1
|
He K, Hu Y, Bai X, Liao X. Rapid Screening of Chemical Components in Salvia miltiorrhiza with the Potential to Inhibit Skin Inflammation. Int J Mol Sci 2024; 25:7369. [PMID: 39000476 PMCID: PMC11242382 DOI: 10.3390/ijms25137369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Hyaluronidase possesses the capacity to degrade high-molecular-weight hyaluronic acid into smaller fragments, subsequently initiating a cascade of inflammatory responses and activating dendritic cells. In cases of bacterial infections, substantial quantities of HAase are generated, potentially leading to severe conditions such as cellulitis. Inhibiting hyaluronidase activity may offer anti-inflammatory benefits. Salvia miltiorrhiza Bunge, a traditional Chinese medicine, has anti-inflammatory properties. However, its effects on skin inflammation are not well understood. This study screened and evaluated the active components of S. miltiorrhiza that inhibit skin inflammation, using ligand fishing, enzyme activity assays, drug combination analysis, and molecular docking. By combining magnetic nanomaterials with hyaluronidase functional groups, we immobilized hyaluronidase on magnetic nanomaterials for the first time in the literature. We then utilized an immobilized enzyme to specifically adsorb the ligand; two ligands were identified as salvianolic acid B and rosmarinic acid by HPLC analysis after desorption of the dangling ligands, to complete the rapid screening of potential anti-inflammatory active ingredients in S. miltiorrhiza roots. The median-effect equation and combination index results indicated that their synergistic inhibition of hyaluronidase at a fixed 3:2 ratio was enhanced with increasing concentrations. Kinetic studies revealed that they acted as mixed-type inhibitors of hyaluronidase. Salvianolic acid B had Ki and Kis values of 0.22 and 0.96 μM, respectively, while rosmarinic acid had values of 0.54 and 4.60 μM. Molecular docking revealed that salvianolic acid B had a higher affinity for hyaluronidase than rosmarinic acid. In addition, we observed that a 3:2 combination of SAB and RA significantly decreased the secretion of TNF-α, IL-1, and IL-6 inflammatory cytokines in UVB-irradiated HaCaT cells. These findings identify salvianolic acid B and rosmarinic acid as key components with the potential to inhibit skin inflammation, as found in S. miltiorrhiza. This research is significant for developing skin inflammation treatments. It demonstrates the effectiveness and broad applicability of the magnetic nanoparticle-based ligand fishing approach for screening enzyme inhibitors derived from herbal extracts.
Collapse
Affiliation(s)
- Kehang He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yikao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaolin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
2
|
Zhou JR, Kinno S, Kaihara K, Sawai M, Ishida T, Takechi S, Fang J, Nohara T, Yokomizo K. Saponin Esculeoside A and Aglycon Esculeogenin A from Ripe Tomatoes Inhibit Dendritic Cell Function by Attenuation of Toll-like Receptor 4 Signaling. Nutrients 2024; 16:1699. [PMID: 38892635 PMCID: PMC11174994 DOI: 10.3390/nu16111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Dendritic cells (DCs) can initiate immune response through the presenting antigens to naïve T lymphocytes. Esculeoside A (EsA), a spirosolane glycoside, is reported as a major component in the ripe fruit of tomato. Little is known about the effect of tomato saponin on mice bone marrow-derived DCs. This study revealed that EsA and its aglycon, esculeogenin A (Esg-A), attenuated the phenotypic and functional maturation of murine DCs stimulated by lipopolysaccharide (LPS). We found that EsA/Esg-A down-regulated the expression of major histocompatibility complex type II molecules and costimulatory molecule CD86 after LPS stimulation. It was also determined that EsA-/Esg-A-treated DCs were poor stimulators of allogeneic T-cell proliferation and exhibited impaired interleukin-12 and TNF-α production. Additionally, EsA/Esg-A was able to inhibit TLR4-related and p-NFκB signaling pathways. This study shows new insights into the immunopharmacology of EsA/Esg-A, and represents a novel approach to controlling DCs for therapeutic application.
Collapse
Affiliation(s)
- Jian-Rong Zhou
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| | - Shigenori Kinno
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| | - Kenta Kaihara
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| | - Madoka Sawai
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan; (M.S.); (T.I.)
| | - Takumi Ishida
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan; (M.S.); (T.I.)
