1
|
Li Y, Zhang J, Zhao L, Jia P, Zhen Y, Zhang H, Xu Y, Zhang S. T-2 toxin induces anemia via disrupting erythroid commitment and differentiation. Toxicology 2025; 514:154126. [PMID: 40139303 DOI: 10.1016/j.tox.2025.154126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
T-2 toxin, a stable and highly toxic secondary metabolite produced by Fusarium, is known to have strong cytotoxicity and threaten multiple systems. However, its effect on the hematopoietic system and the mechanisms of anemia induction remains unclear. Here, we establish the acute T-2 toxin poisoning mouse model at concentrations ranging between 0.5 and 4 mg/kg. Our results show that T-2 toxin exposure causes severe anemia in mice, as indicated by significant reductions in red blood cell count and hemoglobin levels. Further analysis indicates that T-2 toxin profoundly disrupts the homeostasis of hematopoietic stem cells and their commitment to the erythroid lineage and subsequent erythroid differentiation, thus significantly inhibiting the formation of erythroblasts and reticulocytes. In humans, cells are exposed to T-2 toxin at concentrations of 0.25-1 ng/mL for 13 days. T-2 toxin strongly inhibits erythropoiesis and promotes the formation of abnormal nucleated erythroblasts. Mechanistically, high concentration of T-2 toxin induces apoptosis, while lower levels arrest the cell cycle at the G1/S phase. Overall, our findings reveal the hematotoxic effects of T-2 toxin and shed light on the mechanisms underlying T-2 toxin induced anemia, providing valuable guidance for developing strategies to mitigate T-2 toxin poisoning.
Collapse
Affiliation(s)
- Yan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jingxin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Longzhen Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peijun Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yazhe Zhen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanlin Xu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shijie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Tinkov AA, Skalny AV, Guo X, Korobeinikova TV, Ning Y, Rocha JBT, Zhang F, Aschner M. Review of the Protective Effects of Selenium against T-2 Toxin-Induced Toxicity. Chem Res Toxicol 2025. [PMID: 40397415 DOI: 10.1021/acs.chemrestox.5c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The objective of the present study was to review the potential protective effects of Se against T-2 toxin-induced adverse effects in cartilage and other tissues as well as to discuss the potential molecular mechanisms by which Se counteracts T-2 toxicity. Laboratory studies demonstrate that Se attenuates T-2 toxin-induced chondrocyte death by inhibition of the mitochondrial pathway of apoptosis. Protective effects of Se against T-2 toxin-induced oxidative stress in chondrocytes are mediated by improvement of antioxidant selenoprotein expression, which is altered upon mycotoxin exposure. In addition to T-2 toxin-induced oxidative stress, Se treatment is associated with the inhibition of mycotoxin-induced chondrocyte ferroptosis. Along with prevention of chondrocyte damage, Se improves extracellular matrix (ECM) metabolism by the up-regulation of type II collagen and proteoglycans expression and inhibition of T-2 toxin-induced ECM degradation by matrix metalloproteinases. It is also noteworthy that part of the interactive effects between Se treatment and T-2 toxin exposure is mediated by epigenetic mechanisms, especially modulation of noncoding RNA expression. Recent evidence also shows that Se mitigates the toxic effects of the T-2 toxin in the liver, kidney, immune system, and other organs. Notably, a number of studies demonstrated that a Se deficiency aggravates the adverse effects of T-2 toxin exposure, supporting the notion of the protective effects of Se. However, the existing data were obtained in laboratory in vivo and in vitro models, and the potential therapeutic effects of Se supplementation in T-2 toxin-exposed human subjects have yet to be fully characterized.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tatiana V Korobeinikova
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Joao B T Rocha
- Departamento de Bioquímica E Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
3
|
