1
|
Zhang YM, He Q, Cui JL, Liu Y, Wang MZ, Lu XX, Pan SX, Iqbal C, Ye DX, Sun WY, Zhang XY, Kai ZP, Zhang L, Yang XL. Machine learning-based rational design for efficient discovery of allatostatin analogs as promising lead candidates for novel IGRs. PEST MANAGEMENT SCIENCE 2025; 81:1186-1195. [PMID: 39513221 DOI: 10.1002/ps.8518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Insect neuropeptide allatostatins (ASTs) play a vital role in regulating insect growth, development, and reproduction, making them potential candidates for new insect growth regulators (IGRs). However, the practical use of natural ASTs in pest management is constrained by their long sequences and high production costs, thus the development of AST analogs with shorter sequences and reduced cost is essential. Traditional methods for designing AST analogs are often time-consuming and resource-intensive. This study aims to employ new computational methodologies to understand the structure-activity relationship and efficiently discover potent AST analogs. RESULTS Two machine learning models, utilizing multiple linear regression and support vector machine, were constructed to reveal the key structural factors that influence the juvenile hormone-inhibiting activity of AST analogs. These models suggested that a potent AST analog should contain styrene, hydrophilic, and aromatic groups, and rotatable bonds at positions 1, 2, 3, and 4, respectively. Six analogs (A52-A57) were designed and synthesized, and they exhibited potent juvenile hormone-inhibiting activity (IC50 < 16 nM). Notably, analog A53 showed the best activity (IC50 = 2.07 nM), surpassing that of most natural Dippu-ASTs, making it a potential lead candidate for IGRs. CONCLUSION These models promote the efficient design, screening, and prioritization of new or untested AST analogs. The study clarifies how a machine learning-based strategy facilitates the development of AST analogs as novel IGR lead candidates, offering a useful reference for pest management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Meng Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Qi He
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Jia-Lin Cui
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Yan Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Mei-Zi Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Xing-Xing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Shi-Xiang Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Chandni Iqbal
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - De-Xing Ye
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Wen-Yu Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Xin-Yuan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, P. R. China
| | - Li Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, P. R. China
| | - Xin-Ling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
2
|
Zhang Y, Liu Y, Wu X, Lu X, Wang M, Ye D, Iqbal C, Sun W, Zhang X, Zhang L, Yang X. A Novel Peptidomimetic Insecticide: Dippu-AstR-Based Rational Design and Biological Activity of Allatostatin Analogs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11341-11350. [PMID: 38713071 DOI: 10.1021/acs.jafc.3c09231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Insect neuropeptides play an essential role in regulating growth, development, reproduction, nerve conduction, metabolism, and behavior in insects; therefore, G protein-coupled receptors of neuropeptides are considered important targets for designing green insecticides. Cockroach-type allatostatins (ASTs) (FGLamides allatostatins) are important insect neuropeptides in Diploptera punctata that inhibit juvenile hormone (JH) synthesis in the corpora allata and affect growth, development, and reproduction of insects. Therefore, the pursuit of novel insecticides targeting the allatostatin receptor (AstR) holds significant importance. Previously, we identified an AST analogue, H17, as a promising candidate for pest control. Herein, we first modeled the 3D structure of AstR in D. punctata (Dippu-AstR) and predicted the binding mode of H17 with Dippu-AstR to study the critical interactions and residues favorable to its bioactivity. Based on this binding mode, we designed and synthesized a series of H17 derivatives and assessed their insecticidal activity against D. punctata. Among them, compound Q6 showed higher insecticidal activity than H17 against D. punctata by inhibiting JH biosynthesis, indicating that Q6 is a potential candidate for a novel insect growth regulator (IGR)-based insecticide. Moreover, Q6 exhibited insecticidal activity against Plutella xylostella, indicating that these AST analogs may have a wider insecticidal spectrum. The underlying mechanisms and molecular conformations mediating the interactions of Q6 with Dippu-AstR were explored to understand its effects on the bioactivity. The present work clarifies how a target-based strategy facilitates the discovery of new peptide mimics with better bioactivity, enabling improved IGR-based insecticide potency in sustainable agriculture.
