1
|
Meng Y, Lian Y, Li J, Suo H, Song J, Wang M, Zhang Y. Quality Characteristics and Flavor Analysis of Five Mulberry Varieties. Foods 2024; 13:4088. [PMID: 39767029 PMCID: PMC11675953 DOI: 10.3390/foods13244088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
For a deeper understanding of the characteristics exhibited by several novel mulberry varieties, the quality attributes and flavor components of five mulberry varieties (Zhongsang 5801, 2000-3, Jialing 40, Yuesang 10, and White Shahtoot Mulberry) were analyzed and compared. Zhongsang 5801 displayed the highest total phenol and flavone levels. Fructose and glucose were the primary sugars identified in the mulberries, with 2000-3 exhibiting the highest fructose content (39.66 ± 11.31 g/kg), whereas Zhongsang 5801 had the highest glucose content (26.19 ± 6.29 g/kg). The key organic acids found in the five mulberry varieties were oxalic acid, tartaric acid, and malic acid. Of them, 2000-3 had the highest malic acid content (0.66 ± 0.02 g/kg). Furthermore, 21 amino acids and 66 volatile components were detected in the five mulberry varieties. The study findings offer valuable insights for assessing, processing, and utilizing different mulberry varieties.
Collapse
Affiliation(s)
- Yingmei Meng
- School of Food Science, Southwest University, Chongqing 400700, China; (Y.M.); (Y.L.); (J.L.); (H.S.); (J.S.)
- National Teaching Demonstration Center of Food Science and Engineering, Southwest University, Chongqing 400700, China
| | - Yinyin Lian
- School of Food Science, Southwest University, Chongqing 400700, China; (Y.M.); (Y.L.); (J.L.); (H.S.); (J.S.)
- National Teaching Demonstration Center of Food Science and Engineering, Southwest University, Chongqing 400700, China
| | - Jiaxin Li
- School of Food Science, Southwest University, Chongqing 400700, China; (Y.M.); (Y.L.); (J.L.); (H.S.); (J.S.)
- National Teaching Demonstration Center of Food Science and Engineering, Southwest University, Chongqing 400700, China
| | - Huayi Suo
- School of Food Science, Southwest University, Chongqing 400700, China; (Y.M.); (Y.L.); (J.L.); (H.S.); (J.S.)
| | - Jiajia Song
- School of Food Science, Southwest University, Chongqing 400700, China; (Y.M.); (Y.L.); (J.L.); (H.S.); (J.S.)
| | - Mei Wang
- Sericultural Science and Technology Research Institute, Chongqing 400700, China;
| | - Yu Zhang
- School of Food Science, Southwest University, Chongqing 400700, China; (Y.M.); (Y.L.); (J.L.); (H.S.); (J.S.)
- National Teaching Demonstration Center of Food Science and Engineering, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| |
Collapse
|
2
|
Parklak W, Chottidao M, Munkong N, Komindr S, Monkhai S, Wanikorn B, Makaje N, Kulprachakarn K, Chuljerm H, Somnuk S. Nutraceutical Properties of Thai Mulberry ( Morus alba L.) and Their Effects on Metabolic and Cardiovascular Risk Factors in Individuals with Obesity: A Randomized, Single-Blind Crossover Trial. Nutrients 2024; 16:4336. [PMID: 39770957 PMCID: PMC11678609 DOI: 10.3390/nu16244336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Mulberries exhibit antioxidant properties that may attenuate metabolic abnormalities. Kamphaeng Saen mulberry (KPS-MB-42-1) contains anthocyanins, polyphenols, and nutrients, but few studies have explored its benefits for human health. This study investigated the effects of a concentrated mulberry drink (CMD) from the KPS-MB-42-1 cultivar on metabolic and cardiovascular risk factors in obese individuals. Methods: A single-blind, randomized crossover clinical pilot trial was performed on individuals with obesity. Participants consumed 100 g of CMD daily, alternating with placebo for 6 weeks. Body composition, blood pressure, and blood samples were assessed at baseline and post-intervention. Results: This study was completed with 12 participants (7 men, 5 women, aged 30-55 years, BMI 32.1 ± 5.98 kg/m2) consuming CMD with 1041.90 mg total phenolic compounds and 35.34 mg total anthocyanins. No significant changes in body composition were observed. CMD consumption significantly reduced systolic and diastolic blood pressure, and mean arterial pressure, compared to baseline and placebo periods (p < 0.05). While total cholesterol, LDL-C, and HDL-C remained unchanged, triglycerides were significantly lower during CMD consumption compared to placebo periods (p < 0.05). Fasting plasma glucose (FPG) levels were stable during CMD consumption but increased significantly with the placebo period (p < 0.05). C-reactive protein levels were also significantly lower during CMD consumption compared to placebo periods (p < 0.05). No changes in blood coagulation indicators (prothrombin time, activated partial thromboplastin time, and the international normalized ratio) were found. Conclusions: CMD improved metabolic markers, particularly regarding its antihypertensive effects. These findings highlight CMD's potential as a health drink for managing metabolic syndrome and preventing chronic diseases.