Liu A, Zhu K, Song C, Sun LH, Cai F. Natural Phenolic Compounds against Trichothecenes: From Protective Mechanisms to Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8740-8755. [PMID: 40172070 DOI: 10.1021/acs.jafc.4c12790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Trichothecenes (TCNs), Fusarium-derived mycotoxins exemplified by deoxynivalenol and T-2 toxin, threaten global health through multisystem toxicity and widespread contamination. Natural phenolic compounds (NPCs), leveraging their intrinsic safety and natural abundance, demonstrate multimechanistic efficacy in counteracting TCN toxicity. This article reviews both domestic and international research on the protective mechanisms of NPCs against TCN-induced toxicity. NPCs exert protective effects against TCN toxicity through multitiered mechanisms: (1) molecular regulation via Nrf2-centric antioxidant activation and MAPK/NF-κB inflammatory axis suppression, coupled with coordinated inhibition of programmed cell death pathways (apoptosis/ferroptosis/pyroptosis) and autophagy modulation, where GPX4 emerges as a critical ferroptosis regulator; (2) restoring microbiome balance, enhancing intestinal barrier function, and optimizing nutrient transport. Gut microflora may also serve as an additional target for NPCs in mitigating the toxicity of TCNs. NPCs further inhibit Fusarium proliferation and mycotoxin biosynthesis. While there is demonstrated potential for food safety and sustainable feed development, critical challenges persist in bioavailability optimization, pharmacokinetic profiling, and microbiota-metabolite crosstalk. This analysis advances NPC-based strategies for mycotoxin detoxification and sustainable agriculture.
Collapse
Affiliation(s)
- Aimei Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Kesong Zhu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Chenchen Song
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Lv-Hui Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Cai
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
4
|
Gao J, Liu D, Nguyen C, McCormick SP, Proctor RH, Luo S, Zou Y, Hai Y. Biosynthesis of the Central Tricyclic Skeleton of Trichothecene Mycotoxins. J Am Chem Soc 2025; 147:10331-10338. [PMID: 40070048 DOI: 10.1021/jacs.4c16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Trichothecenes are a widespread family of sesquiterpenoid toxins that can pose significant risks to food and feed safety as well as environmental health. A defining feature of all trichothecenes is their central tricyclic 12,13-epoxytrichothec-9-ene (EPT) motif. Although the formation of the EPT central skeleton has long been presumed to be a spontaneous process, the nonenzymatic cyclization reaction forming the tetrahydropyran ring in EPT requires acid catalysis; otherwise, it occurs too slowly to sustain efficient trichothecene biosynthesis under physiological conditions. Here, we resolved this decades-old problem by identifying the missing enzymes for EPT biosynthesis. We demonstrate that the C11 hydroxyl group of universal trichothecene precursors, isotrichodiol and isotrichotriol, must be acetylated by a strictly conserved O-acetyltransferase Tri3 to furnish a better leaving group. These acetylated intermediates preferentially undergo spontaneous allylic rearrangement with water to give shunt products, trichodiol and trichotriol. Therefore, a novel cyclase, Tri14, which was previously annotated as a hypothetical protein, is required to overcome the kinetically unfavored oxide bridge closure and meanwhile suppress the spontaneous formation of any shunt products.
Collapse
Affiliation(s)
- Jinmin Gao
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Dong Liu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Carolyn Nguyen
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Susan P McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, Illinois 61604, United States
| | - Robert H Proctor
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, Illinois 61604, United States
| | - Shenggan Luo
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Yike Zou
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Yang Hai
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Wu Y, Xiao W, Xiao B, Wang Y, Li Y, Wu A, Zhang Q, Liu X, Liu S, Yuan Z, Liang Z, Yi J, Wu J. Melatonin Alleviates T-2 Toxin-Induced Intestinal Injury by Enhancing Gut Barrier Function and Modulating Microbiota in Weaned Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6903-6916. [PMID: 40048666 DOI: 10.1021/acs.jafc.4c06892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The T-2 toxin, originating from a Fusarium species, is a mycotoxin that can adversely affect animal health. Melatonin (MT) is a natural hormone recognized for its properties that reduce inflammation and act as an antioxidant. However, MT's capacity to alleviate intestinal harm from T-2 toxin remains incompletely explored. Employing postweaning piglets, this research investigates MT's prophylactic impact on T-2 toxin-induced enterotoxicity. The results indicate that MT improved growth performance in piglets exposed to T-2 toxins while also enhancing intestinal barrier function. Such effects probably stem from MT's ability to reduce colonic oxidative stress and inflammation. Further findings suggest that these changes are closely associated with MT-induced remodeling of intestinal microbiota and an increase in short-chain fatty acid (SCFA) levels in the intestine. MT therefore alleviates T-2 toxin intestinal damage; gut microbiota are the key to this process.
