1
|
Butowski CF, Dixit Y, Reis MM, Mu C. Metatranscriptomics for Understanding the Microbiome in Food and Nutrition Science. Metabolites 2025; 15:185. [PMID: 40137150 PMCID: PMC11943699 DOI: 10.3390/metabo15030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Microbiome science has greatly expanded our understanding of the diverse composition and function of gut microorganisms over the past decades. With its rich microbial composition, the microbiome hosts numerous functionalities essential for metabolizing food ingredients and nutrients, resulting in the production of active metabolites that affect food fermentation or gut health. Most of these processes are mediated by microbial enzymes such as carbohydrate-active enzymes and amino acid metabolism enzymes. Metatranscriptomics enables the capture of active transcripts within the microbiome, providing invaluable functional insights into metabolic activities. Given the inter-kingdom complexity of the microbiome, metatranscriptomics could further elucidate the activities of fungi, archaea, and bacteriophages in the microbial ecosystem. Despite its potential, the application of metatranscriptomics in food and nutrition sciences remains limited but is growing. This review highlights the latest advances in food science (e.g., flavour formation and food enzymology) and nutrition science (e.g., dietary fibres, proteins, minerals, and probiotics), emphasizing the integration of metatranscriptomics with other technologies to address key research questions. Ultimately, metatranscriptomics represents a powerful tool for uncovering the microbiome activity, particularly in relation to active metabolic processes.
Collapse
|
2
|
Qiao Y, Kong L, Shen M, Sun Y, Wang S, Gao Y, Xue J, Jiang Q, Cheng D, Liu Y. A baroduric immobilized composite material promoting remediation of oil-polluted sediment at typical deep-sea condition: The performances and potential mechanisms. ENVIRONMENTAL RESEARCH 2025; 264:120299. [PMID: 39510235 DOI: 10.1016/j.envres.2024.120299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Contriving immobilized bioreagent is of great significance to enhance bioremediation of marine oil pollution. However, there remains a notable scarcity of correlational study conducted at deep sea condition. Herein, we first developed a baroduric microsphere encasing biotic and chemical materials to remediate oil-contaminated sediments at deep-sea microcosm. Total oil degradation efficiency of microsphere-treated group reached 71% within a month, representing an approximate 35% increase compared to natural remediation. Absorption and biodegradation by microsphere provided a comparable contribution to oil elimination. Together with scanning electron microscope observation, the physical mechanism was that the reticulate structure of microsphere surface facilitating oil adsorption and bacteria attachment. Via metabarcoding analysis for meta and metabolically-active microbes, we demonstrated the primary working center was located at the microsphere. Proteobacteria, Firmicutes, Bacteroidota and Desulfobacterota were the key activated bacteria. More importantly, we revealed the ecological mechanisms were associated with the following aspects: 1) the addition of microsphere significantly improved the metabolic activity of bacteria (particularly including several oil-degrading taxa); 2) the microspheres enhanced ecological stability and microbial functional diversification during bioremediation; 3) expressing activity of pathways involving oil component degradation, biosurfactant production, biofilm architecture, biogeochemical and energy cycling all were observed to be up-regulated in microsphere-treated samples. Altogether, our results provide important theoretical guidance and data support on application of immobilization technology in removing in-situ oil pollution of deep-sea sediment.
Collapse
Affiliation(s)
- Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Lingbing Kong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Mingan Shen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yudi Sun
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Shuo Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yu Gao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yuyang Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
3
|
Song X, Liao D, Zhou Y, Huang Q, Lei S, Li X. Correlation between physicochemical properties, flavor characteristics and microbial community structure in Dushan shrimp sour paste. Food Chem X 2024; 23:101543. [PMID: 39022783 PMCID: PMC11252767 DOI: 10.1016/j.fochx.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Dushan shrimp sour paste (DSSP), a traditional Guizhou condiment, and its unique flavor is determined by the fermentation microbiota. However, the relationship between the microbiota structure and its flavor remains unclear. This study identified 116 volatile flavor compounds using electronic nose and headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS) techniques, of which 19 were considered as key flavor compounds, mainly consisting of 13 esters and 1 alcohol. High-throughput sequencing technique, the bacterial community structure of nine groups of DSSPs was determined. Further analysis revealed Vagococcus, Lactococcus, and Tepidimicrobium as key bacteria involved in flavor formation. This study contributes to our understanding of the relationship between bacterial communities and the flavor formation, and provides guidance for screening starter culture that enhance the flavor of DSSP in industrial production.
