1
|
Chen S, Kang J, Zhu H, Wang K, Han Z, Wang L, Liu J, Wu Y, He P, Tu Y, Li B. L-Theanine and Immunity: A Review. Molecules 2023; 28:molecules28093846. [PMID: 37175254 PMCID: PMC10179891 DOI: 10.3390/molecules28093846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
L-theanine (N-ethyl-γ-glutamine) is the main amino acid in tea leaves. It not only contributes to tea flavor but also possesses several health benefits. Compared with its sedative and calming activities, the immunomodulatory effects of L-theanine have received less attention. Clinical and epidemiological studies have shown that L-theanine reduces immunosuppression caused by strenuous exercise and prevents colds and influenza by improving immunity. Numerous cell and animal studies have proven that theanine plays an immunoregulatory role in inflammation, nerve damage, the intestinal tract, and tumors by regulating γδT lymphocyte function, glutathione (GSH) synthesis, and the secretion of cytokines and neurotransmitters. In addition, theanine can be used as an immunomodulator in animal production. This article reviews the research progress of L-theanine on immunoregulation and related mechanisms, as well as its application in poultry and animal husbandry. It is hoped that this work will be beneficial to future related research.
Collapse
Affiliation(s)
- Shuna Chen
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaxin Kang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Huanqing Zhu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Kaixi Wang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Ziyi Han
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Leyu Wang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Junsheng Liu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Puming He
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Li MY, Liu HY, Wu DT, Kenaan A, Geng F, Li HB, Gunaratne A, Li H, Gan RY. L-Theanine: A Unique Functional Amino Acid in Tea ( Camellia sinensis L.) With Multiple Health Benefits and Food Applications. Front Nutr 2022; 9:853846. [PMID: 35445053 PMCID: PMC9014247 DOI: 10.3389/fnut.2022.853846] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Tea (Camellia sinensis L.) is a very popular health drink and has attracted increasing attention in recent years due to its various bioactive substances. Among them, L-theanine, a unique free amino acid, is one of the most important substances in tea and endows tea with a special flavor. Moreover, L-theanine is also a bioactive compound with plenty of health benefits, including antioxidant, anti-inflammatory, neuroprotective, anticancer, metabolic regulatory, cardiovascular protective, liver and kidney protective, immune regulatory, and anti-obesity effects. Due to the unique characteristics and beneficial functions, L-theanine has potential applications in the development of functional foods. This review summarized the influencing factors of L-theanine content in teas, the main health benefits and related molecular mechanisms of L-theanine, and its applications in food, understanding of which can provide updated information for the further research of L-theanine.
Collapse
Affiliation(s)
- Ming-Yue Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ahmad Kenaan
- National Graphene Institute, The University of Manchester, Manchester, United Kingdom
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Anil Gunaratne
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Hang Li
- Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
3
|
Ma J, Li P, An L, Zhang T, Li G. Chemoprotective effect of theanine in 1,2-dimethylhydrazine-induced colorectal cancer in rats via suppression of inflammatory parameters. J Food Biochem 2022; 46:e14073. [PMID: 35014039 DOI: 10.1111/jfbc.14073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Colorectal cancer is considered as a major cancer among all types of cancers, especially in developed countries. The colorectal cancer has few to no symptoms and mostly the tumor is often diagnosed in the later stage of cancer. Oxidative stress and inflammatory reaction play an important role in the expansion and the progression of colorectal cancer. Theanine exhibits antioxidant and anti-inflammatory potential against various diseases. As a result of its antioxidant and anti-inflammatory nature, in this study, we estimated the protective effect of theanine against 1,2-dimethylhydrazine (DMH)-induced colorectal cancer and explored the possible mechanism. Subcutaneous injection (35 mg/kg) of DMH was used to induce colorectal cancer in rats. Rats were divided into different groups and were orally administrated with theanine (5, 10, and 20 mg/kg) for 16 weeks. Body weight, tumor size, and average tumor weight were determined at the end of the experimental study. Biochemical tests, antioxidant properties, phase I and phase II enzymes, and inflammatory mediators were estimated. The mRNA expression of p38 mitogen-activated protein kinase (p38MAPK), p53, and apoptosis was also estimated at the end of the experimental study. Theanine significantly (p < .001) increases the body weight and suppressed the average tumor size in DMH-induced colorectal cancer. Similarly, it significantly (p < .001) reduces the level of prostaglandin (PGE2 ), cyclooxygenase-2 (COX-2), and myeloperoxidase (MPO). It also decreases the oxidative stress by suppressing the level of malonaldehyde (MDA) and enhancing the level of SOD, GPx, CAT, and GR. Theanine considerably reduced tumor markers, such as lactate dehydrogenase (LDH) and carcinoembryonic antigen (CEA) and phase I and phase II enzymes in a dose-dependent manner. It also significantly (p < .001) suppressed the expression of p38-MAPK, p-53, caspase-3, caspase-8, and caspase-9 in a dose-dependent manner. Collectively, we can say that theanine exhibited the chemoprotective effect against the colorectal cancer by inhibiting the oxidative stress and inflammatory reaction. PRACTICAL APPLICATIONS: Theanine is the major amino acid phytoconstituent of green tea. It has a potent antioxidant activity and is also able to protect against various oxidative damage. In this experimental study, theanine exhibits a protective effect against colorectal cancer by suppressing the oxidative stress and inflammatory reaction. The results suggest that theanine may be used for colorectal cancer prevention and treatment.