Collapse
Affiliation(s)
- You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Bo Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yongkang Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuanyuan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Qike Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xiaofang Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Shuiping Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Changsha 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Li Y, Zhang Q, Liu X, Wang Y, Yang C, Wu Y, Xiao B, Feng Y, Wu A, Yi J, Wu J, Liang Z, Yuan Z. Citrinin-Induced Intestinal Onset of Pyroptosis via the IP3R1-GRP75-VDAC1 Complex-Mediated Mitochondrial Oxidative Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5803-5815. [PMID: 40000072 DOI: 10.1021/acs.jafc.4c11218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Citrinin (CTN) is commonly found in animal feed and stored grains and poses a serious threat to human and animal health. Formation of the IP3R1-GRP75-VDAC1 complex has been shown to play a key role in intestinal defense against harmful stimuli, but the mechanism of its action in CTN-exposure-induced enterotoxicity is not clear. Therefore, the aim of this study was to investigate the role of the IP3R1-GRP75-VDAC1 complex in CTN-exposure-induced intestinal and IPEC-J2 monolayer cell damage in mice. It was shown that CTN exposure triggered intestinal cell pyroptosis and increased IP3R1-GRP75-VDAC1 complex formation as well as mitochondrial levels of calcium ions and mitochondrial reactive oxygen species (mtROS). And mtROS is considered to be a key factor in cellular pyroptosis. Therefore, the removal of mtROS by using Mito-Tempo was found to attenuate CTN-exposure-induced cellular pyroptosis but failed to attenuate mitochondrial calcium ion overload. However, silencing of GRP75 alleviated CTN-exposure-induced increases in the level of mtROS, mitochondrial calcium ions, and subsequent cellular pyroptosis. Therefore, this study confirms that CTN exposure induces cellular juxtaposition in intestinal tissues and points out that mitochondrial oxidative stress mediated by the IP3R1-GRP75-VDAC1 complex is a key mechanism by which CTN exposure triggers intestinal cellular pyroptosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Qike Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Xiaofang Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Yongkang Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Bo Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Yiya Feng
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
- Institute of Yunnan Circular Agricultural Industry, Puer 665000, P. R. China
| | - Zengenni Liang
- Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, P. R. China
- Yulushan Laboratory, Changsha 410128, P. R. China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
- Institute of Yunnan Circular Agricultural Industry, Puer 665000, P. R. China
| |
Collapse
|
7
|
Chen J, Malhi KK, Li X, Xu X, Kang J, Zhao B, Xu Y, Li X, Li J. Metasilicate-based alkaline mineral water improves the growth performance of weaned piglets by maintaining gut-liver axis homeostasis through microbiota-mediated secondary bile acid pathway. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:95-109. [PMID: 39949730 PMCID: PMC11821399 DOI: 10.1016/j.aninu.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 02/16/2025]
Abstract
Weaning stress causes substantial economic loss in the swine industry. Moreover, weaning-induced intestinal barrier damage and dysfunction of the gut-liver axis are associated with reduced growth performance in piglets. Metasilicate-based alkaline mineral water (AMW) has shown potential therapeutic effects on gastrointestinal disorders; however, the mechanisms involved and their overall effects on the gut-liver axis have not been explored. Here, sodium metasilicate (SMS) was used to prepare metasilicate-based AMW (basal water + 500 mg/L SMS). A total of 240 newly weaned piglets were allocated to the Control and SMS groups (6 replicate pens per group and 20 piglets per pen) for a 15-day trial period. Histopathological evaluations were conducted using hematoxylin and eosin staining. To analyze the composition of the gut microbiota, 16S rRNA PacBio SMRT Gene Full-Length Sequencing was performed. Western blotting and immunofluorescence were employed to assess protein expression