Collapse
Affiliation(s)
- Xiaojuan Song
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Dan Liao
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Yan Zhou
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Shicheng Lei
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
4
|
Liu H, Huang A, Yi J, Luo M, Jiang G, Guan J, Liu S, Deng C, Luo D. Effects of Inoculation with Koji and Strain Exiguobacterium profundum FELA1 on the Taste, Flavor, and Bacterial Community of Rapidly Fermented Shrimp Paste. Foods 2024; 13:2523. [PMID: 39200450 PMCID: PMC11354096 DOI: 10.3390/foods13162523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
This study was conducted to investigate the effect of inoculation with Exiguobacterium profundum FELA1 isolated from traditional shrimp paste and koji on the taste, flavor characteristics, and bacterial community of rapidly fermented shrimp paste. E-nose and e-tongue results showed higher levels of alcohols, aldehydes, and ketones, enhanced umami and richness, and reduced bitterness and astringency in samples of shrimp paste inoculated with fermentation (p < 0.05). Eighty-two volatile compounds were determined using headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPEM-GC-MS). The contents of 3-methyl-1-butanol, phenylethanol, isovaleraldehyde, and 2-nonanone in the inoculated samples were significantly increased (p < 0.05), resulting in pleasant odors such as almond, floral, and fruity. High-throughput sequencing results showed that the addition of koji and FELA1 changed the composition and abundance of bacteria and reduced the abundance of harmful bacteria. Spearman's correlation coefficient indicated that the alcohols, aldehydes, and ketones of the inoculated fermented samples showed a strong correlation (|ρ| > 0.6) with Virgibacillus and Exiguobacterium, which contributed to the formation of good flavor in the fast fermented shrimp paste. This study may offer new insights into the production of rapidly fermented shrimp paste with better taste and flavor.
Collapse
Affiliation(s)
- Huanming Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (A.H.); (M.L.); (S.L.); (C.D.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China; (G.J.); (J.G.)
| | - Ailian Huang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (A.H.); (M.L.); (S.L.); (C.D.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China; (G.J.); (J.G.)
| | - Jiawen Yi
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China;
| | - Meiyan Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (A.H.); (M.L.); (S.L.); (C.D.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China; (G.J.); (J.G.)
| | - Guili Jiang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China; (G.J.); (J.G.)
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China;
| | - Jingjing Guan
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China; (G.J.); (J.G.)
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China;
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (A.H.); (M.L.); (S.L.); (C.D.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China; (G.J.); (J.G.)
| | - Chujin Deng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (A.H.); (M.L.); (S.L.); (C.D.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China; (G.J.); (J.G.)
| | - Donghui Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (A.H.); (M.L.); (S.L.); (C.D.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China; (G.J.); (J.G.)
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China;
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China
| |
Collapse
|
5
|
Li B, Yin Y, Zhou X, Feng L, Liu Y, Du Z, Tian Y, Zhang L. Effect of allelochemicals sustained-release microspheres on the ingestion, incorporation, and digestion abilities of Daphnia magna Straus. J Environ Sci (China) 2023; 124:205-214. [PMID: 36182132 DOI: 10.1016/j.jes.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/16/2023]
Abstract
Allelochemicals sustained-release microspheres (ACs-SMs) exhibited great inhibition effect on algae, however, few studies have focused on ACs-SMs toxicity on invertebrate. In this study, the effects of single high-concentration ACs (15 mg/L, SH-ACs), repeated low-concentration ACs (3 × 5 mg/L, RL-ACs) and ACs-SMs containing 15 mg/L ACs exposure on the ingestion, incorporation, and digestion of Daphnia magna Straus (DS) were investigated by stable isotope 15N labeling method. Meanwhile, the diversity and abundance of microflora in DS guts were determined by 16S rRNA genes and cloning methods. The results showed that SH-ACs exposure caused 50% and 33.3% death rates for newborn and adult DS, while RL-ACs exposure caused 10% death rate for newborn DS and no obvious effect on the activity of adult DS. And ACs-SMs exposure did not diminish the motility of both newborn and adult DS, indicating the lower acute toxicity of ACs-SMs. Furthermore, SH-ACs inhibited the ingestion (-6.45%), incorporation (-47.1%) and digestion (-53.8%) abilities of DS and reduced the microbial abundance (-27.7%) in DS guts. Compared with SH-ACs, RL-ACs showed relatively low impact on the ingestion (-3.23%), incorporation (-5.89%) and digestion (-23.9%) abilities of DS. Interestingly, ACs-SMs enhanced the ingestion (+9.68%), incorporation (+52.9%) and digestion (+51.3%) abilities of DS and increased the microbial abundance (+10.7%) in DS guts. Overall ACs and ACs-SMs reduced the diversity of microflora in DS guts. In conclusion, ACs-SMs can release ACs sustainably and prolong the sustained release time, which not only effectively reduce the toxicity of ACs, but also had positive effects on DS.
