1
|
Presenza L, Ferraz Teixeira B, Antunes Galvão J, Maria Ferreira de Souza Vieira T. Technological strategies for the use of plant-derived compounds in the preservation of fish products. Food Chem 2023; 419:136069. [PMID: 37027976 DOI: 10.1016/j.foodchem.2023.136069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
New approaches to reducing synthetic preservatives in the preservation of foods draw the attention of plant-derived bioactive compounds, especially for application in foods highly susceptible to spoilage, such as fish products. The review presents relevant data from procurement, application, and methodological research trends to investigate the potential effects of plant-derived bioactive compounds on shelf life extension in fish products. The systematization of data allowed observation that the different methods of extraction and application of bioactive plant compounds result in different effects, such as the reduction of lipid oxidation, antimicrobial effects, and maintenance of sensory characteristics, benefiting the extension of shelf life. In general, plant-derived bioactive compounds are an alternative for the preservation of fish products; however, approaches to the composition of the compounds can contribute to the optimization and efficiency of the process from a technical point of view and industrial viability.
Collapse
Affiliation(s)
- Leandro Presenza
- Department Agri-food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil.
| | - Bianca Ferraz Teixeira
- Department Agri-food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Juliana Antunes Galvão
- Department Agri-food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Thais Maria Ferreira de Souza Vieira
- Department Agri-food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
2
|
Šojić B, Putnik P, Danilović B, Teslić N, Bursać Kovačević D, Pavlić B. Lipid Extracts Obtained by Supercritical Fluid Extraction and Their Application in Meat Products. Antioxidants (Basel) 2022; 11:antiox11040716. [PMID: 35453401 PMCID: PMC9024703 DOI: 10.3390/antiox11040716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Supercritical fluid extraction (SFE) has been recognized as the green and clean technique without any negative impact on the environment. Although this technique has shown high selectivity towards lipophilic bioactive compounds, very few case studies on the application of these extracts in final products and different food matrices were observed. Considering the recent developments in food science and the increasing application of supercritical extracts in meat products in the last decade (2012–2022), the aim of this manuscript was to provide a systematic review of the lipid extracts and bioactives successfully obtained by supercritical fluid extraction and their application in meat products as antioxidant and/or antimicrobial agents. Lipophilic bioactives from natural resources were explained in the first step, which was followed by the fundamentals of supercritical fluid extraction and application on recovery of these bioactives. Finally, the application of natural extracts and bioactives obtained by this technique as functional additives in meat and meat products were thoroughly discussed in order to review the state-of-the-art techniques and set the challenges for further studies.
Collapse
Affiliation(s)
- Branislav Šojić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Bojana Danilović
- Faculty of Technology, University of Niš, 16000 Leskovac, Serbia;
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (D.B.K.); (B.P.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
- Correspondence: (D.B.K.); (B.P.)
| |
Collapse
|
3
|
Mariano BJ, Sales de Oliveira V, Hidalgo Chávez DW, Castro RN, Riger CJ, Mendes JS, da Costa Souza M, Helena Frankland Sawaya AC, Sampaio GR, Ferraz da Silva Torres EA, Saldanha T. Biquinho pepper (Capsium chinense): Bioactive compounds, in vivo and in vitro antioxidant capacities and anti-cholesterol oxidation kinetics in fish balls during frozen storage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Bioactive compounds of parsley (Petroselinum crispum), chives (Allium schoenoprasum L) and their mixture (Brazilian cheiro-verde) as promising antioxidant and anti-cholesterol oxidation agents in a food system. Food Res Int 2022; 151:110864. [PMID: 34980400 DOI: 10.1016/j.foodres.2021.110864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
This study determined the bioactive composition and antioxidant potential of parsley, chives and their mixture (Brazilian cheiro-verde). Additionally, the effect of these herbs against cholesterol oxidation in grilled sardines (Sardinella brasiliensis) was also investigated. Ultra-high Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (UHPLC-ESI-MS) analyses revealed the presence of phenolic acids (caffeic, chlorogenic, and ferulic acids) and flavonoids (apigenin, kaempferol, catechin) in the herbs. Higher levels of phenolics (2.10 ± 0.02 mg GAE/g) and carotenoids (205.95 ± 0.17 µg/g) were determined in parsley extracts. Moreover, parsley also presented higher antioxidant capacity by DPPH (59.21 ± 0.07 %) and ORAC (109.94 ± 18.7 µM TE/g) than the other herbs. In vivo analyses demonstrated that the herbs' extracts decreased the damage on Saccharomyces cerevisiae cells exposed to H2O2, except the chives extract at 10 μg/mL. Higher levels of cholesterol oxidation products (COPs) were determined after grilling. The total COPs increased from 61.8 ± 0.7 (raw fish) to 139.7 ± 10.1 µg/g (control). However, the addition of herbs effectively reduced cholesterol oxides formation, this effect was more pronounced in fish containing 4% parsley and 4% cheiro-verde. Promising results were found for cheiro-verde; however, it did not present synergic antioxidant effects.