| | - Shinji Takechi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| | - Toshihiro Nohara
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| | - Kazumi Yokomizo
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| |
Collapse
|
3
|
Qin Y, Li G, Wang L, Yin G, Zhang X, Wang H, Zheng P, Hua W, Cheng Y, Zhao Y, Zhang J. Modular preparation of biphenyl triazoles via click chemistry as non-competitive hyaluronidase inhibitors. Bioorg Chem 2024; 146:107291. [PMID: 38521011 DOI: 10.1016/j.bioorg.2024.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Hyaluronidase is a promising target in drug discovery, given its overexpression in a range of physiological and pathological processes, including tumor migration, skin aging, sagging, and wrinkling, as well as inflammation and bacterial infections. In this study, to identify novel hyaluronidase inhibitors, we applied click chemistry for the modular synthesis of 370 triazoles in 96-well plates, starting with biphenyl azide. Utilizing an optimized turbidimetric screening assay in microplates, we identified Fmoc-containing triazoles 5 and 6, as well as quinoline-containing triazoles 15 and 16, as highly effective hyaluronidase inhibitors. Subsequent research indicated that these triazoles potentially interact with a novel binding site of hyaluronidase. Notably, these inhibitors displayed minimal cytotoxicity and showed promising anti-inflammatory effects in LPS-stimulated macrophages. Remarkably, compound 6 significantly reduced NO release by 74 % at a concentration of 20 μM.
Collapse
Affiliation(s)
- Yiman Qin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ling Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Guangyuan Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Xiang Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Hongxiang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Pengfei Zheng
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Wentao Hua
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Yan Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Yaxue Zhao
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Jiong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
4
|
Al Jadani JM, Albadr NA, Alshammari GM, Almasri SA, Alfayez FF, Yahya MA. Esculeogenin A, a Glycan from Tomato, Alleviates Nonalcoholic Fatty Liver Disease in Rats through Hypolipidemic, Antioxidant, and Anti-Inflammatory Effects. Nutrients 2023; 15:4755. [PMID: 38004149 PMCID: PMC10675668 DOI: 10.3390/nu15224755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
This study examined the preventative effects of esculeogenin A (ESGA), a newly discovered glycan from tomato, on liver damage and hepatic steatosis in high-fat-diet (HFD)-fed male rats. The animals were divided into six groups (each of eight rats): a control group fed a normal diet, control + ESGA (200 mg/kg), HFD, and HFD + ESAG in 3 doses (50, 100, and 200 mg/kg). Feeding and treatments were conducted for 12 weeks. Treatment with ESGA did not affect gains in the body or fat weight nor increases in fasting glucose, insulin, and HOMA-IR or serum levels of free fatty acids (FFAs), tumor-necrosis factor-α, and interleukin-6 (IL-6). On the contrary, it significantly reduced the serum levels of gamma-glutamyl transpeptidase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total triglycerides (TGs), cholesterol (CHOL), and low-density lipoprotein cholesterol (LDL-c) in the HFD-fed rats. In addition, it improved the liver structure, attenuating the increase in fat vacuoles; reduced levels of TGs and CHOL, and the mRNA levels of SREBP1 and acetyl CoA carboxylase (ACC); and upregulated the mRNA levels of proliferator-activated receptor α (PPARα) and carnitine palmitoyltransferase I (CPT I) in HFD-fed rats. These effects were concomitant with increases in the mRNA, cytoplasmic, and nuclear levels of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and heme oxygenase-1 (HO); a reduction in the nuclear activity of nuclear factor-kappa beta (NF-κB); and inhibition of the activity of nuclear factor kappa B kinase subunit beta (IKKβ). All of these effects were dose-dependent effects in which a normal liver structure and normal levels of all measured parameters were seen in HFD + ESGA (200 mg/kg)-treated rats. In conclusion, ESGA prevents NAFLD in HFD-fed rats by attenuating hyperlipidemia, hepatic steatosis, oxidative stress, and inflammation by acting locally on Nrf2, NF-κB, SREBP1, and PPARα transcription factors.
Collapse
Affiliation(s)
- Jwharah M. Al Jadani
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Nawal A. Albadr
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Soheir A. Almasri
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Farah Fayez Alfayez
- Department of Medicine and Surgery, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| |
Collapse
|
5
|
ALTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. Esculeoside A Decreases Diabetic Cardiomyopathy in Streptozotocin-Treated Rats by Attenuating Oxidative Stress, Inflammation, Fibrosis, and Apoptosis: Impressive Role of Nrf2. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1830. [PMID: 37893548 PMCID: PMC10608477 DOI: 10.3390/medicina59101830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: This experiment evaluated the preventative influence of the tomato-derived Esculeoside A (ESA) on diabetic cardiomyopathy in type 1 diabetes mellitus (T1DM) in rats induced by streptozotocin (STZ). It also examined whether the activation of Nrf2 signaling affords this protection. Materials and Methods: Adult male Wistar control nondiabetic rats and rats with T1DM (STZ-T1DM) were given either carboxymethylcellulose as a vehicle or ESA (100 mg/kg) (eight rats/group) orally daily for 12 weeks. A group of STZ-T1DM rats was also treated with 100 mg/kg ESA and co-treated i.p. with 2 mg/kg (twice/week), brusatol, and Nrf2 inhibitors for 12 weeks. Results and Conclusions: Treatment with ESA prevented the gain in heart weight and cardiomyocyte hypertrophy and improved the left ventricular (LV) systolic and diastolic function (LV) in the STZ-T1DM rat group. Likewise, it reduced their serum levels of triglycerides, cholesterol, and low-density lipoproteins (LDL-c), as well as their LV mRNA, cytoplasmic total, and nuclear total levels of NF-κB. ESA also reduced the total levels of malondialdehyde, tumor necrosis factor-α, interleukine-6 (IL-6), Bax, cytochrome-c, and caspase-3 in the LV of the STZ-T1DM rats. In parallel, ESA enhanced the nuclear and cytoplasmic levels of Nrf2 and the levels of superoxide dismutase, glutathione, and heme oxygenase-1, but decreased the mRNA and cytoplasmic levels of keap-1 in the LVs of the STZ-T1DM rats. Interestingly, ESA did not affect the fasting insulin and glucose levels of the diabetic rats. All of these beneficially protective effects of ESA were not seen in the ESA-treated rats that received brusatol. In conclusion, ESA represses diabetic cardiomyopathy in STZ-diabetic hearts by activating the Nrf2/antioxidant/NF-κB axis.