Collapse
Affiliation(s)
- Jingjing Ma
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Peng Li
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Lipei An
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Teng Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Guodong Li
- School of Life Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Álvarez-Mercado AI, Caballeria-Casals A, Rojano-Alfonso C, Chávez-Reyes J, Micó-Carnero M, Sanchez-Gonzalez A, Casillas-Ramírez A, Gracia-Sancho J, Peralta C. Insights into Growth Factors in Liver Carcinogenesis and Regeneration: An Ongoing Debate on Minimizing Cancer Recurrence after Liver Resection. Biomedicines 2021; 9:1158. [PMID: 34572344 PMCID: PMC8470173 DOI: 10.3390/biomedicines9091158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma has become a leading cause of cancer-associated mortality throughout the world, and is of great concern. Currently used chemotherapeutic drugs in the treatment of hepatocellular carcinoma lead to severe side effects, thus underscoring the need for further research to develop novel and safer therapies. Liver resection in cancer patients is routinely performed. After partial resection, liver regeneration is a perfectly calibrated response apparently sensed by the body's required liver function. This process hinges on the effect of several growth factors, among other molecules. However, dysregulation of growth factor signals also leads to growth signaling autonomy and tumor progression, so control of growth factor expression may prevent tumor progression. This review describes the role of some of the main growth factors whose dysregulation promotes liver tumor progression, and are also key in regenerating the remaining liver following resection. We herein summarize and discuss studies focused on partial hepatectomy and liver carcinogenesis, referring to hepatocyte growth factor, insulin-like growth factor, and epidermal growth factor, as well as their suitability as targets in the treatment of hepatocellular carcinoma. Finally, and given that drugs remain one of the mainstay treatment options in liver carcinogenesis, we have reviewed the current pharmacological approaches approved for clinical use or research targeting these factors.
Collapse
Affiliation(s)
- Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Albert Caballeria-Casals
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| | - Carlos Rojano-Alfonso
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| | - Jesús Chávez-Reyes
- Facultad de Medicina e Ingeniería en Sistemas Computacionales Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico; (J.C.-R.); (A.C.-R.)
| | - Marc Micó-Carnero
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| | - Alfredo Sanchez-Gonzalez
- Teaching and Research Department, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
| | - Araní Casillas-Ramírez
- Facultad de Medicina e Ingeniería en Sistemas Computacionales Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico; (J.C.-R.); (A.C.-R.)