Collapse
Affiliation(s)
- Benhang Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing 100083, China
| | - Yijun Yin
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing 100083, China
| | - Xiaohong Zhou
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing 100083, China
| | - Yajun Tian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Funneliformis mosseae Inoculation Enhances Cucurbita pepo L. Plant Growth and Fruit Yield by Reshaping Rhizosphere Microbial Community Structure. DIVERSITY 2022. [DOI: 10.3390/d14110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are essential components of the soil microbiome that can facilitate plant growth and enhance abiotic and biotic stress resistance. However, the mechanisms via which AMF inoculation influences Cucurbita pepo L. plant growth and fruit yield remain unclear. Here, we conducted pot experiments to investigate bacterial and fungal community structure in the rhizosphere of C. pepo plants inoculated with Funneliformis mosseae (Nicoll. & Gerd.) Gerd. & Trappe based on 16S ribosomal RNA and internal transcribed spacer gene sequencing. The α-diversity of bacteria increased significantly following F. mosseae inoculation, whereas the α-diversity of fungi exhibited an opposite trend (p < 0.01). The relative abundances of major bacterial phyla, Actinobacteria, Acidobacteria, and Chloroflexi, together with the fungal phylum Ascomycota, were all higher in inoculated samples than in uninoculated controls. F. mosseae inoculation led to remarkable enrichment of potentially beneficial taxa (e.g., Streptomyces, Sphingomonas, Lysobacter, and Trichoderma), in stark contrast to depletion of fungal pathogens (e.g., Botryotrichum, Acremonium, Fusarium, and Plectosphaerella). Pathways related to amino acid metabolism and antibiotic biosynthesis were upregulated by F. mosseae inoculation, whereas pathways involved in infectious diseases were downregulated. The results suggest that F. mosseae inoculation reshapes the rhizosphere microbiome, thereby augmenting C. pepo plant growth and fruit yield.
Collapse
|
7
|
Liu Z, Fu B, Duan X, Lv W, Kang S, Zhou M, Wang C, Li D, Xu N. Effects of cell-cell interactions between A. oryzae and Z. rouxii on morphology and secondary metabolites. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Lu Y, Teo JN, Liu SQ. Fermented shellfish condiments: A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:4447-4477. [PMID: 36038528 DOI: 10.1111/1541-4337.13024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 01/28/2023]
Abstract
Fermented shellfish condiments are globally consumed especially among Asian countries. Condiments, commonly used as flavor enhancers, have unique sensory characteristics and are associated with umami and meaty aroma. The main reactions that occur during fermentation of shellfish include proteolysis by endogenous enzymes and microbial activities to produce peptides and amino acids. The actions of proteolytic enzymes and microorganisms (predominantly bacteria) are found to be largely responsible for the formation of taste and aroma compounds. This review elaborates different aspects of shellfish fermentation including classification, process, substrates, microbiota, changes in both physicochemical and biochemical components, alterations in nutritional composition, flavor characteristics and sensory profiles, and biological activities and their undesirable impacts on health. The characteristics of traditional shellfish production such as long duration and high salt concentration not only limit nutritional value but also inhibit the formation of toxic biogenic amines. In addition, this review article also covers novel bioprocesses such as low salt fermentation and use of novel starter cultures and/or novel enzymes to accelerate fermentation and produce shellfish condiments that are of better quality and safer for consumption. Practical Application: The review paper summarized the comprehensive information on shellfish fermentation to provide alternative strategies to produce shellfish comdiments that are of better quality and safer for consumption.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Jun Ning Teo
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Shao Quan Liu
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
9
|
Yang Q, Yao H, Liu S, Mao J. Interaction and Application of Molds and Yeasts in Chinese Fermented Foods. Front Microbiol 2022; 12:664850. [PMID: 35496819 PMCID: PMC9041164 DOI: 10.3389/fmicb.2021.664850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
Abstract
Fermentation is an ancient food preservation and processing technology with a long history of thousands of years, that is still practiced all over the world. Fermented foods are usually defined as foods or beverages made by controlling the growth of microorganisms and the transformation of raw and auxiliary food components, which provide the human body with many beneficial nutrients or health factors. As fungus widely used in traditional Chinese fermented foods, molds and yeasts play an irreplaceable role in the formation of flavor substances and the production of functional components in fermented foods. The research progress of molds and yeasts in traditional Chinese fermented foods from traditional to modern is reviewed, including the research on the diversity, and population structure of molds and yeasts in fermented foods. The interaction between fermenting mold and yeast and the latest research results and application development prospects of related industries were discussed.