Collapse
Affiliation(s)
- Jozaa Z. ALTamimi
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Nora A. AlFaris
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (G.M.A.); (M.A.Y.)
| | - Reham I. Alagal
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Dalal H. Aljabryn
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (G.M.A.); (M.A.Y.)
| |
Collapse
|
6
|
AlTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. Esculeoside A alleviates reproductive toxicity in streptozotocin-diabetic rats' s model by activating Nrf2 signaling. Saudi J Biol Sci 2023; 30:103780. [PMID: 37663394 PMCID: PMC10472313 DOI: 10.1016/j.sjbs.2023.103780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
This examination studied if Esculeoside A (ESA) alleviates reproductive toxicity in a type 1 diabetes mellitus (T1DM) rat model and if activating Nrf2 underlies this protection. T1DM was established by a single injection of STZ. Aged-matched adult control and STZ-DM rats were administered either the vehicle (5% carboxymethyl cellulose) or ESA (100 mg/kg). An additional group [STZ-DM + ESA (100 mg) + brusatol (2 m/kg] was added. All treatments were conducted for 16 weeks. ESA failed to attenuate weight loss, hyperglycemia, and hypoinsulinemia but significantly attenuated the associated dyslipidemia in STZ-DM rats. In parallel, ESA also enhanced total sperm count, motility, survival, reduced head and tail sperm abnormalities, increased circulatory concentrations of follicular stimulating hormone (FSH), testosterone, and Luteinizing hormone (LH), and stimulated the testicular expression of several steroidogenic enzymes (StAR, CYP11A1, CYP17A1, 3β-HSD1) in STZ-DM rats. These observations were associated with a higher testicular increase in the transcription, protein levels, and nuclear activities of Nrf2 that coincided with a reduction in the total levels of MDA and keap1 and a significant increase in the total levels of some antioxidants such as HO-1, SOD, and GSH. In concomitance, ESA reduced the testicular mRNA and nuclear concentrations of NF-κB and depressed the levels of TNF-α and IL-6. Brusatol prevented all these protective effects of ESA. In conclusion, activation of Nrf2 triggers the protective potential of ESA against reproductive toxicity in STZ-DM rats.
Collapse
Affiliation(s)
- Jozaa Z. AlTamimi
- Department of Physical Sports Sciences, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nora A. AlFaris
- Department of Physical Sports Sciences, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 84428, Riyadh 11451, Saudi Arabia
| | - Reham I. Alagal
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalal H. Aljabryn
- Department of Physical Sports Sciences, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 84428, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Sonawane PD, Gharat SA, Jozwiak A, Barbole R, Heinicke S, Almekias-Siegl E, Meir S, Rogachev I, Connor SEO, Giri AP, Aharoni A. A BAHD-type acyltransferase concludes the biosynthetic pathway of non-bitter glycoalkaloids in ripe tomato fruit. Nat Commun 2023; 14:4540. [PMID: 37500644 PMCID: PMC10374582 DOI: 10.1038/s41467-023-40092-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Tomato is the highest value fruit and vegetable crop worldwide, yet produces α-tomatine, a renowned toxic and bitter-tasting anti-nutritional steroidal glycoalkaloid (SGA) involved in plant defense. A suite of modifications during tomato fruit maturation and ripening converts α-tomatine to the non-bitter and less toxic Esculeoside A. This important metabolic shift prevents bitterness and toxicity in ripe tomato fruit. While the enzymes catalyzing glycosylation and hydroxylation reactions in the Esculeoside A pathway have been resolved, the proposed acetylating step remains, to date, elusive. Here, we discovered that GAME36 (GLYCOALKALOID METABOLISM36), a BAHD-type acyltransferase catalyzes SGA-acetylation in cultivated and wild tomatoes. This finding completes the elucidation of the core Esculeoside A biosynthetic pathway in ripe tomato, allowing reconstitution of Esculeoside A production in heterologous microbial and plant hosts. The involvement of GAME36 in bitter SGA detoxification pathway points to a key role in the evolution of sweet-tasting tomato as well as in the domestication and breeding of modern cultivated tomato fruit.
