the fundamental framework of dihydroagarofuran, a novel strategy was devised for constructing the C-ring through a dearomatization reaction using 6-methoxy-1-tetralone as the initial substrate. Subsequently, the dihydroagarofuran skeleton was assembled via two consecutive Michael addition reactions. The conjugated diene and trans-dihydroagarofuran skeleton were modified. The insecticidal activities of 33 compounds against Mythimna separata were evaluated. Compounds 11-5 exhibited an LC50 value of 0.378 mg/mL. The activity exhibited a remarkable 29-fold increase compared to positive control Celangulin V, which was widely recognized as the most renowned natural dihydroagarofuran polyol ester insecticidal active compound. Docking experiments between synthetic compounds and target proteins revealed the shared binding sites with Celangulin V. Structure-activity relationship studies indicated that methyl groups at positions C4 and C10 significantly improved insecticidal activity, while ether groups with linear chains displayed enhanced activity; in particular, the allyl ether group demonstrated optimal efficacy. Furthermore, a three-dimensional quantitative structure-activity relationship model was established to investigate the correlation between the skeletal structure and activity. These research findings provide valuable insights for discovering and developing dihydroagarofuran-like compounds.
Collapse
Affiliation(s)
- Ziyu Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Wei Jiang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Rong Tang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Hongxiang Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Hao Qian
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Tao Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Jianjun Zhu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Wenjun Wu
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Weiqing Xie
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Jiwen Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| |
Collapse
|
12
|
Saeedian Moghadam E, Bonyasi F, Bayati B, Sadeghi Moghadam M, Amini M. Recent Advances in Design and Development of Diazole and Diazine Based Fungicides (2014-2023). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15427-15448. [PMID: 38967261 DOI: 10.1021/acs.jafc.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fahimeh Bonyasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
13
|
Wang L, Fan W, Yang N, Xiong L, Wang B. Novel Insecticidal Butenolide-Containing Methylxanthine Derivatives: Synthesis, Crystal Structure, Biological Activity Evaluation, DFT Calculation and Molecular Docking. Chem Biodivers 2024; 21:e202400823. [PMID: 38687255 DOI: 10.1002/cbdv.202400823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
The design of novel agrochemicals starting from bioactive natural products is one of the most effective ways in the discovery and development of new pesticidal agents. In this paper, a series of novel butenolide-containing methylxanthine derivatives (Ia-Ir) were designed based on natural methylxanthine caffeine and stemofoline, and the derivatized insecticide flupyradifurone of the latter. The structures of the synthesized compounds were confirmed via 1H-NMR, 13C NMR, HRMS and X-ray single crystal diffraction analyses. The biological activities of the compounds were evaluated against a variety of agricultural pests including oriental armyworm, bean aphid, diamondback moth, fall armyworm, cotton bollworm, and corn borer; the results indicated that some of them have favorable insecticidal potentials, particularly toward diamondback moth. Among others, Ic and Iq against diamondback moth possessed LC50 values of 6.187 mg ⋅ L-1 and 3.269 mg ⋅ L-1, respectively, - 2.5- and 4.8-fold of relative insecticidal activity respectively to that of flupyradifurone (LC50=15.743 mg ⋅ L-1). Additionally, both the DFT theoretical calculation and molecular docking with acetylcholine binding protein were conducted for the highly bioactive compound (Ic). Ic and Iq derived from the integration of caffeine (natural methylxanthine) and butenolide motifs can serve as novel leading insecticidal compounds for further optimization.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenqi Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lixia Xiong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Baolei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Chai JQ, Wang XB, Yue K, Hou ST, Jin F, Liu Y, Tai L, Chen M, Yang CL. Design, Synthesis, Antifungal Activity, and Action Mechanism of Pyrazole-4-carboxamide Derivatives Containing Oxime Ether Active Fragment As Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11308-11320. [PMID: 38720452 DOI: 10.1021/acs.jafc.3c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 μg/mL that was superior to that of the agricultural fungicide boscalid (2.2 μg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 μM that was superior to that of boscalid (7.9 μM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.
Collapse
Affiliation(s)
- Jian-Qi Chai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Bin Wang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kai Yue
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai-Tao Hou
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Jin
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yv Liu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lang Tai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Long Yang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Xie Q, Zhang S, Zhang Y, Zhang B, Wan F, Li Y, Jiang L. Synthesis, fungicidal activity and molecular docking of novel pyrazole-carboxamides bearing a branched alkyl ether moiety. Bioorg Med Chem Lett 2024; 108:129813. [PMID: 38788964 DOI: 10.1016/j.bmcl.2024.129813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Succinate dehydrogenase inhibitors are essential fungicides used in agriculture. To explore new pyrazole-carboxamides with high fungicidal activity, a series of N-substitutedphenyl-3-di/trifluoromethyl-1-methyl-1H-pyrazole-4-carboxamides bearing a branched alkyl ether moiety were designed and synthesized. The in vitro bioassay indicated that some target compounds displayed appreciable fungicidal activity. For example, compounds 5d and 5e showed high efficacy against S. sclerotiorum with EC50 values of 3.26 and 1.52 μg/mL respectively, and also exhibited excellent efficacy against R. solani with EC50 values of 0.27 and 0.06 μg/mL respectively, which were comparable or superior to penflufen. The further in vivo bioassay on cucumber leaves demonstrated that 5e provided strong protective activity of 94.3 % against S. sclerotiorum at 100 μg/mL, comparable to penflufen (99.1 %). Cytotoxicity assessment against human renal cell lines (239A cell) revealed that 5e had low cytotoxicity within the median effective concentrations. Docking study of 5e with succinate dehydrogenase illustrated that R-5e formed one hydrogen bond and two π-π stacking interactions with amino acid residues of target enzyme, while S-5e formed only one π-π stacking interaction with amino acid residue. This study provides a valuable reference for the design of new succinate dehydrogenase inhibitor.