Collapse
|
5
|
Liu Y, Yang X, Xiao F, Jie F, Zhang Q, Liu Y, Xiao H, Lu B. Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 2021; 21:738-779. [PMID: 34953101 DOI: 10.1111/1541-4337.12880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Dietary cholesterol oxidation products (COPs) are heterogeneous compounds formed during the processing and storage of cholesterol-rich foods, such as seafood, meat, eggs, and dairy products. With the increased intake of COPs-rich foods, the concern about health implications of dietary COPs is rising. Dietary COPs may exert deleterious effects on human health to induce several inflammatory diseases including atherosclerosis, neurodegenerative diseases, and inflammatory bowel diseases. Thus, knowledge regarding the effects of processing and storage conditions leading to formation of COPs is needed to reduce the levels of COPs in foods. Efficient methodologies to determine COPs in foods are also essential. More importantly, the biological roles of dietary COPs in human health and effects of phytochemicals on dietary COPs-induced diseases need to be established. This review summarizes the recent information on dietary COPs including their formation in foods during their processing and storage, analytical methods of determination of COPs, metabolic fate, implications for human health, and beneficial interventions by phytochemicals. The formation of COPs is largely dependent on the heating temperature, storage time, and food matrices. Alteration of food processing and storage conditions is one of the potent strategies to restrict hazardous dietary COPs from forming, including maintaining relatively low temperatures, shorter processing or storage time, and the appropriate addition of antioxidants. Once absorbed into the circulation, dietary COPs can contribute to the progression of several inflammatory diseases, where the absorbed dietary COPs may induce inflammation, apoptosis, and autophagy in cells in the target organs or tissues. Improved intake of phytochemicals may be an effective strategy to reduce the hazardous effects of dietary COPs.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
6
|
Damerau A, Kakko T, Tian Y, Tuomasjukka S, Sandell M, Hopia A, Yang B. Effect of supercritical CO2 plant extract and berry press cakes on stability and consumer acceptance of frozen Baltic herring (Clupea harengus membras) mince. Food Chem 2020; 332:127385. [DOI: 10.1016/j.foodchem.2020.127385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 01/07/2023]
|
7
|
Guizellini GM, Torres EAFDS, Freitas RAMS, Saldanha T, Sawaya ACHF, Gamallo OD, Soares MJ, de Oliveira VS, Sampaio GR. The anticholesterol oxidation effects of garlic (Allium sativum L.) and leek (Allium ampeloprasum L.) in frozen fish burgers submitted to grilling. J Food Sci 2020; 85:2416-2426. [PMID: 32681539 DOI: 10.1111/1750-3841.15344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
Abstract
This study determined the total phenolic content and antioxidant capacity of garlic (Allium sativum L.) and leek (Allium ampeloprasum L.), as well as evaluated their anticholesterol oxidation potential in fish burgers. The total phenolic contents were 1.1 ± 0.1 mg GAE/g FW to garlic and 1.3 ± 0.4 mg GAE/g FW for leek. Leek extract showed antioxidant activity index (1.3 ± 0.01) in DPPH and β-carotene/linoleic acid assay (66.5 ± 1.6%); however, in ORAC assay, no statistic differences were observed (P > 0.05). Besides that, bioactive compounds of garlic and leek extracts were identified by ultra-high performance liquid chromatography-electrospray by ionization-mass spectrometry (UHPLC-ESI-MS). Fish burgers were prepared using different concentrations of leek and garlic and stored at -18 °C for 90 days. Thus, at days 0, 30, 60, and 90, the samples were grilled and analyzed as to their cholesterol and cholesterol oxidation products contents. Storage and grilling led to an increase in cholesterol oxidation products; however, addition of garlic and leek minimized cholesterol oxidation products formation. After 90 days, samples containing 3% leek + 0.5% garlic ware the most effective in inhibiting the cholesterol oxides formation during storage and showed the lowest increase in cholesterol oxidation products content (21.16%). Thus, the findings of this research indicate the potential application of garlic and leek as natural inhibitors of cholesterol oxidation in food. PRACTICAL APPLICATION: Garlic and leek have a set of bioactive compounds with a wide antioxidant capacity when used in meat foods such as fish burgers. Garlic and leek used as natural antioxidants perform well in the shelf life of fish burgers and can be substitutes for synthetic antioxidants in this type of product. The presence of both vegetables reduced the formation of prejudicial products to human health generated during the shelf life of the food.