Collapse
Affiliation(s)
- Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany.
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Sachin A Gharat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ranjit Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Efrat Almekias-Siegl
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sarah E O' Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Ashok P Giri
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
8
|
Rosa GP, Peixoto AF, Barreto MC, Seca AML, Pinto DCGA. Bio-Guided Optimization of Cystoseira abies-marina Cosmeceuticals Extraction by Advanced Technologies. Mar Drugs 2022; 21:35. [PMID: 36662208 PMCID: PMC9861939 DOI: 10.3390/md21010035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Cystoseira abies-marina (reclassified as Gongolaria abies-marina) is a brown seaweed species rich in meroterpenoids, presenting interesting antioxidant, antitumor, and anti-inflammatory activities. However, there is still a lot to uncover regarding the bioactive potential of this species, as evidenced by the lack of records of antiaging activities from Cystoseira abies-marina, making this macroalga an excellent candidate for studies of its cosmeceutical potential. Ultrasound-(UAE) and microwave-assisted extraction (MAE) are advanced sustainable technologies that are very efficient in enhancing bioactive compound extraction. Applying these extraction techniques to a new biological matrix often calls for optimizing the parameters toward the best extraction yield. Since Cystoseira abies-marina is a new matrix for both UAE and MAE techniques, the present work proposes the optimization of the extraction process, using a novel approach: instead of only focusing on increasing the yield, the goal of this work is to determine the parameters for UAE and MAE that lead to extracts with better antiaging activities. For this bio-guided approach, several Cystoseira abies-marina extracts were prepared by UAE and MAE under varying conditions of solvent, time, and algae/solvent ratios. Their antiaging activities were then determined, and all the results combined to unveil the conditions yielding extracts with higher cosmeceutical potential. Using statistical tools, it was found that, for UAE, the best conditions were ethyl acetate, 15 min, and a ratio of 1:4, which led to an extract with high yield, and causing the strong inhibition of tyrosinase and elastase. In turn, ethanol, 10 min, and a ratio of 1:4 were the best conditions for MAE, leading to the extract with the best antioxidant activity. The results show that the proposed bio-guided approach was effective in obtaining extracts with high cosmeceutical potential, unveiling the possibility of modulating an extract's activity by changing the extraction method.
Collapse
Affiliation(s)
- Gonçalo P. Rosa
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - Andreia F. Peixoto
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Maria Carmo Barreto
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - Ana M. L. Seca
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Ngo TH, Park J, Jo YD, Jin CH, Jung CH, Nam B, Han AR, Nam JW. Content of Two Major Steroidal Glycoalkaloids in Tomato ( Solanum lycopersicum cv. Micro-Tom) Mutant Lines at Different Ripening Stages. PLANTS (BASEL, SWITZERLAND) 2022; 11:2895. [PMID: 36365348 PMCID: PMC9654965 DOI: 10.3390/plants11212895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Esculeoside A and tomatine are two major steroidal alkaloids in tomato fruit (Solanum lycopersicum) that exhibit anti-inflammatory, anticancer, and anti-hyperlipidemia activities. Tomatine contained in immature tomato fruit is converted to esculeoside A as the fruit matures. To develop new tomato varieties based on the content analysis of functional secondary metabolites, 184 mutant lines were generated from the original cultivar (S. lycopersicum cv. Micro-Tom) by radiation breeding. Ultra-performance liquid chromatography coupled with evaporative light scattering detector was used to identify the mutant lines with good traits by analyzing tomatine and esculeoside A content. Compared with the original cultivar, candidates for highly functional cultivars with high esculeoside A content were identified in the mature fruit of the mutant lines. The mutant lines with low and high tomatine content at an immature stage were selected as edible cultivars due to toxicity reduction and as a source of tomatine with various pharmacological activities, respectively. During the process of ripening from green to red tomatoes, the rate of conversion of tomatine to esculeoside A was high in the green tomatoes with a low tomatine content, whereas green tomatoes with a high tomatine content exhibited a low conversion rate. Using methanol extracts prepared from unripe and ripe fruits of the original cultivar and its mutant lines and two major compounds, we examined their cytotoxicity against FaDu human hypopharynx squamous carcinoma cells. Only tomatine exhibited cytotoxicity with an IC50 value of 5.589 μM, whereas the other samples did not exhibit cytotoxicity. Therefore, radiation breeding represents a useful tool for developing new cultivars with high quality, and metabolite analysis is applicable for the rapid and objective selection of potential mutant lines.