Collapse
Affiliation(s)
- Qingyang Xie
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Shuai Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Yuanhong Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Bowen Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Fuxian Wan
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Ying Li
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Lin Jiang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
16
|
Qin Y, Li G, Wang L, Yin G, Zhang X, Wang H, Zheng P, Hua W, Cheng Y, Zhao Y, Zhang J. Modular preparation of biphenyl triazoles via click chemistry as non-competitive hyaluronidase inhibitors. Bioorg Chem 2024; 146:107291. [PMID: 38521011 DOI: 10.1016/j.bioorg.2024.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Hyaluronidase is a promising target in drug discovery, given its overexpression in a range of physiological and pathological processes, including tumor migration, skin aging, sagging, and wrinkling, as well as inflammation and bacterial infections. In this study, to identify novel hyaluronidase inhibitors, we applied click chemistry for the modular synthesis of 370 triazoles in 96-well plates, starting with biphenyl azide. Utilizing an optimized turbidimetric screening assay in microplates, we identified Fmoc-containing triazoles 5 and 6, as well as quinoline-containing triazoles 15 and 16, as highly effective hyaluronidase inhibitors. Subsequent research indicated that these triazoles potentially interact with a novel binding site of hyaluronidase. Notably, these inhibitors displayed minimal cytotoxicity and showed promising anti-inflammatory effects in LPS-stimulated macrophages. Remarkably, compound 6 significantly reduced NO release by 74 % at a concentration of 20 μM.
Collapse
Affiliation(s)
- Yiman Qin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ling Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Guangyuan Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Xiang Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Hongxiang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Pengfei Zheng
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Wentao Hua
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Yan Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Yaxue Zhao
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Jiong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
17
|
Gao S, Cai M, Xu G, Jin Q, Wang X, Xu L, Wang L, Dai L. (NH 4) 2S 2O 8 promoted tandem radical cyclization of quinazolin-4(3 H)-ones with oxamic acids for the construction of fused quinazolinones under metal-free conditions. Org Biomol Chem 2024; 22:2241-2251. [PMID: 38372133 DOI: 10.1039/d3ob02081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel cascade radical addition/cyclization reaction of non-activated olefins and oxamic acids has been proposed. Under transition metal-free conditions, 36 quinazolinone derivatives containing an amide moiety were successfully synthesized, with the highest yield being 81%. This method involves the preparation of aminoacyl fused quinazolinone derivatives under mild conditions, offering advantages such as a high yield, a broad substrate compatibility, and a high atom economy.
Collapse
Affiliation(s)
- Shenyuan Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, PR China.
| | - Gang Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Qiaolin Jin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Linze Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Lixiang Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
18
|
Sun NB, Min LJ, Sun XP, Zhai ZW, Bajsa-Hirschel J, Wei ZC, Hua XW, Cantrell CL, Xu H, Duke SO, Liu XH. Novel Pyrazole Acyl(thio)urea Derivatives Containing a Biphenyl Scaffold as Potential Succinate Dehydrogenase Inhibitors: Design, Synthesis, Fungicidal Activity, and SAR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2512-2525. [PMID: 38286814 DOI: 10.1021/acs.jafc.3c07735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
As part of a program to discover novel succinate dehydrogenase inhibitor fungicides, a series of new pyrazole acyl(thio)urea compounds containing a diphenyl motif were designed and synthesized. Their structures were confirmed by 1H NMR, HRMS, and single X-ray crystal diffraction analysis. Most of these compounds possessed excellent activity against 10 fungal plant pathogens at 50 μg mL-1, especially against Rhizoctonia solani, Alternaria solani, Sclerotinia sclerotiorum, Botrytis cinerea, and Cercospora arachidicola. Interestingly, compounds 3-(difluoromethyl)-1-methyl-N-((3',4',5'-trifluoro-[1,1'-biphenyl]-2-yl)carbamoyl)-1H-pyrazole-4-carboxamide (9b, EC50 = 0.97 ± 0.18 μg mL-1), 1,3-dimethyl-N-((3',4',5'-trifluoro-[1,1'-biphenyl]-2-yl)carbamoyl)-1H-pyrazole-4-carboxamide (9a, EC50 = 2.63 ± 0.41 μg mL-1), and N-((4'-chloro-[1,1'-biphenyl]-2-yl)carbamoyl)-1,3-dimethyl-1H-pyrazole-4-carboxamide (9g, EC50 = 1.31 ± 0.15 μg mL-1) exhibited activities against S. sclerotiorum that were better than the commercial fungicide bixafen (EC50 = 9.15 ± 0.05 μg mL-1) and similar to the positive control fluxapyroxad (EC50 = 0.71 ± 0.11 μg mL-1). These compounds were not significantly phytotoxic to monocotyledonous and dicotyledonous plants. Structure-activity relationships (SAR) are discussed by substituent effects/molecular docking, and density functional theory analysis indicated that these compounds are succinate dehydrogenase inhibitors.
Collapse
Affiliation(s)
- Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
| | - Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Xin-Peng Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Wen Zhai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, United States Department of Agriculture, Agricultural Research Service, University, Mississippi 38677, United States
| | - Zhe-Cheng Wei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xue-Wen Hua
- College of Agriculture, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Charles L Cantrell
- Natural Products Utilization Research Unit, United States Department of Agriculture, Agricultural Research Service, University, Mississippi 38677, United States
| | - Hao Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|