Collapse
Affiliation(s)
- Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China.,National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China.,National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, China
| |
Collapse
|
10
|
Wang Y, Wu Y, Li C, Zhao Y, Xiang H, Li L, Yang X, Chen S, Sun L, Qi B. Genome-Resolved Metaproteomic Analysis of Microbiota and Metabolic Pathways Involved in Taste Formation During Chinese Traditional Fish Sauce (Yu-lu) Fermentation. Front Nutr 2022; 9:851895. [PMID: 35464017 PMCID: PMC9021917 DOI: 10.3389/fnut.2022.851895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Complex microbial metabolism is key to taste formation in high-quality fish sauce during fermentation. To guide quality supervision and targeted regulation, we analyzed the function of microbial flora during fermentation based on a previously developed metagenomic database. The abundance of most identified genes involved in metabolic functions showed an upward trend in abundance during fermentation. In total, 571 proteins extracted from fish sauce at different fermentation stages were identified. These proteins were mainly derived from Halanaerobium, Psychrobacter, Photobacterium, and Tetragenococcus. Functional annotation revealed 15 pathways related to amino acid metabolism, including alanine, aspartate, glutamate, and histidine metabolism; lysine degradation; and arginine biosynthesis. This study demonstrated the approaches to identify microbiota functions and metabolic pathways, thereby providing a theoretical basis for taste formation mechanisms during traditional fish sauce fermentation.
Collapse
Affiliation(s)
- Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Chunsheng Li,
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Leilei Sun
- College of Life Science, Yantai University, Yantai, China
| | - Bo Qi
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
11
|
Variations in the physicochemical properties and bacterial community composition during fermentation of low-salt shrimp paste. Food Res Int 2022; 154:111034. [DOI: 10.1016/j.foodres.2022.111034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
|
12
|
Shim K, Mok JS, Jeong Y, Park K, Jang MS. Effect of organic acids on the formation of biogenic amines in fermented anchovy sauce comprising raw anchovy materials with different levels of freshness. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:703-714. [PMID: 35185186 PMCID: PMC8814216 DOI: 10.1007/s13197-021-05065-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/23/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
We investigated the effect of different levels of organic acids on the formation of biogenic amines in anchovy fish sauce. Fish sauce samples were prepared with fresh anchovies used immediately after being caught (F), and anchovies left at ambient temperature for 4 h (4 h), 18 h (18 h), or 24 h (24 h). Anchovies from each of the four groups were mixed with salt at a 4:1 ratio and then fermented at ambient temperature for varying periods of time. The F and 4 h anchovies contained higher levels of acetic acid, succinic acid, and lactic acid, and the levels increased during the fermentation process. The histamine content of the fish sauce samples prepared using F anchovies ranged from 44.0 to 9.2 mg/kg at 1 and 24 months of fermentation. The histamine content of fish sauce samples prepared using 4 h, 18 h, and 24 h anchovies was 111.5-37.0 mg/kg (4 h), 780.1-560.3 mg/kg (18 h), and 880.6-675.7 mg/kg (24 h). Our findings indicated that the histamine and other biogenic amine levels were closely associated with the degree of freshness of the raw anchovy material. These findings indicate that lower pH levels resulting from organic acids generated by the fresh raw material can effectively inhibit histamine formation.