levels. Our results indicated that metasilicate-based AMW effectively alleviated weaning-induced colonic or liver morphological injury and inflammatory response, as well as liver cholesterol metabolism disorders. Further analysis showed that metasilicate-based AMW promoted deoxycholic acid (DCA) biosynthesis by increasing the abundance of Lactobacillus_delbrueckii in the colon (P < 0.001). This consequently improved weaning-induced colon and liver injury and dysfunction through the DCA-secondary bile acid (SBA) receptors (SBAR)-nuclear factor-kappaB (NF-κB)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) pathways. Growth performance parameters, including final body weight (P = 0.034) and average daily gain (P < 0.001), in the SMS group were significantly higher than those in the Control group. Therefore, metasilicate-based AMW maintains gut-liver axis homeostasis by regulating the microbiota-mediated SBA-SBAR pathway in piglets under weaning stress. Our research provides a new strategy for mitigating stress-induced gut-liver axis dysfunction in weaned piglets.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 China
| | - Kanwar K. Malhi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 China
| | - Xiaowei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 China
| | - Xiangwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 China
| | - Jianxun Kang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 China
| | - Bichen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 China
| | - Yaru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 China
| | - Xuenan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jinlong Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Yu FF, Zuo J, Wang M, Yu SY, Luo KT, Sha TT, Li Q, Dong ZC, Zhou GY, Zhang F, Guo X, Ba Y, Wang YJ. Selenomethionine alleviates T-2 toxin-induced articular chondrocyte ferroptosis via the system Xc -/GSH/GPX4 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117569. [PMID: 39700767 DOI: 10.1016/j.ecoenv.2024.117569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
T-2 toxin can induce bone and cartilage development disorder, and oxidative stress plays an important role in it. It is well known that selenomethionine (Se-Met) has antioxidative stress properties and promotes the repair of cartilage lesion, but it remains unclear whether Se-Met can relieve damaged cartilage exposure to T-2 toxin. Here, the oxidative stress and ferroptosis of chondrocytes exposure to T-2 toxin were observed. Mechanistically, T-2 toxin increased ROS, lipid ROS, MDA and Fe2+ contents in chondrocytes, decreased GSH and GPX4 activity, and inhibited the system Xc-/GSH/GPX4 antioxidant axis. In addition, the mitochondria of chondrocytes shrunk and the mitochondrial crest decreased or disappeared. However, Fer-1 (Ferrostatin-1) inhibited ferroptosis induced by T-2 toxin in chondrocytes. The Se-Met alleviated lipid peroxidation, oxidative stress, and damaged mitochondrial in T-2 toxin-infected chondrocytes, enhanced antioxidant enzyme activity, and activated the system Xc-/GSH/GPX4 axis, thereby antagonizing ferroptosis of chondrocytes and alleviating articular cartilage damage. In conclusion, our findings highlight the essentiality of ferroptosis in chondrocyte caused by T-2 toxin, elucidate how Se-Met offers protection against this injury and provide research evidence for the drug treatment target of Kashin-Beck disease.
Collapse
Affiliation(s)
- Fang-Fang Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Juan Zuo
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Department of Medical Technology, Zhengzhou Shuqing Medical College, Zhengzhou, Henan 450064, PR China.
| | - Miao Wang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Shui-Yuan Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Kang-Ting Luo
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Tong-Tong Sha
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Qian Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Zai-Chao Dong
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Guo-Yu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Feng Zhang
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an, Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an 710061, PR China.
| | - Xiong Guo
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an, Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an 710061, PR China.