Collapse
Affiliation(s)
- Yimeng Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoqing Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xingxing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Meizi Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Dexing Ye
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chandni Iqbal
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wenyu Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinyuan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Hull JJ, Gross RJ, Brent CS, Christie AE. Filling in the gaps: A reevaluation of the Lygus hesperus peptidome using an expanded de novo assembled transcriptome and molecular cloning. Gen Comp Endocrinol 2021; 303:113708. [PMID: 33388363 DOI: 10.1016/j.ygcen.2020.113708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/01/2023]
Abstract
Peptides are the largest and most diverse class of molecules modulating physiology and behavior. Previously, we predicted a peptidome for the western tarnished plant bug, Lygus hesperus, using transcriptomic data produced from whole individuals. A potential limitation of that analysis was the masking of underrepresented genes, in particular tissue-specific transcripts. Here, we reassessed the L. hesperus peptidome using a more comprehensive dataset comprised of the previous transcriptomic data as well as tissue-specific reads produced from heads and accessory glands. This augmented assembly significantly improves coverage depth providing confirmatory transcripts for essentially all of the previously identified families and new transcripts encoding a number of new peptide precursors corresponding to 14 peptide families. Several families not targeted in our initial study were identified in the expanded assembly, including agatoxin-like peptide, CNMamide, neuropeptide-like precursor 1, and periviscerokinin. To increase confidence in the in silico data, open reading frames of a subset of the newly identified transcripts were amplified using RT-PCR and sequence validated. Further PCR-based profiling of the putative L. hesperus agatoxin-like peptide precursor revealed evidence of alternative splicing with near ubiquitous expression across L. hesperus development, suggesting the peptide serves functional roles beyond that of a toxin. The peptides predicted here, in combination with those identified in our earlier study, expand the L. hesperus peptidome to 42 family members and provide an improved platform for initiating molecular and physiological investigations into peptidergic functionality in this non-model agricultural pest.
Collapse
Affiliation(s)
- J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| | - Roni J Gross
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Colin S Brent
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
Zhang C, Li X, Song D, Ling Y, Zhou Y, Yang X. Synthesis, aphicidal activity and conformation of novel insect kinin analogues as potential eco-friendly insecticides. PEST MANAGEMENT SCIENCE 2020; 76:3432-3439. [PMID: 31840904 DOI: 10.1002/ps.5721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The discovery of ecofriendly insecticides through a new strategy for aphid control is important because of the substantial resistance and unexpected eco-toxicity to honeybees caused by traditional insecticides. The insect kinins, a class of multifunctional insect neuropeptides, are considered for potential application in pest control. In our previous work we developed several series of insect kinin analogues and found a promising lead II-1 with good aphicidal activity. To seek further eco-friendly aphicides, the optimization of II-1 is carried out in this study. RESULTS Fifteen novel Yaa3 modified analogues based on the lead II-1 were synthesized. The aphicidal tests indicated that IV-3, IV-5 and IV-10 exhibited significant activity against the soybean aphid Aphis glycines with LC50 values of 0.0029, 0.0072 and 0.0086 mmol L-1 , respectively, higher than that of lead II-1 and the commercial Pymetrozine. The molecular modeling results showed that analogues II-1, IV-3, IV-5, IV-7 and IV-10 formed a β-turn-like conformation, while the conformation of analogues IV-1, IV-2 and IV-9 seemed to be linear. Some structural elements favorable for the activity were proposed based on the conformation-activity relationship of the analogues. CONCLUSION Insect kinin analogues derived from lead II-1 by modifying the hydrolysis site Yaa3 with natural, sterically hindered α- and β-amino acids showed great potential as eco-friendly insecticides. Inspiringly, the most active analogue IV-3 can be a candidate for further development. The β-turn-like conformation and the orientation of the aromatic rings of the side chain of Phe2 and Trp4 may be critical factors beneficial to activity. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanliang Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Xinlu Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Yun Ling
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Yuanlin Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Xinling Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
5
|
3D-QSAR based optimization of insect neuropeptide allatostatin analogs. Bioorg Med Chem Lett 2019; 29:890-895. [PMID: 30765188 DOI: 10.1016/j.bmcl.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 11/23/2022]
Abstract
Allatostatins (AST) are neuropeptides originally described as inhibitors of juvenile hormone (JH) synthesis in insects. Consequently, they have been considered as potential lead compounds for the discovery of new insect growth regulators (IGRs). In the present work, receptor-based three-dimensional quantitative structure-activity relationship (3D-QSAR) was studied with 48 AST analogs, and a general approach for novel potent bioactive AST analogs is proposed. Hence, six novel AST analogs were designed and synthesized. Bioassays indicated that the majority novel analogs exhibited potent JH inhibitory activity, especially analog A6 (IC50: 3.79 nmol/L), which can be used as lead compound to develop new IGRs.