Collapse
Affiliation(s)
- Kilbo Shim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513 Republic of Korea
| | - Jong Soo Mok
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, 46083 Republic of Korea
| | - Yeongyeom Jeong
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, 46083 Republic of Korea
| | - Kunbawui Park
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, 46083 Republic of Korea
| | - Mi-Soon Jang
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, 46083 Republic of Korea
| |
Collapse
|
13
|
Che H, Yu J, Sun J, Lu K, Xie W. Bacterial composition changes and volatile compounds during the fermentation of shrimp paste: Dynamic changes of microbial communities and flavor composition. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Boonprab K. Rice flour powder carrying mixed starter culture of Lactiplantibacillus plantarum KU-LM173 and Pediococcus acidilactici KU-LM145 for fermented mussel, Perna viridis Linnaeus 1758. J Appl Microbiol 2021; 132:1197-1209. [PMID: 34464988 DOI: 10.1111/jam.15270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/11/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022]
Abstract
AIMS To develop a dried rice flour powder (DP) formulation to contain a lactic acid bacterial starter culture for fermenting mussel meat (FM). METHODS AND RESULTS Lactiplantibacillus plantarum KU-LM173 (LP), Enterococcus hirae KU-LM174 and Pediococcus acidilactici KU-LM145 (PA) were selected from commercial FMs and identified to have high acid and protease production. Mixed culture between LP, for high acid production, and PA, for the flavour, was the best for DP and had greater organoleptic properties than a single starter fermentation. The best ratio of DP for production was 1% of the mussel weight, while the highest numeric scoring of the organoleptic test between 3% and 6%. The starter culture fermentation accelerated over the natural (wild) fermentation and ended at day 3. The shelf life of the product was at least 30 days at 30-35°C with no pathogens detected. The shelf life of DP at 4°C was 10 weeks. CONCLUSIONS DP with the best strains and long shelf life promoted safety of FM and reduced the processing time. High consumer acceptance, protease and acid production and flavour were unique product characteristics. SIGNIFICANCE AND IMPACT OF STUDY Accelerated commercial FMs with effective DP formulation for the industrial sector may be plausible.
Collapse
Affiliation(s)
- Kangsadan Boonprab
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
15
|
Li W, Lu H, He Z, Sang Y, Sun J. Quality characteristics and bacterial community of a Chinese salt-fermented shrimp paste. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Metatranscriptome-based investigation of flavor-producing core microbiota in different fermentation stages of dajiang, a traditional fermented soybean paste of Northeast China. Food Chem 2020; 343:128509. [PMID: 33199116 DOI: 10.1016/j.foodchem.2020.128509] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
Dajiang, or naturally fermented soybean paste, has a unique flavor that is influenced by the resident microflora. However, the association between flavor and the core microbiota is unclear. Recent advances in RNA sequencing have identified genes that are actively expressed in complex microbial communities. To this end, we analyzed the time-dependent changes in the microbiota and the metabolite profiles of Dajiang using metatranscriptome sequencing, HS-SPME-GC-MS and amino acid analysis identified 10 volatile compounds that contribute to the development of soybean paste flavor. Further analysis of the correlation between the active microorganisms and the physicochemical characteristics and flavor substances in soybean paste indicated that Lactobacillus and Tetragenococcus were the core genera affecting chromaticity and flavor. These microorganisms produce enzymes that catalyze a series of metabolic pathways that generate flavor substances. Our findings provide new insights into the role of the microbiota in the development of flavor in fermented foods.
Collapse
|
17
|
Hu X, Wang K, Chen M, Fan J, Han S, Hou J, Chi L, Liu Y, Wei T. Profiling the composition and metabolic activities of microbial community in fermented grain for the Chinese strong-flavor Baijiu production by using the metatranscriptome, high-throughput 16S rRNA and ITS gene sequencings. Food Res Int 2020; 138:109765. [PMID: 33292946 DOI: 10.1016/j.foodres.2020.109765] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
Abstract
The composition and function of microbial community analyzed by sequencing 16S rRNA/ITS gene amplicons (DNA level) were compared with those derived by using metatranscriptome sequencing (RNA level) from the same fermented grain (FG) sample, which obtained from the key fermentation time point during the Chinese strong-flavor Baijiu (CSFB) production process. The results showed that the fungi with the highest relative abundance was Saccharomyces (RNA: 83.15%, DNA: 89.74%) at the two levels. The most abundant bacterium was Kroppenstedtia (37.09%) detected only at the DNA level, while it was Streptococcus (93.75%) at the RNA level, indicating that the structures of prokaryotic communities at the two levels were quite different. For the microbial functions, a large proportion of genes of FG microorganisms related to "Metabolism" function were observed both by using PICRUSt2 analysis (DNA level) and metatranscriptome analysis (RNA level), and especially enriched in "Carbohydrate metabolism". While the proportions of genes involved in some functions were different, such as "Replication and repair", "Membrane transport" and "Environmental adaptation", with high proportions of genes involved in at the DNA level when compared those at the RNA level. Furthermore, Saccharomyces cerevisiae was the most active microbe in the top15 pathways, followed by Torulaspora dellbrueckii. During the conversion of starch to ethanol, S. cerevisiae showed high metabolic capacity, and cooperated with other microorganisms to convert pyruvate to acetaldehyde directly or through acetyl-CoA and acetate, and then acetaldehyde to ethanol. As far as we know, this is a first study to profile the microbial community and metabolic features in FG of CSFB by using a combination of DNA- and RNA- based technologies. Our findings could provide useful insights for further understanding the active microbial function, metabolic pathways and fermentation mechanism in the FG ecosystem during CSFB fermentation.