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Yan-Jie Wang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
9
|
Deng F, Zhao L, Wei P, Mai E, Chen M, Yang H, Mu P, Wu J, Wen J, Deng Y. Role and mechanism of the outer membrane porin LamB in T-2 mycotoxin-mediated extensive drug resistance in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136437. [PMID: 39541888 DOI: 10.1016/j.jhazmat.2024.136437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
The influence of mycotoxins in ecological niches shared with antibiotic-resistant bacteria (ARB) remains underexplored. This study examined the impact of T-2 mycotoxin on the evolution of antibiotic resistance in Escherichia coli, highlighting the role of specific porins. Our findings revealed that exposure to 10 ng/mL of T-2 toxin induced multi-drug resistant (MDR) phenotypes in three E. coli. At 10-5 ng/mL, T-2 toxin caused E. coli ATCC 25922 to develop stable resistance to 13 critical antibiotics, with minimum inhibitory concentrations (MICs) increasing 16- to several thousand-fold. This resistance was linked to the downregulation of the mal gene cluster. Notably, T-2 toxin reduced membrane permeability by downregulating lamB, facilitating its own entry and reducing the intracellular accumulation of both the toxin and antibiotics, thereby enhancing resistance development. LamB mediated the XDR phenotypes in E. coli, particularly by blocking last-resort antibiotics such as cephalosporins, carbapenems, tigecycline, and colistin, complicating treatment strategies. LamB demonstrated high binding affinities for T-2 toxin and various antibiotics, with specific binding sites identified for meropenem (Arg134), imipenem (Ser148, Arg170, Lys129), ceftazidime (Phe106, Lys129), and cefepime (Tyr66, Gln267, Lys269), exhibiting binding energies of -2.93, -2.58, -2.53, and -4.3, respectively. These findings suggest that even low levels of T-2 mycotoxin pose a substantial public health risk. They underscore the urgent need to address these contaminants and open new avenues for antibiotic resistance research.
Collapse
Affiliation(s)
- Fengru Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Li Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Ping Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Enhua Mai
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Meichan Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Huixin Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Peiqiang Mu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Jun Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Jikai Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, PR China.
| |
Collapse
|
10
|
Abdelshafy AM, Mahmoud AR, Abdelrahman TM, Mustafa MA, Atta OM, Abdelmegiud MH, Al-Asmari F. Biodegradation of chemical contamination by lactic acid bacteria: A biological tool for food safety. Food Chem 2024; 460:140732. [PMID: 39106807 DOI: 10.1016/j.foodchem.2024.140732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Chemical pollutants such as mycotoxins and pesticides exert harmful effects on human health such as inflammation, oxidative stress, and cancer. Several strategies were applied for food decontamination, including physicochemical and biological strategies. The present review comprehensively discussed the recent efforts related to the biodegradation of eight food chemical contaminants, including mycotoxins, acrylamide, biogenic amines, N-nitrosamines, polycyclic aromatic hydrocarbons, bisphenol A, pesticides, and heavy metals by lactic acid bacteria (LAB). Biological detoxification by LAB such as Lactobacillus is a promising approach to remove the risks related to the presence of chemical and environmental pollutants in foodstuffs. It is a safe, efficient, environmentally friendly, and low-cost strategy to remove hazardous compounds. LAB can directly decrease these chemical pollutants by degradation or adsorption. Also, it can indirectly reduce the content of these pollutants by reducing their precursors. Hence, LAB can contribute to reducing chemical pollutants in contaminated foods and enhance food safety.