- Teaching and Research Department, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, 03036 Barcelona, Spain;
- Barcelona Hepatic Hemodynamic Laboratory, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Carmen Peralta
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| |
Collapse
|
5
|
Torii C, Maishi N, Kawamoto T, Morimoto M, Akiyama K, Yoshioka Y, Minami T, Tsumita T, Alam MT, Ochiya T, Hida Y, Hida K. miRNA-1246 in extracellular vesicles secreted from metastatic tumor induces drug resistance in tumor endothelial cells. Sci Rep 2021; 11:13502. [PMID: 34226586 PMCID: PMC8257582 DOI: 10.1038/s41598-021-92879-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor endothelial cells (TECs) reportedly exhibit altered phenotypes. We have demonstrated that TECs acquire drug resistance with the upregulation of P-glycoprotein (P-gp, ABCB1), contrary to traditional assumptions. Furthermore, P-gp expression was higher in TECs of highly metastatic tumors than in those of low metastatic tumors. However, the detailed mechanism of differential P-gp expression in TECs remains unclear. miRNA was identified in highly metastatic tumor extracellular vesicles (EVs) and the roles of miRNA in endothelial cell resistance were analyzed in vitro and in vivo. In the present study, we found that treatment of highly metastatic tumor-conditioned medium induced resistance to 5-fluorouracil (5-FU) with interleukin-6 (IL-6) upregulation in endothelial cells (ECs). Among the soluble factors secreted from highly metastatic tumors, we focused on EVs and determined that miR-1246 was contained at a higher level in highly metastatic tumor EVs than in low metastatic tumor EVs. Furthermore, miR-1246 was transported via the EVs into ECs and induced IL-6 expression. Upregulated IL-6 induced resistance to 5-FU with STAT3 and Akt activation in ECs in an autocrine manner. These results suggested that highly metastatic tumors induce drug resistance in ECs by transporting miR-1246 through EVs.
Collapse
Affiliation(s)
- Chisaho Torii
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
- Department of Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan
| | - Nako Maishi
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan
| | - Taisuke Kawamoto
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan
| | - Masahiro Morimoto
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan
| | - Kosuke Akiyama
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan
| | - Yusuke Yoshioka
- Institute of Medical Science, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan
| | - Mohammad Towfik Alam
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan
| | - Takahiro Ochiya
- Institute of Medical Science, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, 060-8638, Japan
| | - Kyoko Hida
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan.
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, 060-8586, Japan.
| |
Collapse
|
6
|
Shojaei-Zarghani S, Rafraf M, Yari-Khosroushahi A. Theanine and cancer: A systematic review of the literature. Phytother Res 2021; 35:4782-4794. [PMID: 33891786 DOI: 10.1002/ptr.7110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/23/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
A growing literature indicates several health benefits of theanine, a major nonprotein derivative amino acid special to tea, and a nonedible mushroom. This study aimed to systematically review the scientific evidence regarding the anticarcinogen and anticancer effects of natural theanine. A systematic search for the relevant articles published until January 2021 on MEDLINE, Scopus, and Web of Knowledge was conducted. Out of 377 initial records, 14 in vitro, ex vivo, and in vivo studies met our inclusion criteria. Most of the included in vitro and ex vivo studies reported beneficial effects of theanine on the proliferation, apoptosis, metastasis, migration, and invasion in various cancer cell lines. The in vivo studies also supported the potential impacts of theanine on cancer incidence or progression. Theanine exerted its anticancer function by inhibiting EGFR, VEGFR, Met, and Akt/mTOR, JAK2/STAT3, and ERK/NFκB pathways, as well as activating the intrinsic apoptosis pathway and caspase-independent programmed cell death. In conclusion, the results indicated moderate apoptotic, antimetastatic, antimigration, and anti-invasion effects, along with the mild antiproliferative influence of theanine on cancer. Further studies are necessary to ascertain the effectiveness of theanine on the prevention and suppression of cancer and shed light upon the attributable mechanisms in the in vivo condition.
Collapse
Affiliation(s)
- Sara Shojaei-Zarghani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari-Khosroushahi
- Drug Applied Research Center, Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Shojaei-Zarghani S, Yari Khosroushahi A, Rafraf M. Oncopreventive effects of theanine and theobromine on dimethylhydrazine-induced colon cancer model. Biomed Pharmacother 2021; 134:111140. [PMID: 33360052 DOI: 10.1016/j.biopha.2020.111140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022] Open
Abstract
Theanine and theobromine are abundantly present in tea and cocoa, respectively. This study was performed to assess the chemopreventive effects of these phytochemicals, alone or together, on dimethylhydrazine (DMH)-induced colon cancer. Thirty male Wistar rats were divided into five groups and subcutaneously injected with saline (negative control group) or 30 mg/kg DMH (the other groups) two times/week for 12 weeks. The negative and positive control animals were orally treated with drinking water, and the other groups were gavaged with theanine (400 mg/kg), theobromine (100 mg/kg), or their mixture for two weeks before and throughout the injection period. At the end of the study, the morphological and histopathological features, Ki-67 proliferation marker, and the expression of Akt/mTOR, JAK2/STAT3, MAPK/ERK, and TGF-β/Smad pathways were investigated. Theanine and theobromine, alone or together, reduced the number of cancerous and precancerous lesions, the volume of tumors, the Ki-67 immunostaining, and the expression of Akt/mTOR and JAK2/STAT3 oncogenic pathways. The simultaneous treatment was more effective in the down-regulation of Akt and mTOR compared to either theanine or theobromine alone. Theobromine administration also caused more inhibitory effects on the Ki-67 and Akt/mTOR expression than theanine. Besides, all dietary interventions increased the mRNA and protein expression of Smad2. In conclusion, theanine and theobromine, alone and in combination, inhibited tumorigenesis through down-regulation of the Akt/mTOR and JAK2/STAT3 pathways and an increment of the Smad2 tumor suppressor. The inhibition of the Akt/mTOR pathway was more pronounced by simultaneous treatment.