Collapse
Affiliation(s)
- Wason Parklak
- Research Center for Non-Infectious Diseases and Environmental Health, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (W.P.); (K.K.); (H.C.)
| | - Monchai Chottidao
- College of Sports Science and Technology, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Phayao 56000, Thailand;
| | - Surat Komindr
- Division of Nutrition and Biochemical Medicine, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Sudjai Monkhai
- Wangnumkeaw Sub-District Health Promotion Hospital, Nakhon Pathom 73140, Thailand;
| | - Bandhita Wanikorn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
| | - Niromlee Makaje
- Department of Sports Science, Faculty of Sports and Health Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Kanokwan Kulprachakarn
- Research Center for Non-Infectious Diseases and Environmental Health, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (W.P.); (K.K.); (H.C.)
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hataichanok Chuljerm
- Research Center for Non-Infectious Diseases and Environmental Health, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (W.P.); (K.K.); (H.C.)
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surasawadee Somnuk
- Department of Sports Science, Faculty of Sports and Health Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| |
Collapse
|
3
|
Tang L, Xu Y, He J, Huang G, Jiang X, Li Y, Li H, Zhang R, Gui Z. 1-Deoxynojirimycin Derivative Containing Tegafur Induced HCT-116 Cell Apoptosis through Mitochondrial Dysfunction and Oxidative Stress Pathway. ACS Med Chem Lett 2024; 15:1947-1952. [PMID: 39563791 PMCID: PMC11571086 DOI: 10.1021/acsmedchemlett.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Three 1-deoxynojirimycin (DNJ) derivatives (named C4-C6) including DNJ and tegafur (TGF) were designed and synthesized, and their antiproliferative effects were investigated. C4-C6, especially C6, exerted good lipophilicity, α-glucosidase inhibitory activity, and antitumor effects. Mechanism studies indicated that C6 significantly induced cell apoptosis and S-phase block and inhibited migration of HCT-116 cells. Besides, C6 induced mitochondrial damage by decreasing the mitochondrial membrane potential, improving the accumulation of ROS, upregulating the expression of Bax, and downregulating Bcl-2. Moreover, C6 induced excessive production of ROS to trigger oxidative stress, resulting in an increase in the level of MDA and NO, a decrease in the content of GSH and SOD, and an overexpression of Nrf2. Furthermore, C6 induced DNA damage by down-regulating the expression of thymidylate synthase. These results indicated that C6 is a potential antitumor agent and kills HCT-116 cells through DNA damage, mitochondrial dysfunction, and oxidative stress.
