1
|
Fan R, Kim J, You M, Giraud D, Toney AM, Shin SH, Kim SY, Borkowski K, Newman JW, Chung S. α-Linolenic acid-enriched butter attenuated high fat diet-induced insulin resistance and inflammation by promoting bioconversion of n-3 PUFA and subsequent oxylipin formation. J Nutr Biochem 2020; 76:108285. [PMID: 31760228 PMCID: PMC6995772 DOI: 10.1016/j.jnutbio.2019.108285] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/01/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
α-Linolenic acid (ALA) is an essential fatty acid and the precursor for long-chain n-3 PUFA. However, biosynthesis of n-3 PUFA is limited in a Western diet likely due to an overabundance of n-6 PUFA. We hypothesized that dietary reduction of n-6/n-3 PUFA ratio is sufficient to promote the biosynthesis of long-chain n-3 PUFA, leading to an attenuation of high fat (HF) diet-induced obesity and inflammation. C57BL/6 J mice were fed a HF diet from ALA-enriched butter (n3Bu, n-6/n-3=1) in comparison with isocaloric HF diets from either conventional butter lacking both ALA and LA (Bu, n-6/n-3=6), or margarine containing a similar amount of ALA and abundant LA (Ma, n-6/n-3=6). Targeted lipidomic analyses revealed that n3Bu feeding promoted the bioconversion of long-chain n-3 PUFA and their oxygenated metabolites (oxylipins) derived from ALA and EPA. The n3Bu supplementation attenuated hepatic TG accumulation and adipose tissue inflammation, resulting in improved insulin sensitivity. Decreased inflammation by n3Bu feeding was attributed to the suppression of NF-κB activation and M1 macrophage polarization. Collectively, our work suggests that dietary reduction of the n-6/n-3 PUFA ratio, as well as total n-3 PUFA consumed, is a crucial determinant that facilitates n-3 PUFA biosynthesis and subsequent lipidomic modifications, thereby conferring metabolic benefits against obesity-induced inflammation and insulin resistance.
Collapse
Affiliation(s)
- Rong Fan
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - Judy Kim
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - Mikyoung You
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - David Giraud
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - Ashley M Toney
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - Seung-Ho Shin
- Sunseo Omega Inc, University of Nebraska Innovation Campus, Lincoln, NE
| | - So-Youn Kim
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA; Obesity and Metabolism Research Unit, USDA-ARS-WHNRC, Davis, CA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE.
| |
Collapse
|
2
|
Pither J, Botta A, Maity C, Ghosh S. Analysis using national databases reveals a positive association between dietary polyunsaturated fatty acids with TV watching and diabetes in European females. PLoS One 2017; 12:e0173084. [PMID: 28355278 PMCID: PMC5371297 DOI: 10.1371/journal.pone.0173084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 11/15/2016] [Indexed: 11/18/2022] Open
Abstract
In recent years, dietary polyunsaturated fatty acids (PUFA) have increased in parallel to sedentary behavior and diabetes across the world. To test any putative association between dietary PUFA and sedentary behavior or diabetes in females, we obtained country-specific, cross-sectional data on sedentary activity and diabetes prevalence from European Cardiovascular Statistics 2012. Age and gender-specific, nutritional data from each country were obtained from nutritional surveys as well. Socioeconomic (GDP), physical environment (urbanization index) and climatic confounders were accounted for each country. Upon analysis, we found a strong, positive association between sedentary lifestyle in 11-yr old girls (> = 2 hours of TV/ weekday) and dietary PUFA across 21 European countries. Further, a weak association of dietary PUFA and a strong relationship of per-capita GDP was established with elevated fasting blood glucose [(> = 7.0 mmol/L; or on medication] among 25+ year old adult females across 23 countries in Europe. In summary, we present novel ecological evidence that dietary PUFA is strongly associated with sedentary behavior among pre-teen girls and weakly associated with diabetes among adult women across Europe. In the latter group, per-capita GDP was a significant predictor for diabetes as well. Therefore, we recommend that prospective randomized controlled trials (RCTs) be implemented to evaluate if ubiquitous presence of dietary PUFA and low socioeconomic status are possible confounders when intervening to treat/prevent sedentary lifestyle or diabetes in female subjects in Western nations.
Collapse
Affiliation(s)
- Jason Pither
- Department of Biology, IK Barber School of Arts and Sciences, University of British Columbia-Okanagan, Kelowna, Canada
| | - Amy Botta
- Department of Biology, IK Barber School of Arts and Sciences, University of British Columbia-Okanagan, Kelowna, Canada
| | - Chittaranjan Maity
- Department of Biochemistry, KPC Medical College, Kolkata, West Bengal, India
| | - Sanjoy Ghosh
- Department of Biology, IK Barber School of Arts and Sciences, University of British Columbia-Okanagan, Kelowna, Canada
| |
Collapse
|