Collapse
Affiliation(s)
- Trung Huy Ngo
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea
| | - Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea
| | - Yeong Deuk Jo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea
- College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Chungcheongnam-do, Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si 54810, Jeollabuk-do, Korea
| | - Bomi Nam
- Institute of Natural Cosmetic Industry for Namwon, Namwon-si 55801, Jeollabuk-do, Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea
| |
Collapse
|
10
|
Is Caperatic Acid the Only Compound Responsible for Activity of Lichen Platismatia glauca within the Nervous System? Antioxidants (Basel) 2022; 11:antiox11102069. [PMID: 36290793 PMCID: PMC9598164 DOI: 10.3390/antiox11102069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Lichens are a source of various biologically active compounds. However, the knowledge about them is still scarce, and their use in medicine is limited. This study aimed to investigate the therapeutic potential of the lichen Platismatia glauca and its major metabolite caperatic acid in regard to their potential application in the treatment of central nervous system diseases, especially neurodegenerative diseases and brain tumours, such as glioblastoma. First, we performed the phytochemical analysis of the tested P. glauca extracts based on FT-IR derivative spectroscopic and gas chromatographic results. Next the antioxidant properties were determined, and moderate anti-radical activity, strong chelating properties of Cu2+ and Fe2+ ions, and a mild effect on the antioxidant enzymes of the tested extracts and caperatic acid were proved. Subsequently, the influence of the tested extracts and caperatic acid on cholinergic transmission was determined by in vitro and in silico studies confirming that inhibitory effect on butyrylcholinesterase is stronger than against acetylcholinesterase. We also confirmed the anti-inflammatory properties of P. glauca extracts and caperatic acid using a COX-2 and hyaluronidase inhibition models. Moreover, our studies show the cytotoxic and pro-apoptotic activity of the P. glauca extracts against T98G and U-138 MG glioblastoma multiforme cell lines. In conclusion, it is possible to assume that P. glauca extracts and especially caperatic acid can be regarded as the source of the valuable substances to finding new therapies of central nervous system diseases.
Collapse
|
11
|
Ripe Tomato Saponin Esculeoside A and Sapogenol Esculeogenin A Suppress CD4+ T Lymphocyte Activation by Modulation of Th2/Th1/Treg Differentiation. Nutrients 2022; 14:nu14102021. [PMID: 35631161 PMCID: PMC9143097 DOI: 10.3390/nu14102021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
We report that esculeoside A (EsA), a glycoside and a major component in ripe tomato fruit, ameliorated experimental dermatitis in mice. However, the underlying immunologic molecular mechanisms are unknown. The present study examined its underlying immune nutrition mechanism using concanavalin A (ConA)-blast mouse splenocyte primary culture. We found that EsA and its sapogenol esculeogenin A (Esg-A) concentration-dependently suppressed T-lymphoproliferation using CFSE-labeled flow-cytometry and water-soluble tetrazolium (WST) assay. Using ELISA and q-PCR methods, EsA/Esg-A showed profound decreases in T helper 2 (Th2)-relevant interleukin-4 (IL-4) secretion and mRNA expression, and GATA3 expression. Moreover, EsA/Esg-A suppressed CD4+ T-lymphocyte activation by decreasing IL-2 secretion and mRNA expression and CD25+ cell proportion. Further, EsA/Esg-A alleviated Treg suppressive activity by reducing IL-10 secretion, Foxp3 mRNA expression, and cell numbers. We suggest the immune nutrition function by tomato component, and highlight that EsA/Esg-A are capable of reducing CD4+ T-lymphocyte activation via a reduction in Th2-lymphocyte activity by modulation of Th2/Th1/Treg subunit differentiation.
Collapse
|
12
|
Gębalski J, Graczyk F, Załuski D. Paving the way towards effective plant-based inhibitors of hyaluronidase and tyrosinase: a critical review on a structure-activity relationship. J Enzyme Inhib Med Chem 2022; 37:1120-1195. [PMID: 35470749 PMCID: PMC9045780 DOI: 10.1080/14756366.2022.2061966] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Human has used plants to treat many civilisation diseases for thousands of years. Examples include reserpine (hypertension therapy), digoxin (myocardial diseases), vinblastine and vincristine (cancers), and opioids (palliative treatment). Plants are a rich source of natural metabolites with multiple biological activities, and the use of modern approaches and tools allowed finally for more effective bioprospecting. The new phytochemicals are hyaluronidase (Hyal) inhibitors, which could serve as anti-cancer drugs, male contraceptives, and an antidote against venoms. In turn, tyrosinase inhibitors can be used in cosmetics/pharmaceuticals as whitening agents and to treat skin pigmentation disorders. However, the activity of these inhibitors is stricte dependent on their structure and the presence of the chemical groups, e.g. carbonyl or hydroxyl. This review aims to provide comprehensive and in-depth evidence related to the anti-tyrosinase and anti-Hyal activity of phytochemicals as well as confirming their efficiency and future perspectives.