Collapse
Affiliation(s)
- Sara Shojaei-Zarghani
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Fan X, Zhou J, Bi X, Liang J, Lu S, Yan X, Luo L, Yin Z. L-theanine suppresses the metastasis of prostate cancer by downregulating MMP9 and Snail. J Nutr Biochem 2020; 89:108556. [PMID: 33249185 DOI: 10.1016/j.jnutbio.2020.108556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/26/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is a very prevalent male-specific malignancy; most PCa patients eventually die as a result of metastasis. L-theanine (C7H14N2O3), a nonprotein amino acid derivative from green tea leaves, has been demonstrated to act as an anticarcinogen through proapoptotic and antiproliferative effects. However, the antimetastatic effect of L-theanine in tumor cells and its underlying mechanism are still unclear. Here, we found that L-theanine could suppress invasion, migration, and increase cell-cell adhesion of prostate cancer cells in vitro and in vivo. We also found that L-theanine could inhibit the epithelial-mesenchymal transition process in PCa. Our study revealed that L-theanine could downregulate MMP9, N-cadherin, Vimentin, Snail, and upregulate E-cadherin. Furthermore, L-theanine suppressed the transcription of MMP9 and Snail by significantly inhibiting the ERK/NF-κB signaling pathway and the binding activity of p65 to the promoter regions of MMP9 and Snail. All of these findings suggest that L-theanine has therapeutic potential for metastatic PCa and may be considered a promising candidate for antimetastatic therapy of prostate cancer.
Collapse
Affiliation(s)
- Xirui Fan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Juanjuan Liang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Huang XF, Chang KF, Lee SC, Sheu GT, Li CY, Weng JC, Hsiao CY, Tsai NM. Extract Derived from Cedrus atlantica Acts as an Antitumor Agent on Hepatocellular Carcinoma Growth In Vitro and In Vivo. Molecules 2020; 25:molecules25204608. [PMID: 33050385 PMCID: PMC7594045 DOI: 10.3390/molecules25204608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cedrus atlantica is widely used in herbal medicine. However, the anti-cancer activity of C. atlantica extract (CAt extract) has not been clarified in hepatocellular carcinoma. In the study, we elucidated the anti-hepatoma capacity of CAt extract on HCC in vitro and in vivo. To explore the anti-hepatoma mechanisms of the CAt extract in vitro, HCC and normal cells were treated with the CAt extract, which showed marked inhibitory effects on HCC cells in a dose-dependent manner; in contrast, the CAt extract treatment was less cytotoxic to normal cells. In addition, our results indicate that the CAt extract induced apoptosis via caspase-dependent and independent apoptosis pathways. Furthermore, the CAt extract inhibited HCC tumor cell growth by restraining cell cycle progression, and it reduced the signaling of the AKT, ERK1/2, and p38 pathways. In the xenograft model, the CAt extract suppressed HCC tumor cell growth and prolonged lifespan by inhibiting PCNA protein expression, repressing part of the VEGF-induced autocrine pathway, and triggering strong expression of cleaved caspase-3, which contributed to cell apoptosis. Moreover, the CAt extract did not induce any obvious changes in pathological morphology or body weight, suggesting it had no toxicity. CAt extract exerted anti-tumor effects on HCC in vitro and in vivo. Thus, CAt extract could be used as a potential anti-cancer therapeutic agent against HCC.
Collapse
Affiliation(s)
- Xiao-Fan Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (X.-F.H.); (K.-F.C.); (G.-T.S.)
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Kai-Fu Chang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (X.-F.H.); (K.-F.C.); (G.-T.S.)
