1
|
Ni X, Li J, Xiong H, Deng Z, Sun Y. Influence of fatty acid distribution on lipid metabolism and cognitive development in first-weaned mice. Food Res Int 2025; 209:116292. [PMID: 40253195 DOI: 10.1016/j.foodres.2025.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/18/2025] [Accepted: 03/13/2025] [Indexed: 04/21/2025]
Abstract
There are significant structural differences between breast milk fat and the fat found in existing infant formulas, and these differences may partly explain the observed variations in growth and development between breastfed and formula-fed infants. This study used mice compared three groups: a control group (mixed vegetable oil), an OPO group (vegetable oil added with OPO), and a human milk fat substitute (HMFS) group formulated to match the fatty acid composition of breast milk. Compared to the control group and OPO group, HMFS-fed mice exhibited reduced body fat content and improved cognitive abilities. Lipidomics studies revealed that these differences in HMFS mice were associated with downregulation of hepatic glycerolipids and upregulation of glycerophospholipids and sphingolipids, facilitating the delivery of long-chain polyunsaturated fatty acids to the brain. Molecular investigations confirmed that HMFS reduces body fat accumulation by inhibiting endogenous fatty acid synthesis and promoting fatty acid β-oxidation, while changes in hepatic lipid profiles result from lipid molecule synthesis and interconversion. Metataxonomic studies demonstrated that HMFS reshaped the gut microbiota, including upregulating Akkermansia and downregulating Desulfovibrio and the Firmicutes/Bacteroidetes ratio, with strong correlations observed between the change of gut microbiota and responded lipids in liver. Overall, the breast milk's unique fatty acid distribution promotes organismal growth by modulating hepatic lipid metabolism, systemic lipid circulation, and gut microbiota. These findings underscore the nutritional benefits of breast milk fat structure and provide insights for the development of next-generation infant formulas.
Collapse
Affiliation(s)
- Xinggang Ni
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
2
|
Chen X, Yang M, Wei W, Huang S, Qiu Y, Li Z, Lan Q, Huang B, Wu T, Bi Q, Wang X, Zhu H. A Novel Infant Formula with Medium- and Long-Chain Triacylglycerols and sn-2 Palmitate Supports Adequate Growth and Lipid Absorption in Healthy Term Infants. Nutrients 2025; 17:1401. [PMID: 40362710 PMCID: PMC12074145 DOI: 10.3390/nu17091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Medium- and long-chain triacylglycerols (MLCTs) and sn-2 palmitate constitute approximately 70~80% of total breast milk fat. The structured lipid MLCTs and sn-2 palmitate, mimicking human milk, have demonstrated improvement in lipid absorption and energy metabolism in vitro and in animal experiments. However, clinical trials on infant formula supplied with MLCTs and sn-2 palmitate have yet to be conducted. Objectives: This study was designed to evaluate the effects on growth and lipid absorption of a novel formula with structured lipid MLCTs and sn-2 palmitate on healthy infants born at term. Methods: Infants were enrolled at 30 d postpartum and assigned to three groups based on their feeding conditions: (1) a novel formula with MLCTs and sn-2 palmitate (Novel-F group, n = 65); (2) a control formula with vegetable oils and no structured lipids (Contr-F group, n = 46); or (3) breastfeeding (BF group, n = 66). Growth measurements (including weight, length, and head circumference), stool characteristics, and fecal lipid composition (both soap and non-soap fatty acids) were analyzed at both baseline (30 d postpartum) and endline visits (90 d postpartum). Results: The Novel-F group had significantly higher weight gains (2195 ± 595 g) during the intervention compared to the Contr-F group (1897 ± 483 g) but similar weight gains to the BF group (2081 ± 614 g), with the changes in Zw/a following a similar pattern. Zl/a increased in the Novel-F group (0.04, (95% CI: -0.21 to 0.28)) and decreased in both the Contr-F (-0.23 (95% CI: -0.52 to 0.06)) and BF groups (-0.20 (95% CI: -0.44 to 0.05)). The stools of infants in the Novel-F group had similar undigested triacylglycerols and total fatty acids compared to breastfed infants but had significantly lower levels than infants fed with the control formula at both baseline and endline visits. Conclusions: The novel infant formula with MLCTs and sn-2 palmitate is safe and well tolerated, and supports adequate weight gain and improves lipid absorption.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China (Q.L.)
| | - Mengtao Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China (Q.L.)
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Siyu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China (Q.L.)
| | - Yingzhen Qiu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China (Q.L.)
| | - Zhen Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China (Q.L.)
| | - Qiuye Lan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China (Q.L.)
| | - Bixia Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China (Q.L.)