Collapse
Affiliation(s)
- Asem M Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Ahmed Rashad Mahmoud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Talat M Abdelrahman
- Department of Plant Protection, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt.
| | - Mustafa Abdelmoneim Mustafa
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Omar Mohammad Atta
- Department of Botany and Microbiology, College of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Mahmoud H Abdelmegiud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
11
|
Du J, Huo S, Li B, Zhang X, Zhang J, Fu Y, Shao B, Li Y, Song M. The toxic effects and mechanisms of maternal exposure to Bisphenol F during gestation and lactation on lungs in female offspring mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124800. [PMID: 39178933 DOI: 10.1016/j.envpol.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
Epidemiologic studies suggest that prenatal exposure to bisphenols may increase the risk of respiratory disease in children. Bisphenol F (BPF), a member of the bisphenol family, is widely used in industrial production. However, the potential pulmonary toxic effects and mechanisms of BPF exposure on offspring remain unclear. In this study, maternal mice were exposed to 0, 40, 400, and 4000 μg/kg BPF during gestation and lactation. The results showed that an inflammatory response was observed in lungs of BPF-exposed female offspring mice, characterized by peribronchial inflammatory cell infiltration and an increase in the number of inflammatory cells in BALF. Subsequent transcriptome analysis identified a total of 685 differentially expressed genes (DEGs) were in lungs of female offspring mice exposed to high-dose BPF, with 526 upregulated genes and 159 downregulated genes. Among upregulated DEGs of top 10, most of the upregulated genes were associated with inflammatory responses. In addition, enrichment analysis showed that immunosuppression and oxidative damage were significantly enriched in lungs of female offspring mice, suggesting that BPF could induce immunosuppression and oxidative stress in lungs of female offspring mice. Overall, our findings provide mechanistic insights into the potential pulmonary toxicity associated with BPF exposure during gestation and lactation.
Collapse
Affiliation(s)
- Jiayu Du
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China
| | - Siming Huo
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China; Shandong First Medical University & Shandong Academy of Medical Sciences, JiNan, 250117, China
| | - Bo Li
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China
| | - Xuliang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China
| | - Jian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China; Shandong First Medical University & Shandong Academy of Medical Sciences, JiNan, 250117, China
| | - Yang Fu
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China; Department of Veterinary Medicine, Heze Vocational College, Heze, 274031, China
| | - Bing Shao
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
12
|
Yu T, Deng X, Yang X, Yin Y, Liu Y, Xu S. New insights into evodiamine attenuates IPEC-J2 cells pyroptosis induced by T-2 toxin - Activating Keap1-Nrf2/NF-κB signaling pathway through binding with Keap1. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122605. [PMID: 39305878 DOI: 10.1016/j.jenvman.2024.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
T-2 toxin (T-2) is a highly toxic mycotoxin with a molecular weight of 466.52 g/mol. Evodiamine (EV), an alkaloid component of Evodia, has anti-inflammation and antioxidant properties. As a receptor of oxidative stress, Keap1 with a molecular weight of 70 kDa, is a molecular switch that controls the Nrf2 signaling pathway. In this paper, the effect of EV on Keap1-Nrf2/NF-κB pathway was investigated. Based on our research outcomes, it was observed that T-2 exposure substantially increased IPEC-J2 cells intracellular ROS levels and MDA accumulation, decreased SOD and CAT activities, disrupted intestinal tight junction (ZO-1, occludin, and claudin-1), and up-regulated pyroptosis-related protein (ASC, NLRP3, caspase-1, GSDMD, IL-1β, and IL-18). Additionally, EV could bind well with Keap1, the separating it from Nrf2, promoting Nrf2 into the nucleus, enhanced antioxidant enzyme activities, reduced the production of ROS, down-regulated NF-κB expression, alleviated T-2-induced pyroptosis, and restored tight junction protein expression. However, after treatment with the Nrf2 inhibitor ML385, ML385 reversed the protective effect of EV on IPEC-J2 cells. Collectively, EV can activate the Keap1-Nrf2/NF-κB signaling pathway via binding to Keap1, exert anti-inflammatory and antioxidant effects, inhibit the pyroptosis of IPEC-J2 cells triggered by T-2, and retore intestinal barrier function.