Collapse
Affiliation(s)
- Jakub Gębalski
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Filip Graczyk
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Daniel Załuski
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
13
|
Comparative Analysis of In Vitro Enzyme Inhibitory Activities and Phytochemicals from Platycladus orientalis (L.) Franco via Solvent Partitioning Method. Appl Biochem Biotechnol 2022; 194:3621-3644. [PMID: 35476189 DOI: 10.1007/s12010-022-03921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
The extraction of plant bioactive compounds from Platycladus orientalis (L.) Franco remains a great challenge due to the different chemical groups. This study aimed to compare the bioactive compounds with enzyme inhibitory effect from P. orientalis via solvent partitioning method. Dried leaf samples were macerated and fractionated with six solvents of different polarities. The phenolic, flavonoid, tannin, saponin, alkaloid and pharmacological activities including anti-inflammatory, anti-diabetic, antioxidant and anti-glycation potential were compared across the six plant fractions. Toxicity assessment was performed with an in vivo brine shrimp model. The varying levels of bioactive compounds in ethyl acetate (phenolics, flavonoids), hexane (saponins, tannins) and chloroform (alkaloids) fractions clearly demonstrated the significant impact of solvent polarity on the extraction of bioactive compounds. The reducing potential (r = 0.67), IC50 of α-amylase inhibition (r = -0.71), IC50 of advanced glycation end-product inhibition (r = -0.93) and dicarbonyl compound inhibition (r = 0.57) in the plant fractions were correlated (p<0.05) with the flavonoids. Besides, the alkaloid, saponin and tannin were associated with cyclooxygenase-1 inhibitory activity. Principal component analysis confirmed that solvent polarity (23.9%) and plant extraction yield (37.1%) collectively contributed to 61% of bioactivity variation in P. orientalis. Among the six plant fractions, ethyl acetate fraction exhibited relatively high anti-inflammatory, anti-diabetic, antioxidant and anti-glycation potential while the non-toxic methanolic and aqueous fractions displayed optimal hyaluronidase and lipoxygenase inhibitory activities, respectively. The current study has identified semi-polar ethyl acetate fraction of P. orientalis as a good alternative source of bioactive compounds for future pharmaceutical product development.
Collapse
|
14
|
Decrease of Hyaluronidase Activity and Suppression of Mouse CD4+ T Lymphocyte Activation by Tomato Juice Saponin Esculeoside B, and Its Sapogenol Esculeogenin B. J Pers Med 2022; 12:jpm12040579. [PMID: 35455695 PMCID: PMC9025294 DOI: 10.3390/jpm12040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/10/2023] Open
Abstract
(1) Background: A naturally occurring glycoside, esculeoside B (EsB), has been identified as a major component in juice or canned tomato. We reported how EsB ameliorated mice experimental atopic dermatitis by a decrease in serum IgE levels. However, the underlying immunologic molecular mechanisms are unknown. (2) Methods: The present study tested the effects of EsB on hyaluronidase activity and CD4+ T lymphocyte activation using concanavalin A (ConA)-blast mouse splenocyte primary culture. (3) Results: We found that EsB and its sapogenol esculeogenin B (Esg-B) decreased hyaluronidase activity by a modified Morgan–Elson method. We demonstrated that EsB/Esg-B dose-dependently suppressed T-lymphoproliferation using CFSE-labeled flow-cytometry and water-soluble tetrazolium (WST) assay. Using ELISA and q-PCR methods, EsB/Esg-B suppressed the cytokine secretion and mRNA expression of Th2-relevant IL-4 and Th1-relevant IFN-γ. Moreover, both EsB/Esg-B showed a reduction in IL-10 secretion, but only Esg-B decreased IL-2 secretion. (4) Conclusions: Our study is the first to demonstrate how EsB/Esg-B inhibit hyaluronidase activity and reduce CD4+ T-lymphocyte activation via a reduction in Th2-lymphocyte activity by modulation of Th2/Th1/Treg subunits differentiation.
Collapse
|
15
|
Zhang Z, Zhang D, Qiu B, Cao W, Liu Y, Liu Q, Li X. Icebreaker-inspired Janus nanomotors to combat barriers in the delivery of chemotherapeutic agents. NANOSCALE 2021; 13:6545-6557. [PMID: 33885534 DOI: 10.1039/d0nr08853f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cancer chemotherapy remains challenging to pass through various biological and pathological barriers such as blood circulation, tumor infiltration and cellular uptake before the intracellular release of antineoplastic agents. Herein, icebreaker-inspired Janus nanomotors (JMs) are developed to address these transportation barriers. Janus nanorods (JRs) are constructed via seed-defined growth of mesoporous silica nanoparticles on doxorubicin (DOX)-loaded hydroxyapatite (HAp) nanorods. One side of JRs is grafted with urease as the motion power via catalysis of physiologically existed urea, and hyaluronidase (HAase) is on the other side to digest the viscous extracellular matrices (ECM) of tumor tissues. The rod-like feature of JMs prolongs the blood circulation, and the self-propelling force and instantaneous digestion of hyaluronic acid along the moving paths promote extravasation across blood vessels and penetration in tumor mass, leading to 2-fold higher drug levels in tumors after JM administration than those with JRs. The digestion of ECM in the diffusion paths is more effective to enhance drug retention and diffusion in tumors compared with enzyme-mediated motion. The ECM digestion and motion capabilities of JMs show no influence on the endocytosis mechanism, but lead to over 3-fold higher cellular uptake than those of pristine JRs. The JM treatment promotes therapeutic efficacy in terms of survival prolongation, tumor growth inhibition and cell apoptosis induction and causes no tumor metastasis to lungs with normal alveolar spaces. Thus, the self-driven motion and instantaneous clearance of diffusion routes demonstrate a feasible strategy to combat a series of biological barriers in the delivery of chemotherapeutic agents in favor of antitumor efficacy.