Collapse
Affiliation(s)
- Xiaolong Hu
- College of Food and Bio-engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; Postdoctoral Research & Development Base, Yangshao Distillery Co., Ltd., Mianchi 472400, China; College of Life Sciences, Institute of Microbial Engineering, Henan University, Kaifeng 475004, China.
| | - Kangli Wang
- College of Food and Bio-engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Mengen Chen
- Postdoctoral Research & Development Base, Yangshao Distillery Co., Ltd., Mianchi 472400, China
| | - Jianhui Fan
- Postdoctoral Research & Development Base, Yangshao Distillery Co., Ltd., Mianchi 472400, China
| | - Suna Han
- Postdoctoral Research & Development Base, Yangshao Distillery Co., Ltd., Mianchi 472400, China
| | - Jianguang Hou
- Postdoctoral Research & Development Base, Yangshao Distillery Co., Ltd., Mianchi 472400, China
| | - Lei Chi
- College of Food and Bio-engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Yupeng Liu
- College of Life Sciences, Institute of Microbial Engineering, Henan University, Kaifeng 475004, China
| | - Tao Wei
- College of Food and Bio-engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China.
| |
Collapse
|
18
|
Min S, Niu C, Shan W, Sun W, Liu C, Zheng F, Wang J, Li Q. Composition, source, and influencing factors of white spots formation in soybean paste. J Food Sci 2020; 85:3113-3123. [PMID: 32954501 DOI: 10.1111/1750-3841.15457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022]
Abstract
White spots are commonly found in bean-based fermented food, which will significantly lower the product quality. This study aimed to analyze the composition of white spots and further reveal the source and influencing factors of white spots in bean-based fermented food using soybean paste as study model. The results showed that white spots were mainly composed of 40.96% free tyrosine and 37.94% tyrosine in combination form. During soybean paste fermentation, tyrosine was found to be produced by the actions of proteolytic enzymes secreted by Aspergillus oryzae 3.042 instead of the microbial metabolism and the excessive accumulation of tyrosine in soybean paste led to the formation of white spots. Among all influencing factors, high temperature treatment favored the formation of white spots. The existence of soy peptone and phenylalanine would postpone the precipitation of tyrosine while promoting the aggregation of the tyrosine precipitation. Field emission scanning electron microscope analysis showed that tyrosine would accumulate around the soybean protein particles and treatment at 120 °C would disrupt the structure of tyrosine-protein complex. Based on the above results, we proposed that treatment of soybean paste at temperature lower than 80 °C was the current practically applicable method to control the formation of white spots in soybean paste. PRACTICAL APPLICATION: This study developed a new idea to understand the composition and formation of white spots in soybean paste, which would provide guidance for prevention and control of white spots during the production of soybean paste for manufacturers and researchers.
Collapse
Affiliation(s)
- Shihao Min
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wanxiang Shan
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Weikang Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
19
|
Phewpan A, Phuwaprisirisan P, Takahashi H, Ohshima C, Ngamchuachit P, Techaruvichit P, Dirndorfer S, Dawid C, Hofmann T, Keeratipibul S. Investigation of Kokumi Substances and Bacteria in Thai Fermented Freshwater Fish (Pla-ra). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10345-10351. [PMID: 31757121 DOI: 10.1021/acs.jafc.9b06107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A 16S rRNA next-generation sequencing technique was applied to investigate the microbial diversity and liquid chromatography-tandem mass spectrometry was used to identify glutamyl peptide profiles of 10 Thai fermented freshwater fish (Pla-ra) samples. A total of 12 genera of bacteria were able to be detected, with Tetragenococcus spp., Staphylococcus spp., and Lactobacillus spp. dominating. Of the 18 glutamyl peptides analyzed, 17 were found, even though the amounts detected were lower than the taste threshold. Despite this, an increase in mouthfulness sensation, reflecting kokumi activity, was clearly identified in most of the samples, which might be because of a synergistic effect of different sub-threshold compounds present in the samples. In principle component analysis, the relationship between microorganisms and glutamyl peptide generation was observed, especially between Tetragenococcus spp. and Lentibacillus spp. and the generation of γ-Glu-Val-Gly. Correlations between microbial diversity and the generation of taste enhancers were identified in this study.
