1
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
2
|
Dietary Conjugated Linoleic Acid Reduces Body Weight and Fat in Snord116m+/p- and Snord116m-/p- Mouse Models of Prader-Willi Syndrome. Nutrients 2022; 14:nu14040860. [PMID: 35215509 PMCID: PMC8880678 DOI: 10.3390/nu14040860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Prader–Willi Syndrome (PWS) is a human genetic condition that affects up to 1 in 10,000 live births. Affected infants present with hypotonia and developmental delay. Hyperphagia and increasing body weight follow unless drastic calorie restriction is initiated. Recently, our laboratory showed that one of the genes in the deleted locus causative for PWS, Snord116, maintains increased expression of hypothalamic Nhlh2, a basic helix–loop–helix transcription factor. We have previously also shown that obese mice with a deletion of Nhlh2 respond to a conjugated linoleic acid (CLA) diet with weight and fat loss. In this study, we investigated whether mice with a paternal deletion of Snord116 (Snord116m+/p−) would respond similarly. We found that while Snord116m+/p− mice and mice with a deletion of both Snord116 alleles were not significantly obese on a high-fat diet, they did lose body weight and fat on a high-fat/CLA diet, suggesting that the genotype did not interfere with CLA actions. There were no changes in food intake or metabolic rate, and only moderate differences in exercise performance. RNA-seq and microbiome analyses identified hypothalamic mRNAs, and differentially populated gut bacteria, that support future mechanistic analyses. CLA may be useful as a food additive to reduce obesity in humans with PWS.
Collapse
|
3
|
Chen PB, Yang JS, Park Y. Adaptations of Skeletal Muscle Mitochondria to Obesity, Exercise, and Polyunsaturated Fatty Acids. Lipids 2018; 53:271-278. [PMID: 29663395 DOI: 10.1002/lipd.12037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022]
Abstract
Mitochondria intricately modulate their energy production through the control of mitochondrial adaptation (mitochondrial biogenesis, fusion, and/or fission) to meet energy demands. Nutrient overload may result in dysregulated mitochondrial biogenesis, morphology toward mitochondrial fragmentation, and oxidative stress in the skeletal muscle. In addition, physical activity and diet components influence mitochondrial function. Exercise may stimulate mitochondrial biogenesis and promote mitochondrial fusion/fission in the skeletal muscle. Moreover, some dietary fatty acids, such as n-3 polyunsaturated fatty acids and conjugated linoleic acid, have been identified to positively regulate mitochondrial adaptation in the skeletal muscle. This review discusses the association of mitochondrial impairments and obesity, and presents an overview of various mechanisms of which exercise training and mitochondrial nutrients promote mitochondrial function in the skeletal muscle.
Collapse
Affiliation(s)
- Phoebe B Chen
- Department of Food Science, University of Massachusetts, Amherst, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Jason S Yang
- Department of Food Science, University of Massachusetts, Amherst, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, 102 Holdsworth Way, Amherst, MA, 01003, USA
| |
Collapse
|
4
|
Shen P, Kershaw JC, Yue Y, Wang O, Kim KH, McClements DJ, Park Y. Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans. Food Chem 2018; 249:193-201. [PMID: 29407924 DOI: 10.1016/j.foodchem.2018.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
Abstract
Conjugated linoleic acid (CLA) has been reported to reduce fat storage in cell culture and animal models. In the current study, the effects of CLA on the fat accumulation, activities, and proteomics were investigated using Caenorhabditis elegans. 100 µM CLA-TG nanoemulsion significantly reduced fat accumulation by 29% compared to linoleic acid (LA)-TG treatment via sir-2.1 (the ortholog of Sirtuin 1), without altering the worm size, growth rate, and pumping rate of C. elegans. CLA significantly increased moving speed and amplitude (the average centroid displacement over the entire track) of wild type worms compared to the LA group and these effects were dependent on aak-2 (AMPKα ortholog) and sir-2.1. Proteomics analysis showed CLA treatment influences various proteins associated in reproduction and development, translation, metabolic processes, and catabolism and proteolysis, in C. elegans. We have also confirmed the proteomics data that CLA reduced the fat accumulation via abs-1 (ATP Synthase B homolog). However, there were no significant effects of CLA on brood size, progeny numbers, and hatchability compared to LA treatment.
Collapse
Affiliation(s)
- Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, USA
| | - Jonathan C Kershaw
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, USA
| | - Ou Wang
- Department of Food Science, University of Massachusetts, Amherst, USA; National Institute for Nutrition and Health, Chinese Centre for Disease Control and Prevention, Beijing 10050, China
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | | | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, USA.