Collapse
Affiliation(s)
- Zhanlin Zhang
- School of Life Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | | | | | | | | | | | | |
Collapse
|
16
|
Rosa GP, Palmeira A, Resende DISP, Almeida IF, Kane-Pagès A, Barreto MC, Sousa E, Pinto MMM. Xanthones for melanogenesis inhibition: Molecular docking and QSAR studies to understand their anti-tyrosinase activity. Bioorg Med Chem 2020; 29:115873. [PMID: 33242700 DOI: 10.1016/j.bmc.2020.115873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
The human skin is constantly exposed to external factors that affect its integrity, UV radiation being one of the main stress factors. The repeated exposure to this radiation leads to increased production of Reactive Oxygen Species (ROS) which activate a series of processes involved in photoaging. Excessive UV exposure also exacerbates melanin production leading to a variety of pigmentation disorders. Xanthones are reported to exhibit properties that prevent deleterious effects of UV exposure and high levels of ROS in the organism, so in this work a wide library of xanthones with different patterns of substitution was synthesized and tested for their inhibitory activity against the skin enzymes tyrosinase, elastase, collagenase and hyaluronidase, many of which were evaluated for the first time. Most of the compounds were tyrosinase inhibitors, with the best one (xanthone 27) presenting an IC50 of 1.9 µM, which is approximately 6 times lower than the IC50 of the positive control kojic acid. Concerning the other enzymes, only one compound presented IC50 lower than 150 µM in elastase inhibition (xanthone 14 = 91.8 µM) and none in collagenase and hyaluronidase inhibition. A QSAR model for tyrosinase inhibitory activity was built using six molecular descriptors, with a partial negative surface area descriptor and the relative number of oxygen atoms being positively contributing to the tyrosinase inhibitory activity. Docking using AutoDock Vina shows that all the tested compounds have more affinity to mushroom tyrosinase than kojic acid. Docking results implied that the tyrosinase inhibitory mechanisms of xanthonic derivatives are attributed to an allosteric interaction. Taken together, these data suggest that xanthones might be useful scaffolds for the development of new and promising candidates for the treatment of pigmentation-related disorders and for skin whitening cosmetic products.
Collapse
Affiliation(s)
- G P Rosa
- cE3c-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, 9501-801 Ponta Delgada, Portugal; Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9501-801 Ponta Delgada, Portugal
| | - A Palmeira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - D I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - I F Almeida
- UCIBIO/REQUIMTE, MedTec-Laboratório de Tecnologia Farmacêutica, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - A Kane-Pagès
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9501-801 Ponta Delgada, Portugal
| | - M C Barreto
- cE3c-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, 9501-801 Ponta Delgada, Portugal; Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9501-801 Ponta Delgada, Portugal.
| | - E Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - M M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
17
|
Pharmacological and Cosmeceutical Potential of Seaweed Beach-Casts of Macaronesia. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Seaweed beach-casts are a seasonal phenomenon that regularly deposits tons of algae biomass on beaches, which are usually disposed of in landfills. The present work aimed to contribute to the valorization of this biomass by studying bioactivities that reveal its potential in the pharmaceutical and/or cosmeceutical industries. Methanol and ethanol extracts and fractions from 15 beach-casts biomass were tested for a range of bioactivities. Eight of the most active samples exhibit IC50 values between 11.38 µg/mL and 19.28 µg/mL and selectivity indexes higher than 3.8, against NCI-H1299 (lung cancer) and T47D (breast cancer). Concerning antiaging potential, all the extracts tested presented UV protection, with SPF values above 30, like the standard sunscreen. Regarding aging-related enzymes, 24 samples were tyrosinase inhibitors exhibiting IC50 values from 9.01 µg/mL to 200.09 µg/mL. Eight extracts inhibited collagenase (IC50 < 248.76 µg/mL), two of them more actively than positive control EDTA (IC50 = 59.26 µg/mL). In addition to UV protection, the cumulative effect of antityrosinase and anticollagenase activities shown by the samples suggest that they may play a significant role in preventing skin photoaging. The results obtained demonstrate the high potential of beach-cast seaweed biomass as sources of cosmetic bioproducts with antiaging effects, and of selective cytotoxic metabolites.