Collapse
Affiliation(s)
| | | | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Chihiro Ohshima
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | | | - Punnida Techaruvichit
- Research and Development Center, Betagro Group, Klong Luang, Pathum Thani 10120, Thailand
| | - Sebastian Dirndorfer
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Straße 34, D-84354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Straße 34, D-84354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Straße 34, D-84354 Freising, Germany
| | | |
Collapse
|
20
|
Assessment of the microbial interplay during anaerobic co-digestion of wastewater sludge using common components analysis. PLoS One 2020; 15:e0232324. [PMID: 32357180 PMCID: PMC7194399 DOI: 10.1371/journal.pone.0232324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/12/2020] [Indexed: 12/29/2022] Open
Abstract
Anaerobic digestion (AD) is used to minimize solid waste while producing biogas by the action of microorganisms. To give an insight into the underlying microbial dynamics in anaerobic digesters, we investigated two different AD systems (wastewater sludge mixed with either fish or grass waste). The microbial activity was characterized by 16S RNA sequencing. 16S data is sparse and dispersed, and existent data analysis methods do not take into account this complexity nor the potential microbial interactions. In this line, we proposed a data pre-processing pipeline addressing these issues while not restricting only to the most abundant microorganisms. The data were analyzed by Common Components Analysis (CCA) to decipher the effect of substrate composition on the microorganisms. CCA results hinted the relationships between the microorganisms responding similarly to the AD physicochemical parameters. Thus, in overall, CCA allowed a better understanding of the inter-species interactions within microbial communities.
Collapse
|
21
|
Xu Y, Zang J, Regenstein JM, Xia W. Technological roles of microorganisms in fish fermentation: a review. Crit Rev Food Sci Nutr 2020; 61:1000-1012. [PMID: 32292041 DOI: 10.1080/10408398.2020.1750342] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fermentation is an important way to process and preserve fish. It not only gives the product a unique flavor and texture, but it also contributes to increased nutritional value and better functional properties. The production of fermented fish relies on naturally occurring enzymes (in the muscle or the intestinal tract) as well as microbial metabolic activity. This review focuses on the role of microorganisms on texture change, flavor formation, and biogenic amines accumulation in fermented fish. In addition, the production conditions and the major biochemical changes in fermented fish products are also introduced to help understand the factors influencing the quality of fermented fish. Moreover, prospects for further research of fermented fish are discussed.
Collapse
Affiliation(s)
- Yanshun Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinhong Zang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
22
|
Niu C, Xue Y, Jia Y, Xu T, Liu C, Zheng F, Wang J, Li Q. Analysis of bacterial community dynamics in the manufacture process of lajiaojiang (red chili paste). Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Bacterial community succession and volatile compound changes during fermentation of shrimp paste from Chinese Jinzhou region. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108998] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Tofalo R, Fusco V, Böhnlein C, Kabisch J, Logrieco AF, Habermann D, Cho GS, Benomar N, Abriouel H, Schmidt-Heydt M, Neve H, Bockelmann W, Franz CMAP. The life and times of yeasts in traditional food fermentations. Crit Rev Food Sci Nutr 2019; 60:3103-3132. [PMID: 31656083 DOI: 10.1080/10408398.2019.1677553] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Yeasts are eukaryotic microorganisms which have a long history in the biotechnology of food production, as they have been used since centuries in bread-making or in the production of alcoholic beverages such as wines or beers. Relative to this importance, a lot of research has been devoted to the study of yeasts involved in making these important products. The role of yeasts in other fermentations in association with other microorganisms - mainly lactic acid bacteria - has been relatively less studied, and often it is not clear if yeasts occurring in such fermentations are contaminants with no role in the fermentation, spoilage microorganisms or whether they actually serve a technological or functional purpose. Some knowledge is available for yeasts used as starter cultures in fermented raw sausages or in the production of acid curd cheeses. This review aimed to summarize the current knowledge on the taxonomy, the presence and potential functional or technological roles of yeasts in traditional fermented plant, dairy, fish and meat fermentations.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Christina Böhnlein
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Diana Habermann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Markus Schmidt-Heydt
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Wilhelm Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| |