Collapse
Affiliation(s)
- Tingting Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinrui Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuejiao Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yong Liu
- Mudanjiang Medical University, Mudanjiang, 157011, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
13
|
Huang T, Li A, Zhang S, Fan J, Hua Z, Wang X, Zhang C, Yang X. The role of gut microbiota in anorexia induced by T-2 toxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116612. [PMID: 38896898 DOI: 10.1016/j.ecoenv.2024.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
T-2 toxin is one of trichothecene mycotoxins, which can impair appetite and decrease food intake. However, the specific mechanisms for T-2 toxin-induced anorexia are not fully clarified. Multiple research results had shown that gut microbiota have a significant effect on appetite regulation. Hence, this study purposed to explore the potential interactions of the gut microbiota and appetite regulate factors in anorexia induced by T-2 toxin. The study divided the mice into control group (CG, 0 mg/kg BW T-2 toxin) and T-2 toxin-treated group (TG, 1 mg/kg BW T-2 toxin), which oral gavage for 4 weeks, to construct a subacute T-2 toxin poisoning mouse model. This data proved that T-2 toxin was able to induce an anorexia in mice by increased the contents of gastrointestinal hormones (CCK, GIP, GLP-1 and PYY), neurotransmitters (5-HT and SP), as well as pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) in serum of mice. T-2 toxin disturbed the composition of gut microbiota, especially, Faecalibaculum and Allobaculum, which was positively correlated with CCK, GLP-1, 5-HT, IL-1β, IL-6 and TNF-α, which played a certain role in regulating host appetite. In conclusion, gut microbiota changes (especially an increase in the abundance of Faecalibaculum and Allobaculum) promote the upregulation of gastrointestinal hormones, neurotransmitters, and pro-inflammatory cytokines, which may be a potential mechanism of T-2 toxin-induced anorexia.
Collapse
Affiliation(s)
- Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Shanshan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Jiayan Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Zeao Hua
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
14
|
Liao C, Xu F, Yu Z, Ding K, Jia Y. The Novel Role of the NLRP3 Inflammasome in Mycotoxin-Induced Toxicological Mechanisms. Vet Sci 2024; 11:291. [PMID: 39057975 PMCID: PMC11281663 DOI: 10.3390/vetsci11070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Mycotoxins are secondary metabolites produced by several fungi and moulds that exert toxicological effects on animals including immunotoxicity, genotoxicity, hepatotoxicity, teratogenicity, and neurotoxicity. However, the toxicological mechanisms of mycotoxins are complex and unclear. The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a multimeric cytosolic protein complex composed of the NLRP3 sensor, ASC adapter protein, and caspase-1 effector. Activation of the NLRP3 inflammasome plays a crucial role in innate immune defence and homeostatic maintenance. Recent studies have revealed that NLRP3 inflammasome activation is linked to tissue damage and inflammation induced by mycotoxin exposure. Thus, this review summarises the latest advancements in research on the roles of NLRP3 inflammasome activation in the pathogenesis of mycotoxin exposure. The effects of exposure to multiple mycotoxins, including deoxynivalenol, aflatoxin B1, zearalenone, T-2 toxin, ochratoxin A, and fumonisim B1, on pyroptosis-related factors and inflammation-related factors in vitro and in vivo and the pharmacological inhibition of specific and nonspecific NLRP3 inhibitors are summarized and examined. This comprehensive review contributes to a better understanding of the role of the NLRP3 inflammasome in toxicity induced by mycotoxin exposure and provides novel insights for pharmacologically targeting NLRP3 as a novel anti-inflammatory agent against mycotoxin exposure.
Collapse
Affiliation(s)
- Chengshui Liao
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Fengru Xu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Yanyan Jia
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|