| |
Collapse
|
5
|
Xiao X, Sun Q, Kim Y, Yang SH, Qi W, Kim D, Yoon KS, Clark JM, Park Y. Exposure to permethrin promotes high fat diet-induced weight gain and insulin resistance in male C57BL/6J mice. Food Chem Toxicol 2017; 111:405-416. [PMID: 29175578 DOI: 10.1016/j.fct.2017.11.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022]
Abstract
Permethrin is a pyrethroid pesticide that was previously reported to promote fat accumulation and insulin resistance in vitro. A recent study in female mice also found that permethrin could promote high fat-induced insulin resistance. The effects of permethrin on glucose and lipid metabolisms in male mice, however, remain unknown. The purpose of this study was to investigate the effects and interactions of permethrin exposure (50, 500, and 5000 μg/kg body weight/day) and dietary fat (low fat, 4% w/w; high fat, 20% w/w) on development of obesity and insulin resistance in male C57BL/6J mice. Our results showed that permethrin treatment significantly increased body weight, fat mass, and insulin resistance with high fat diet, but not with low fat diet, without influencing energy intake. Permethrin treatment also significantly increased serum levels of insulin, glucose, leptin, triglycerides and cholesterol. Further results showed that permethrin inhibited AMP-activated protein kinase in white adipose tissue. These results suggest that permethrin interacts with dietary fat to alter lipid and glucose metabolisms in male C57BL/6J mice.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Quancai Sun
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yoo Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Szu-Hao Yang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Weipeng Qi
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, USA
| | - Kyong Sup Yoon
- Department of Biological Sciences and Environmental Sciences Program, Southern Illinois University, Edwardsville, IL 62026, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
6
|
Permethrin alters glucose metabolism in conjunction with high fat diet by potentiating insulin resistance and decreases voluntary activities in female C57BL/6J mice. Food Chem Toxicol 2017; 108:161-170. [PMID: 28757463 DOI: 10.1016/j.fct.2017.07.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/10/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Permethrin, a type 1 pyrethroid insecticide, was previously reported to promote adipogenesis in 3T3-L1 adipocytes and insulin resistance in C2C12 muscle cells; however, the effects of permethrin exposure on glucose and lipid metabolisms in vivo remain unknown. The purpose of this study was to investigate the effects of permethrin exposure on glucose and lipid homeostasis as well as voluntary movement in female mice in response to dietary fat. We tested three doses of permethrin (50, 500, & 5000 μg/kg body weight/day) in low fat diet-fed (4% w/w of diet) and high fat diet-fed (20% w/w of diet) female C57BL/6 J mice for twelve weeks. Our results demonstrated that permethrin treatment potentiated high fat diet-induced insulin resistance as indicated by insulin tolerance tests, glucose tolerance tests, and homeostasis model assessment - insulin resistance (HOMA-IR) without altering weight or fat mass. Permethrin treatment significantly decreased voluntary movement and elevated blood glucose and insulin levels. Western blot results further showed that permethrin impaired insulin signaling via the Akt signaling pathway in the gastrocnemius muscle. Taken together, these results suggest that oral administration of permethrin potentiated high fat diet-induced insulin resistance, possibly increasing the risk of type 2 diabetes without altering weight gain in female C57BL/6 J mice.
Collapse
|
7
|
Kim Y, Kim D, Park Y. Conjugated linoleic acid (CLA) promotes endurance capacity via peroxisome proliferator-activated receptor δ-mediated mechanism in mice. J Nutr Biochem 2016; 38:125-133. [PMID: 27736732 DOI: 10.1016/j.jnutbio.2016.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/30/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
Previously, it was reported that conjugated linoleic acid (CLA) with exercise training potentially improved endurance capacity via the peroxisome proliferator-activated receptor δ (PPARδ)-mediated mechanism in mice. This study determined the role of exercise and/or CLA in endurance capacity and PPARδ-associated regulators. Male 129Sv/J mice were fed either control (soybean oil) or CLA (0.5%) containing diets for 4 weeks and were further divided into sedentary or training regimes. CLA supplementation significantly reduced body weight and fat mass independent of exercise during the experimental period. Endurance capacity was significantly improved by CLA supplementation, while no effect of exercise was observed. Similarly, CLA treatment significantly increased expressions of sirtuin 1 and PPARγ coactivator-1α, up-stream regulators of PPARδ, in both sedentary and trained animals. With respect to downstream markers of PPARδ, CLA up-regulated the key biomarker needed to stimulate mitochondrial biogenesis, nuclear respiratory factor 1. Moreover, CLA supplementation significantly induced overall genes associated with muscle fibers, such as type I (slow-twitch) and type II (fast twitch). Taken together, it suggests that CLA improves endurance capacity independent of mild-intensity exercise via PPARδ-mediated mechanism.
Collapse
Affiliation(s)
- Yoo Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
8
|
Kim Y, Kim J, Whang KY, Park Y. Impact of Conjugated Linoleic Acid (CLA) on Skeletal Muscle Metabolism. Lipids 2016; 51:159-78. [PMID: 26729488 DOI: 10.1007/s11745-015-4115-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Abstract
Conjugated linoleic acid (CLA) has garnered special attention as a food bioactive compound that prevents and attenuates obesity. Although most studies on the effects of CLA on obesity have focused on the reduction of body fat, a number of studies have demonstrated that CLA also increases lean body mass and enhances physical performances. It has been suggested that these effects may be due in part to physiological changes in the skeletal muscle, such as changes in the muscle fiber type transformation, alteration of the intracellular signaling pathways in muscle metabolism, or energy metabolism. However, the mode of action for CLA in muscle metabolism is not completely understood. The purpose of this review is to summarize the current knowledge of the effects of CLA on skeletal muscle metabolism. Given that CLA not only reduces body fat, but also improves lean mass, there is great potential for the use of CLA to improve muscle metabolism, which would have a significant health impact.
Collapse
Affiliation(s)
- Yoo Kim
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Jonggun Kim
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Kwang-Youn Whang
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA.
| |
Collapse
|