Collapse
|
6
|
Alvarado-Delgado A, Moran-Francia K, Perales-Ortiz G, Rodríguez MH, Lanz-Mendoza H. Ecdysis-related pleiotropic neuropeptides expression during Anopheles albimanus development. SALUD PUBLICA DE MEXICO 2018; 60:48-55. [PMID: 29689656 DOI: 10.21149/8134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE To analyze the transcription pattern of neuropeptides in the ontogeny of a malaria vector, the mosquito Anopheles albimanus. MATERIALS AND METHODS The transcription pattern of Crustacean CardioActive peptide (CCAP), corazonin, Ecdysis Triggering Hormone (ETH), allatostatin-A, orcokinin, Insulin Like Peptide 2 (ILP2), Insulin Like Peptide 5 (ILP5) and bursicon was evaluated using qPCR on larvae (1st - 4th instar), pupae and adult mosquitoes. RESULTS Unlike in other insects, transcripts of CCAP (70.8%), ETH (60.2%) and corazonin (76.5%) were expressed in 4th instar larvae, probably because these three neuropeptides are associated with the beginning of ecdysis. The neuropeptide ILP2 showed higher transcription levels in other stages and orcokinin decreased during the development of the mosquito. CONCLUSIONS The CCAP, corazonin and ETH neuropeptidesare potential targets for the design of control strategies aimed at disrupting An. albiamnus larval development.
Collapse
Affiliation(s)
- Alejandro Alvarado-Delgado
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Ken Moran-Francia
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Guillermo Perales-Ortiz
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Mario Henry Rodríguez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Humberto Lanz-Mendoza
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| |
Collapse
|
7
|
Huang SS, Chen SS, Zhang HL, Yang H, Yang HJ, Ren YJ, Kai ZP. Structure-Based Discovery of Nonpeptide Allatostatin Analogues for Pest Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3644-3650. [PMID: 29566485 DOI: 10.1021/acs.jafc.8b00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
FGLamide allatostatins (ASTs) are regarded as possible insecticide candidates, although their lack of in vivo effects, rapid degradation, poor water solubility, and high production costs preclude their practical use in pest control. In contrast to previous research, the C-terminal tripeptide (FGLa) was selected as the lead compound in this study. Five nonpeptide AST analogues (2-amino-1-[3-oxo-3-(substituted-anilino)propyl]pyridinium nitrate derivatives) were designed on the basis of the structure-activity relationship and docking results of FGLa. All of the nonpeptide analogues (S1-S5) were more potent against juvenile-hormone (JH) biosynthesis than the lead compound. They significantly inhibited the biosynthesis of JH in vivo following injection. A pest-control application demonstrated that S1 and S3 have larvicidal effects following oral administration (the IC50 values were 0.020 and 0.0016 mg/g, respectively). The good oral toxicities and excellent water solubilities of S1 and S3 suggest that they have considerable potential as insecticides for pest management.
Collapse
Affiliation(s)
- Shan-Shan Huang
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , Shanghai 201418 , PR China
| | - Shan-Shan Chen
- Institute of Agro-food Standards and Testing Technologies , Shanghai Academy of Agricultural Science , Shanghai 201403 , PR China
| | - Hong-Ling Zhang
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , Shanghai 201418 , PR China
| | - Han Yang
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , Shanghai 201418 , PR China
| | - Hui-Juan Yang
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , Shanghai 201418 , PR China
| | - Yu-Jie Ren
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , Shanghai 201418 , PR China
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , Shanghai 201418 , PR China
| |
Collapse
|
8
|
Christie AE, Cieslak MC, Roncalli V, Lenz PH, Major KM, Poynton HC. Prediction of a peptidome for the ecotoxicological model Hyalella azteca (Crustacea; Amphipoda) using a de novo assembled transcriptome. Mar Genomics 2018; 38:67-88. [PMID: 29395622 DOI: 10.1016/j.margen.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023]
Abstract
Due to its sensitivity to many environmental and anthropogenic stressors, including a wide range of chemical compounds, Hyalella azteca, a freshwater amphipod, has emerged as one of the most commonly used invertebrates for ecotoxicological assessment.Peptidergic signaling systems are key components in the control of organism-environment interactions, and there is a growing literature suggesting that they are targets of a number of aquatic toxicants.Interestingly, and despite its model species status in the field of ecotoxicology, little is known about the peptide hormones of H. azteca.Here, a transcriptome was produced for this species using the de novo assembler Trinity and mined for sequences encoding putative peptide precursors; the transcriptome was assembled from 460,291,636 raw reads and consists of 133,486 unique transcripts.Seventy-six sequences encoding peptide pre/preprohormones were identified from this transcriptome, allowing for the prediction of 202 distinct peptides, which included members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, ecdysis-triggering hormone, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone, GSEFLamide, inotocin, leucokinin, myosuppressin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, sulfakinin, tachykinin-related peptide and trissin families.These peptides expand the known peptidome for H. azteca approximately nine-fold, forming a strong foundation for future studies of peptidergic control, including disruption by aquatic toxicants, in this important ecotoxicological model.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Matthew C Cieslak
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Petra H Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Kaley M Major
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA.
