1
|
Kong F, Peng S, Zhang Y, Zhang H, Wang J, Wang D. Spatial double-layer hydrogels enabled visual detection of Cladobotryum mycophilum based on recombinase-aided amplification - CRISPR/Cas12a. Int J Biol Macromol 2025; 308:142304. [PMID: 40118400 DOI: 10.1016/j.ijbiomac.2025.142304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cladobotryum mycophilum, a pathogen responsible for cobweb disease, caused significant and irreversible losses in the mushroom industry. Effective monitoring and early prevention rely on the development of advanced diagnosis methods. This study introduced a novel hydrogel-based C. mycophilum detection method that integrates recombinase-aided amplification (RAA) with the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) system (CRISPR/Cas12a), referred as RCCH. The RAA reaction occurs within cross-linked PEG hydrogel, which is subsequently overlaid with a CRISPR/Cas12a-functionalized hydrogel. The porous network of the PEG hydrogel traps essential enzymes, facilitating spatial co-localization of target DNA and the CRISPR/Cas12a-crRNA complex. Upon activation of Cas12a's trans-cleavage activity, clear and countable fluorescent spots are generated for visual detection. RCCH demonstrates a limit of detection as low as 1 fg/μL, and exceptional selectivity against common fungi Trichoderma viride and T. harzianum and the host mushroom Lentinula edodes. The entire process is completed in under 40 min, indicating RCCH's potential as a rapid, accurate, and practical detection method for monitoring mushroom diseases. This innovative approach offers significant support for enhancing safety in the mushroom industry.
Collapse
Affiliation(s)
- Fan'ge Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Mycology, Jilin Agricultural University, Changchun 130118, China.
| | - Shichao Peng
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Mycology, Jilin Agricultural University, Changchun 130118, China.
| | - Yuchong Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Mycology, Jilin Agricultural University, Changchun 130118, China.
| | - He Zhang
- Changchun Central Hospital, Changchun 130012, China
| | - Jiasi Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Mycology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Luo Y, Ye X, Shen N, Xu L, Zhang J, Sheng Z, Liu Q, Feng Y, Shen F. Multiplex Digital Nucleic Acid Analysis by a LAMP-Argonaute Coupling Assay via a Parallel Droplet Fusion SlipChip. Anal Chem 2025; 97:731-740. [PMID: 39810344 DOI: 10.1021/acs.analchem.4c05145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Multiplex digital nucleic acid analysis (NAA) allows the precise quantification of multiple target nucleic acids with single-molecule sensitivity, making it highly appealing for life science research and clinical diagnostics. Nucleic acid-guided endonucleases, such as CRISPR, have demonstrated great potential in digital NAA. However, performing multiplex digital NAA with an endonuclease remains challenging. The thermophilic Argonaute protein (Ago) enables specific targeting of multiple sequences by a single enzyme, exhibiting superior potential in multiplex detection. Here, we developed a multiplex digital NAA by coupling nucleic acid amplification and Ago-specific detection using parallel droplet fusion facilitated by a SlipChip. The SlipChip can generate a series of droplets to perform multiplex digital loop-mediated isothermal amplification (LAMP), followed by a series of droplets containing Ago reagents for parallel mixing and reactions, resulting in three distinct digital fluorescence signals (FAM, ROX, and Cy5) corresponding to each specific target sequence. We performed viral load analysis of respiratory viruses, including influenza A, influenza B, and SARS-CoV-2, within 60 min. In addition, we used this digital LAMP-Ago assay to analyze viral loads in 34 clinical samples. The system provides a multiplex digital NAA capable of precise nucleic acid quantification with high sensitivity and specificity.
Collapse
Affiliation(s)
- Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xingyu Ye
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Shen
- Department of Infectious Disease, Shanghai Children's Medical Center, National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zheyi Sheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
3
|
Tan M, Han J, Zhang Y, Chen S, Chen F, Yu LL, Zhu BW. Focusing on New Discoveries in Food Technology and Creating a New Future of Nutrition and Health: An Introduction to the 4 th International Symposium of Food Science, Nutrition and Health in Dalian, China. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15128-15132. [PMID: 38920291 DOI: 10.1021/acs.jafc.4c03711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The 4th International Symposium on Food Science, Nutrition and Health (ISFSNH) was held at the Shangri-La Hotel in Dalian, China, on May 29-31, 2023. The symposium explored the connotations and needs of "The Great Food Perspective" under the theme "Focusing on new discoveries in food technology and creating a new future of nutrition and health" to better address the global emerging diverse food needs. The ISFSNH covered four areas: (1) food processing theory and technology, (2) food safety and quality control, (3) precision nutrition and health, and (4) creation of nutritious and healthy foods. More than 1000 scholars and entrepreneurs from more than 100 colleges and universities globally attended the conference. This special issue of the Journal of Agricultural and Food Chemistry highlights the important topics of the 4th ISFSNH and includes more than 20 papers.
Collapse
Affiliation(s)
- Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 314423, Zhejiang, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310027, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, 0112 Skinner Building, College Park, Maryland 20742, United States
| | - Bei-Wei Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
4
|
Fang M, Wang Y, Yang T, Zhang J, Yu H, Luo Z, Su B, Lin X. Nucleic Acid Plate Culture: Label-Free and Naked-Eye-Based Digital Loop-Mediated Isothermal Amplification in Hydrogel with Machine Learning. ACS Sens 2024; 9:2010-2019. [PMID: 38602267 DOI: 10.1021/acssensors.3c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Digital nucleic acid amplification enables the absolute quantification of single molecules. However, due to the ultrasmall reaction volume in the digital system (i.e., short light path), most digital systems are limited to fluorescence signals, while label-free and naked-eye readout remain challenging. In this work, we report a digital nucleic acid plate culture method for label-free, ultrasimple, and naked-eye nucleic acid analysis. As simple as the bacteria culture, the nanoconfined digital loop-mediated isothermal amplification was performed by using polyacrylamide (PAM) hydrogel as the amplification matrix. The nanoconfinement of PAM hydrogel with an ionic polymer chain can remarkably accelerate the amplification of target nucleic acids and the growth of inorganic byproducts, namely, magnesium pyrophosphate particles (MPPs). Compared to that in aqueous solutions, MPPs trapped in the hydrogel with enhanced light scattering characteristics are clearly visible to the naked eye, forming white "colony" spots that can be simply counted in a label-free and instrument-free manner. The MPPs can also be photographed by a smartphone and automatically counted by a machine-learning algorithm to realize the absolute quantification of antibiotic-resistant pathogens in diverse real samples.
Collapse
Affiliation(s)
- Mei Fang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Yiru Wang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Tao Yang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Jing Zhang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanry Yu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| |
Collapse
|