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China (Q.L.)
| | - Qianqian Bi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Huilian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China (Q.L.)
| |
Collapse
|
3
|
Wang Y, Wei W, Wang Y, Yu L, Xing Z, Zhang J, Meng Z, Wang X. Innovative applications of medium- and long-chain triacylglycerol in nutritional support: Current perspectives and future directions. Compr Rev Food Sci Food Saf 2025; 24:e70116. [PMID: 39891410 DOI: 10.1111/1541-4337.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 02/03/2025]
Abstract
As a unique structured lipid, medium- and long-chain triacylglycerol (MLCT) is characterized by the combination of medium- and long-chain fatty acids in a single triacylglycerol molecule. In recent years, MLCT, as a nutritional lipid, has gradually emerged as a research hot topic in the fields of food science and nutrition. This paper innovatively provides a comprehensive review of the current application status and development prospects of MLCT in nutritional support. First, the basic principles defining characteristics and selection basis of both enteral and parenteral nutrition are analyzed, elucidating the differences between the two modalities in terms of nutrient delivery pathway, absorption mechanisms, and physiological effects. Subsequently, the natural sources and artificial synthetic pathways of MLCT along with its metabolic behavior in vivo are elaborated. On this basis, the latest research advancements in the application of MLCT in both nutritional models are reviewed, with a particular emphasis on current research hotspots. Finally, the challenges encountered in the practical application of MLCT are discussed, and the future trajectory of MLCT as a functional lipid is predicted. In particular, the innovative potential of MLCT in functional foods, food for special medical purposes, personalized nutrition, and other aspects is emphasized, which provides beneficial ideas and directions for further research and industrial applications of MLCT.
Collapse
Affiliation(s)
- Yandan Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Life Sciences, Anhui Normal University, Wuhu, China
- Jiahe Foods Industry Co., Ltd, Suzhou, China
| | - Wei Wei
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongjin Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Le Yu
- Jiahe Foods Industry Co., Ltd, Suzhou, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Zhiqiang Xing
- Jiahe Foods Industry Co., Ltd, Suzhou, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | | | - Zong Meng
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Yu J, Wang Y, Wei W, Wang X. A review on lipid inclusion in preterm formula: Characteristics, nutritional support, challenges, and future perspectives. Compr Rev Food Sci Food Saf 2025; 24:e70099. [PMID: 39898899 DOI: 10.1111/1541-4337.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 02/04/2025]
Abstract
The lack of nutrient accumulation during the last trimester and the physiological immaturity at birth make nutrition for preterm infants a significant challenge. Lipids are essential for preterm infant growth, neurodevelopment, immune function, and intestinal health. However, the inclusion of novel lipids in preterm formulas has rarely been discussed. This study discusses specific lipid recommendations for preterm infants according to authoritative legislation based on their physiological characteristics. The gaps in lipid composition, such as fatty acids, triacylglycerols, and complex lipids, between preterm formulas and human milk have been summarized. The focus of this study is mainly on the vital roles of lipids in nutritional support, including long-chain polyunsaturated fatty acids, structural lipids, milk fat global membrane ingredients, and other minor components. These lipids have potential applications in preterm formulas for improving lipid absorption, regulating lipid metabolism, and protecting against intestinal inflammation. The lipidome and microbiome can be used to provide adequately powered evidence of the effects of lipids. This study proposes nutritional strategies for preterm infants and suggests approaches to enhance their lipid quality in preterm formula.
Collapse
Affiliation(s)
- Jiahui Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yandan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Lan L, Cao Y, Yuan J, Feng R, Pan H, Mao X, Ji S, Hu Q, Zhou H. A Comprehensive Investigation of Lipid Profile During the Solid-State Fermentation of Rice by Monascus purpureus. Foods 2025; 14:537. [PMID: 39942130 PMCID: PMC11817215 DOI: 10.3390/foods14030537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
Red yeast rice is a nutraceutical fermented product used worldwide for the symptomatic relief of dyslipidemia and cardiovascular disease. However, the fermentation-induced lipid transformation from rice to red yeast rice remains unclear. Herein, an ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry method was developed for the comprehensive lipid analysis during fermentation. A total of 246 lipids fall in 21 subclasses were annotated in rice and red yeast rice, including 37 lysophospholipids, 14 phospholipids, 29 diglycerides, 114 triglycerides and fatty acid (15 species), ceramide (12 species), hexosylceramide (3 species), sitosterol ester (2 species), monogalactosyldiacylglycerol (2 species), digalactosyldiacylglycerol (2 species), monogalactosylmonoacylglycerol (8 species), digalactosylmonoacylglycerol (5 species), coenzyme Q (1 species), acyl hexosyl campesterol ester (1 species), and acylcarnitine (1 species). Results showed that lipid profiles changed, and new lipid species emerged. Notably, 18 medium- and long-chain triacylglycerols and triacylglycerols with short-chains were tentatively identified. These triacylglycerols also show the effects of body fat accumulation reduction, and hypolipidemic and hypoglycemic activities. Furthermore, lipid species that were profoundly changed were quantified, and the dynamic changes were investigated. This study clarified the molecular species and compositional changes in fermented rice from lipid aspect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; (L.L.); (Y.C.)
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; (L.L.); (Y.C.)
| |
Collapse
|