| |
Collapse
|
9
|
Wu X, Wang M, Huang J, Zhang L, Zhang Z, Ling Y, Yang X, Tobe SS. A potential insect growth regulator for cockroach control: design, synthesis and bioactivity of N-terminal-modified allatostatin analogues. PEST MANAGEMENT SCIENCE 2017; 73:500-505. [PMID: 27717114 DOI: 10.1002/ps.4444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The FGLa-allatostatins (ASTs) are a family of neuropeptides that can inhibit juvenile hormone biosynthesis by the corpora allata (CA) in vitro, and therefore they are regarded as insect growth regulator (IGR) candidates for pest control. In our previous studies, an AST mimic, H17, was found to have a significant effect on JH biosynthesis by cockroach CA, both in vitro and in vivo. To discover new potential mimics and explore the substituent effect on the inhibition of JH biosynthesis, 30 analogues, modified with various substituents on the benzene ring at the N-terminus of lead compound H17, were designed and synthesised. Their bioactivity in inhibiting JH biosynthesis by the CA of Diploptera punctata and the potency of M9, M10 and M11 in activation of Dippu-AstR were evaluated. RESULTS All the analogues showed an effect on JH biosynthesis by CA in vitro. M9, M10 and M11 can activate the Dippu-AstR, albeit with much lower potency than that of AST 1. M11 also exhibited improved in vitro activity (IC50 6.98 nm) in comparison with the lead compound H17 (IC50 29.5 nm). In particular, M11 displayed good in vivo activity in inhibiting JH biosynthesis and basal oocyte growth. CONCLUSION The structure-activity relationship studies suggest that different positions of substituents on the benzene ring of the cinnamic acid can lead to different activities. The para-substitution on the benzene ring plays an important role in inhibiting JH biosynthesis in vitro. Moreover, M11 is considered to be a potential IGR for cockroach control. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Meizi Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Juan Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Li Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Zhe Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yun Ling
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xinling Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Christie AE, Hull JJ, Richer JA, Geib SM, Tassone EE. Prediction of a peptidome for the western tarnished plant bug Lygus hesperus. Gen Comp Endocrinol 2017; 243:22-38. [PMID: 27789347 DOI: 10.1016/j.ygcen.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/08/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
Many strategies for controlling insect pests require an understanding of their hormonal signaling agents, peptides being the largest and most diverse single class of these molecules. Lygus hesperus is a pest species of particular concern, as it is responsible for significant damage to a wide variety of commercially important plant crops. At present, little is known about the peptide hormones of L. hesperus. Here, transcriptomic data were used to predict a peptidome for L. hesperus. Fifty-three L. hesperus transcripts encoding peptide precursors were identified, with a subset amplified by PCR for sequence verification. The proteins deduced from these transcripts allowed for the prediction of a 119-sequence peptidome for L. hesperus. The predicted peptides include isoforms of allatostatin A, allatostatin B (AST-B), allatostatin C, allatotropin, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, GSEFLamide, insulin-like peptide, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pyrokinin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide. Of note were several isoforms of AST-B that possess -WX7Wamide carboxyl-termini rather than the stereotypical -WX6Wamide (e.g., KWQDMQNPGWamide), an allatotropin ending in -SARGFamide rather than -TARGFamide (GLKNGPLNSARGFamide), a GSEFLamide ending in -GTEFLamide (TVGTEFLamide), several orcokinins with PMDEIDR- rather than NFDEIDR- amino-termini (e.g., PMDEIDRAGFTHFV), and an eight rather than 12 amino acid long isoform of SIFamide (PPFNGSIFamide). Collectively, the L. hesperus peptidome predicted here provides a resource for initiating physiological investigations of peptidergic signaling in this species, including studies directed at the biological control of this agricultural pest.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Josh A Richer
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, Daniel K. Inouye Pacific Basin Agricultural Research Center, USDA Agricultural Research Services, Hilo, HI 96720, USA
| | - Erica E Tassone
- Plant Physiology and Genetics Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| |
Collapse
|
11
|
Xie Y, Wang M, Zhang L, Wu X, Yang X, Tobe SS. Synthesis and biological activity of FGLamide allatostatin analogs with Phe3residue modifications. J Pept Sci 2016; 22:600-6. [DOI: 10.1002/psc.2906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Xie
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing 100193 China
- Department of Cell and Systems Biology; University of Toronto; 25 Harbord St. Toronto ON M5S 3G5 Canada
- State Key Laboratory of the Discovery and Development of Novel Pesticide; Shenyang Sinochem Agrochemicals R&D Co. Ltd.; Shenyang 110021 China
| | - Meizi Wang
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing 100193 China
| | - Li Zhang
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing 100193 China
| | - Xiaoqing Wu
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing 100193 China
| | - Xinling Yang
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing 100193 China
| | - Stephen S. Tobe
- Department of Cell and Systems Biology; University of Toronto; 25 Harbord St. Toronto ON M5S 3G5 Canada
| |
Collapse
|