Collapse
|
25
|
Du F, Zhang X, Gu H, Song J, Gao X. Dynamic Changes in the Bacterial Community During the Fermentation of Traditional Chinese Fish Sauce (TCFS) and Their Correlation with TCFS Quality. Microorganisms 2019; 7:E371. [PMID: 31546947 PMCID: PMC6780869 DOI: 10.3390/microorganisms7090371] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/29/2022] Open
Abstract
This study revealed for the first time the dynamic changes of the bacterial community during the fermentation of traditional Chinese fish sauce (TCFS) using high-throughput sequencing. In the early phase of TCFS fermentation, Shewanella (approximately 90%) within Proteobacteria was the dominant bacteria. Then, Halanaerobium (3%-86%) within Firmicutes rapidly replaced Shewanella as the dominant genus until the 12th month. Lactococcus (3.31%) and Bacillus (45.56%) belonging to Firmicutes were detected abundantly in the 3rd and 9th months after fermentation, respectively. In the late phase (12-15 months), Tetragenococcus within Firmicutes replaced Halanaerobium as the most dominant bacteria (29.54%). Many other genera including Pseudomonas, Psychrobacter, Tissierella, Carnobacterium and Gallicola were abundantly present in the 15th month after fermentation. Furthermore, the relationships between the bacterial community and major functional substances of TCFS, including amino nitrogen (AAN), free amino acids (FAAs), total soluble nitrogen (TSN), and trimethylamine (TMA), were investigated by partial least squares regression (PLSR). Tetragenococcus was positively correlated with the formation of TMA, while Halanaerobium showed the opposite result, suggesting that Tetragenococcus might be a good starter for TCFS fermentation. These results contribute to our knowledge about bacterial participation in the process of TCFS fermentation and will help improve the quality of fermented seafood.
Collapse
Affiliation(s)
- Fangmin Du
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Huarong Gu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jiajia Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiangyang Gao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Xiao CG, Wu JY, Meng XH, Tang HG, Chen LH, Wu XF, Shen YJ. Study of enzymolysis technology and microwave Maillard preparation of Litopenaeus vannamei. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2018.1561522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Chao-Geng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jiang-Yan Wu
- Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Xiang-He Meng
- Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Hong-Gang Tang
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Li-Hong Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Xu-Feng Wu
- Zhejiang Yueteng Food Co., Ltd., Hangzhou, China
| | - Yue-Jun Shen
- Zhejiang Yueteng Food Co., Ltd., Hangzhou, China
| |
Collapse
|
27
|
Yao Z, Kim JA, Kim JH. Gene Cloning, Expression, and Properties of a Fibrinolytic Enzyme Secreted by Bacillus pumilus BS15 Isolated from Gul (Oyster) Jeotgal. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0029-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Mills J, Horváth K, Reynolds A, Brightwell G. Farm and abattoir sources of Carnobacterium
species and implications for lamb meat spoilage. J Appl Microbiol 2018; 125:142-147. [DOI: 10.1111/jam.13748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/14/2018] [Accepted: 02/25/2018] [Indexed: 11/29/2022]
Affiliation(s)
- J. Mills
- AgResearch Ltd, Hopkirk Research Institute; Massey University; Palmerston North New Zealand
| | - K.M. Horváth
- AgResearch Ltd, Hopkirk Research Institute; Massey University; Palmerston North New Zealand
| | - A.D. Reynolds
- AgResearch Ltd, Hopkirk Research Institute; Massey University; Palmerston North New Zealand
| | - G. Brightwell
- AgResearch Ltd, Hopkirk Research Institute; Massey University; Palmerston North New Zealand
| |
Collapse
|
29
|
Iskandar CF, Borges F, Taminiau B, Daube G, Zagorec M, Remenant B, Leisner JJ, Hansen MA, Sørensen SJ, Mangavel C, Cailliez-Grimal C, Revol-Junelles AM. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium. Front Microbiol 2017; 8:357. [PMID: 28337181 PMCID: PMC5341603 DOI: 10.3389/fmicb.2017.00357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium.
Collapse
Affiliation(s)
- Christelle F. Iskandar
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Bernard Taminiau
- Laboratory of Food Microbiology, Department of Food Science, Fundamental and Applied Research for Animal and Health, University of LiègeLiège, Belgium
| | - Georges Daube
- Laboratory of Food Microbiology, Department of Food Science, Fundamental and Applied Research for Animal and Health, University of LiègeLiège, Belgium
| | | | | | - Jørgen J. Leisner
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Martin A. Hansen
- Molecular Microbial Ecology Group, University of CopenhagenCopenhagen, Denmark
| | - Søren J. Sørensen
- Molecular Microbial Ecology Group, University of CopenhagenCopenhagen, Denmark
| | - Cécile Mangavel
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Catherine Cailliez-Grimal
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Anne-Marie Revol-Junelles
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| |
Collapse
|