Collapse
Affiliation(s)
- Glória Maria Guizellini
- Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Tatiana Saldanha
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Ormindo Domingues Gamallo
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Maiara Jurema Soares
- Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Vanessa Sales de Oliveira
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
8
|
Preservative effects of fish gelatin coating enriched with CUR/βCD emulsion on grass carp (Ctenopharyngodon idellus) fillets during storage at 4 °C. Food Chem 2019; 272:643-652. [DOI: 10.1016/j.foodchem.2018.08.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 01/23/2023]
|
9
|
de Oliveira VS, Ferreira FS, Cople MCR, Labre TDS, Augusta IM, Gamallo OD, Saldanha T. Use of Natural Antioxidants in the Inhibition of Cholesterol Oxidation: A Review. Compr Rev Food Sci Food Saf 2018; 17:1465-1483. [DOI: 10.1111/1541-4337.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/07/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Vanessa Sales de Oliveira
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Fernanda Silva Ferreira
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Maria Clara Ramos Cople
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Tatiana da Silva Labre
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Ivanilda Maria Augusta
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Ormindo Domingues Gamallo
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Tatiana Saldanha
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| |
Collapse
|
10
|
Ferreira FS, Sampaio GR, Keller LM, Sawaya AC, Chávez DW, Torres EA, Saldanha T. Impact of Air Frying on Cholesterol and Fatty Acids Oxidation in Sardines: Protective Effects of Aromatic Herbs. J Food Sci 2017; 82:2823-2831. [DOI: 10.1111/1750-3841.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Fernanda S. Ferreira
- Dept. of Food Technology, Inst. of Technology; Univ. of Rio de Janeiro (UFRRJ); Rodovia Br 465 Seropédica RJ 23890-000 Brazil
| | - Geni R. Sampaio
- Dept. of Nutrition, School of Public Health; Univ. of São Paulo (USP); Ave. Dr. Arnaldo, 715 São Paulo SP 01246-904 Brazil
| | - Laura M. Keller
- Dept. of Food Technology, Inst. of Technology; Univ. of Rio de Janeiro (UFRRJ); Rodovia Br 465 Seropédica RJ 23890-000 Brazil
| | | | - Davy W.H. Chávez
- Dept. of Food Technology, Inst. of Technology; Univ. of Rio de Janeiro (UFRRJ); Rodovia Br 465 Seropédica RJ 23890-000 Brazil
| | - Elizabeth A.F.S. Torres
- Dept. of Nutrition, School of Public Health; Univ. of São Paulo (USP); Ave. Dr. Arnaldo, 715 São Paulo SP 01246-904 Brazil
| | - Tatiana Saldanha
- Dept. of Food Technology, Inst. of Technology; Univ. of Rio de Janeiro (UFRRJ); Rodovia Br 465 Seropédica RJ 23890-000 Brazil
| |
Collapse
|
11
|
Alakomi HL, Maukonen J, Honkapää K, Storgårds E, Quirin KW, Yang B, Saarela M. Effect of Plant Antimicrobial Agents Containing Marinades on Storage Stability and Microbiological Quality of Broiler Chicken Cuts Packed with Modified Atmosphere Packaging. J Food Prot 2017; 80:1689-1696. [PMID: 28885049 DOI: 10.4315/0362-028x.jfp-17-076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The food industry, including the meat industry, is currently looking for natural preservatives to prevent the growth of harmful microbes in foods. The potential of plant-derived antimicrobial extracts to increase the shelf life and to delay the microbiological spoilage of marinated broiler chicken cuts in modified atmosphere packages during cold storage was investigated in this study. We evaluated the impact of aqueous ethanolic extracts of Finnish sea buckthorn berries and lingonberries and supercritical CO2-extracted herbal extracts from an antimicrobial blend and oregano leaves on the shelf life of broiler meat. The commercial antimicrobial blend extract and the oregano extract inhibited the growth of lactic acid bacteria (LAB) and Brochothrix thermosphacta in the marinated samples. The antimicrobial blend extract also reduced the growth of psychrotrophic aerobic bacteria, whereas the sea buckthorn and lingonberry extracts did not. Only minor antimicrobial activity against Enterobacteriaceae by all the extracts was observed. Plate count analysis, denaturing gradient gel electrophoresis, and quantitative real-time PCR indicated that LAB, which are the major spoilage group in marinated modified atmosphere-packaged poultry products, were not significantly affected by the berry extracts studied. During this shelf-life study, LAB isolates of Lactobacillus and Leuconostoc were identified in the marinated samples. Antimicrobial blends and oregano leaf extracts can act as antimicrobial agents in marinade blends, although tailoring of the dose is needed because of their strong taste. Further studies for exploiting synergistic effects of plant extracts could contribute to the development of potential and more effective antimicrobial blends. Studies are needed in meat matrices and in product applications to demonstrate the efficacy of these compounds.
Collapse
Affiliation(s)
- H-L Alakomi
- 1 VTT Technical Research Centre of Finland, Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - J Maukonen
- 1 VTT Technical Research Centre of Finland, Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - K Honkapää
- 1 VTT Technical Research Centre of Finland, Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - E Storgårds
- 1 VTT Technical Research Centre of Finland, Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - K-W Quirin
- 2 Flavex Naturextrakte GmbH, Nordstrasse 7, 66780 Rehlingen-Siersburg, Germany; and
| | - B Yang
- 3 Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - M Saarela
- 1 VTT Technical Research Centre of Finland, Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|