Collapse
|
18
|
Efficacy, Stability, and Safety Evaluation of New Polyphenolic Xanthones Towards Identification of Bioactive Compounds to Fight Skin Photoaging. Molecules 2020; 25:molecules25122782. [PMID: 32560201 PMCID: PMC7356587 DOI: 10.3390/molecules25122782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/17/2022] Open
Abstract
Antioxidants have long been used in the cosmetic industry to prevent skin photoaging, which is mediated by oxidative stress, making the search for new antioxidant compounds highly desirable in this field. Naturally occurring xanthones are polyphenolic compounds that can be found in microorganisms, fungi, lichens, and some higher plants. This class of polyphenols has a privileged scaffold that grants them several biological activities. We have previously identified simple oxygenated xanthones as promising antioxidants and disclosed as hit, 1,2-dihydroxyxanthone (1). Herein, we synthesized and studied the potential of xanthones with different polyoxygenated patterns as skin antiphotoaging ingredients. In the DPPH antioxidant assay, two newly synthesized derivatives showed IC50 values in the same range as ascorbic acid. The synthesized xanthones were discovered to be excellent tyrosinase inhibitors and weak to moderate collagenase and elastase inhibitors but no activity was revealed against hyaluronidase. Their metal-chelating effect (FeCl3 and CuCl2) as well as their stability at different pH values were characterized to understand their potential to be used as future cosmetic active agents. Among the synthesized polyoxygenated xanthones, 1,2-dihydroxyxanthone (1) was reinforced as the most promising, exhibiting a dual ability to protect the skin against UV damage by combining antioxidant/metal-chelating properties with UV-filter capacity and revealed to be more stable in the pH range that is close to the pH of the skin. Lastly, the phototoxicity of 1,2-dihydroxyxanthone (1) was evaluated in a human keratinocyte cell line and no phototoxicity was observed in the concentration range tested.
Collapse
|
19
|
Domínguez R, Gullón P, Pateiro M, Munekata PES, Zhang W, Lorenzo JM. Tomato as Potential Source of Natural Additives for Meat Industry. A Review. Antioxidants (Basel) 2020; 9:antiox9010073. [PMID: 31952111 PMCID: PMC7022261 DOI: 10.3390/antiox9010073] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/13/2022] Open
Abstract
Tomato industry produces huge amounts of by-products that represent an environmental and economic problem. However, these by-products contain multiple bioactive compounds, which would make them a renewable source for obtaining natural antioxidants and colourants (carotenoids). This is in line with the preferences of the current consumer who demands more natural and healthy products. However, the lipophilic character of carotenoids means that their extraction must be carried out using toxic organic solvents. To overcome environmental and health problems of organic solvents, the application of supercritical fluid extraction (SFE) for the extraction of lipophilic compounds such as lycopene was used successfully, achieving yields similar to those obtained with conventional techniques. Nonetheless, the extraction conditions must be carefully selected, to obtain high yields and at the same time maintain a high antioxidant capacity. On the other hand, the use of tomato and tomato extracts as natural additives in meat products are reduced in comparison with other natural antioxidant/colourant extracts. However, different researches conclude that the use of tomato improved nutritional quality, reduced lipid oxidation and increased stability during the shelf-life period of meat products, while retaining or increasing sensory properties and overall acceptability, which converts tomato by-products into a promising source of natural additives.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (P.G.); (M.P.); (P.E.S.M.)
| | - Patricia Gullón
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (P.G.); (M.P.); (P.E.S.M.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (P.G.); (M.P.); (P.E.S.M.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (P.G.); (M.P.); (P.E.S.M.)
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (P.G.); (M.P.); (P.E.S.M.)
- Correspondence: ; Tel.: +34-988-548-277; Fax: +34-988-548-276
| |
Collapse
|
20
|
Zhou JR, Kimura S, Nohara T, Yokomizo K. Competitive Inhibition of Mammalian Hyaluronidase by Tomato Saponin, Esculeoside A. Nat Prod Commun 2018; 13. [DOI: 10.1177/1934578x1801301112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Esculeoside A, a glycoside of spirosolane-type, is identified as a major component in ripe tomato fruits. Our previous study showed that esculeoside A inhibited hyaluronidase activity in vitro and ameliorated experimental dermatitis in vivo. The aim of this present study is to investigate the inhibition mode on mammalian hyaluronidase by esculeoside A. Measured by a modified Morgan-Elson method, the present kinetic analysis of the hydrolysis reaction using hyaluronic acid revealed that no significant difference was observed in velocity maximum Vmax, and Michaelis-Menten constant Km was shown as 0.74 mM in the absence of esculeoside A, was increased as 1.32 and 1.98 mM with 3 and 30 μM of esculeoside A, respectively. Thus suggested that the inhibition mode on hyaluronidase by esculeoside A was competitive. This competitive inhibition on hyaluronidase activity may become valuable in the amelioration of mice experimental dermatitis by esculeoside A.
Collapse
Affiliation(s)
- Jian-Rong Zhou
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Souta Kimura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Toshihiro Nohara
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kazumi Yokomizo
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| |
Collapse
|