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Shan-Chih Lee
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (X.-F.H.); (K.-F.C.); (G.-T.S.)
| | - Chia-Yu Li
- Department of Life and Death, Nanhua University, Chiayi 62249, Taiwan;
| | - Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Chih-Yen Hsiao
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
- Correspondence: (C.-Y.H.); (N.-M.T.); Tel.: +886-4-2473-0022 (ext. 12411) (N.-M.T.); Fax: +886-4-2324-8171 (N.-M.T.)
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (C.-Y.H.); (N.-M.T.); Tel.: +886-4-2473-0022 (ext. 12411) (N.-M.T.); Fax: +886-4-2324-8171 (N.-M.T.)
| |
Collapse
|
10
|
Qian CJ, Qi YX, Chen XY, Zeng JP, Yao J. Sporamin suppresses growth of human esophageal squamous cell carcinoma cells by inhibition of NF‑κB via an AKT‑independent pathway. Mol Med Rep 2017; 16:9620-9626. [PMID: 29039512 DOI: 10.3892/mmr.2017.7772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 06/15/2017] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to determine whether sporamin, a trypsin inhibitor, suppresses the growth of human esophageal squamous cell carcinoma (ESCC) cells in vitro. Sporamin treatment led to the suppression of viability and proliferation of human ESCC cell lines, EC9706 and EC109, as determined by MTT and [3H] thymidine incorporation assays, respectively. Flow cytometry and fluorescence microscopy demonstrated that sporamin significantly induced apoptosis in EC9706 and EC109 cells. Western blotting demonstrated that sporamin downregulated the expression of Bcl‑2 and Bcl‑2 like 1, and upregulated the expression of Bcl‑2‑associated X in EC9706 and EC109 cells. In addition, marked inhibition of nuclear factor (NF)‑κB activation was observed in sporamin‑treated EC9706 and EC109 cells by an electrophoretic mobility shift assay. Sporamin treatment also resulted in reduced expression levels of phosphorylated (p)‑NF‑κB inhibitor α and nuclear NF‑κB p65. However, the expression levels of p‑protein inase (AKT) and its downstream target, p‑p70 S6 kinase, were not markedly altered following sporamin treatment. In conclusion, sporamin may suppress the growth of human ESCC cells via NF‑κB‑dependent and AKT‑independent mechanisms and may act as a promising natural therapeutic agent for the treatment of human ESCC.
Collapse
Affiliation(s)
- Cui-Juan Qian
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Yong-Xiao Qi
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Xiao-Ying Chen
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Ju-Ping Zeng
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Jun Yao
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
11
|
Qian C, Chen X, Qi Y, Zhong S, Gao X, Zheng W, Mao Z, Yao J. Sporamin induces apoptosis and inhibits NF-κB activation in human pancreatic cancer cells. Tumour Biol 2017; 39:1010428317706917. [PMID: 28714369 DOI: 10.1177/1010428317706917] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sporamin, a Kunitz-type trypsin inhibitor (TI) from sweet potato tuberous roots, has demonstrated anti-tumor activity through poorly defined mechanisms. Furthermore, the effects of sporamin on pancreatic cancer have not been explored. Herein, we studied the effects of sporamin on two human pancreatic cancer cell lines, PANC-1 and BxPC-3. Sporamin significantly inhibited the cell viability and proliferation activity and induced apoptosis in PANC-1 and BxPC-3 cells. Consistently, in sporamin-treated PANC-1 and BxPC-3 cells, the anti-apoptotic proteins Bcl-2 and Bcl-XL were downregulated and the pro-apoptotic protein Bax was upregulated. Moreover, nuclear factor kappa B activation and IκBα phosphorylation were inhibited, and total IκBα expression was increased in sporamin-treated PANC-1 and BxPC-3 cells. Thus, our results suggest that the anti-tumor effects of sporamin in pancreatic cancer cells might result partly from induction of apoptosis by downregulating nuclear factor kappa B pathway.
Collapse
Affiliation(s)
- Cuijuan Qian
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang, P.R. China
| | - Xiaoying Chen
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang, P.R. China
| | - Yongxiao Qi
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang, P.R. China
| | - Sheng Zhong
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang, P.R. China
| | - Xinyan Gao
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang, P.R. China
| | - Wenjun Zheng
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang, P.R. China
| | - Zhixiang Mao
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang, P.R. China
| | - Jun Yao
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang, P.R. China
| |
Collapse
|