Collapse
Affiliation(s)
- Liqing Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yixing Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Jianglong He
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Gaiqun Huang
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan 637000, China
| | - Xueping Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yuqi Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Hao Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Ran Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| |
Collapse
|
4
|
Zhao L, Duan Y, Li Z, Li J, Li S. Unearthing the Potential Therapeutic Effects of Oxyresveratrol Based on Intrinsic Links between Pharmacological Effects: Implications for the Gut-Liver-Brain Axis. Pharmaceuticals (Basel) 2024; 17:1063. [PMID: 39204169 PMCID: PMC11359039 DOI: 10.3390/ph17081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
Oxyresveratrol is a stilbene compound with a simple chemical structure and various therapeutic potentials. This study summarized and analyzed the multiple pharmacological effects and mechanisms of oxyresveratrol, identifying its prominent performance in neuroprotection, hepatoprotection, and anti-inflammatory activities in the intestines. By integrating the pharmacological effects of oxyresveratrol with insights from the network pharmacology and molecular docking of its interactions with targets linked to gut-liver-brain axis disorders, it has been shown that oxyresveratrol may hold promise for the treatment of gut-liver-brain axis-related disorders. The synergistic effect between various mechanisms has inspired further research and the development of oxyresveratrol's application value.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- College of Biology and Food Engineering, Huaihua University, Huaihua 418000, China
| | - Yan Duan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Zhaoxing Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Shunxiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| |
Collapse
|
5
|
Peng J, Lu C, Luo Y, Su X, Li S, Ho CT. Hypoglycemic effects and associated mechanisms of resveratrol and related stilbenes in diet. Food Funct 2024; 15:2381-2405. [PMID: 38376230 DOI: 10.1039/d3fo04761j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Hyperglycemia has become a global health problem due to changes in diet and lifestyle. Most importantly, persistent hyperglycemia can eventually develop into type II diabetes. While the usage of current drugs is limited by their side effects, stilbenes derived from fruits and herbal/dietary plants are considered as important phytochemicals with potential hypoglycemic properties. Herein, the most common stilbenoids in consumed foods, i.e. resveratrol, pterostilbene, piceatannol, oxyresveratrol, and 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucopyranoside (THSG), are reviewed in this paper. These stilbenes are found to regulate glucose homeostasis via (a) modulation of feeding behaviour and nutrition absorption; (b) restoration of insulin signalling by enhancing insulin production/insulin sensitivity; (c) improvement of gut permeability, gut microbial profile and resulting metabolomes; and (d) amelioration of circadian rhythm disruption. In this review, we have summarized the underlying mechanisms for the hypoglycemic effects of the five most common dietary stilbenoids listed above, providing a comprehensive framework for future study and applications.
Collapse
Affiliation(s)
- Jie Peng
- Department of Food Science, Rutgers University, New Brunswick 08901, USA
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China.
| | - Yue Luo
- Department of Food Science, Rutgers University, New Brunswick 08901, USA
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China.
| | - Shiming Li
- Department of Food Science, Rutgers University, New Brunswick 08901, USA
- College of Life Sciences, Huanggang Normal University, Hubei 438000, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick 08901, USA
| |
Collapse
|
6
|
Lee D, Baek JY, Choi YJ, Han MJ, Kim SH, Kim TH, Lee S, Kang KS. Glucose-lowering effect of Reducose® enriched with 1-deoxynojirimycin and l-leucine: Studies on insulin secretion in INS-1 cells and reduction of blood glucose in diabetic rats. Heliyon 2024; 10:e25499. [PMID: 38333854 PMCID: PMC10850582 DOI: 10.1016/j.heliyon.2024.e25499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
The extract of mulberry leaf and its active ingredients have already been reported to have anti-diabetic effects; however, further studies are required to obtain better quality extracts and higher yields of active ingredients. Reducose® is a commercially available aqueous extract of mulberry leaves with a high content of active ingredients. In this study, the biological activities of Reducose®, 1-deoxynojirimycin, and l-leucine were evaluated using a glucose-stimulated insulin secretion (GSIS) assay. The GSIS assay results were expressed as the glucose-stimulated index (GSI). Considering the pharmacological safety in pancreatic β-cells, the appropriate non-toxic concentrations were selected by screening for cytotoxicity of Reducose®, 1-deoxynojirimycin, and l-leucine before the GSIS assay. The effect of Reducose®, 1-deoxynojirimycin, and l-leucine on glucose-stimulated insulin secretion in INS-1 cells was compared. Reducose®, 1-deoxynojirimycin, and l-leucine increased the GSI values more effectively than gliclazide (positive control). This was associated with an increase in protein expression, such as peroxisome proliferator-activated receptor-γ, insulin receptor substrate-2, activated pancreatic and duodenal homeobox-1, which are related to the regulation of pancreatic β-cell function and survival. In order to elucidate the effect of Reducose® in anti-diabetic effects, blood glucose levels, insulin levels, and liver and lipid concentrations were investigated in a Sprague-Dawley rat model of high-fat diet/streptozotocin-induced diabetes. We observed that administration of Reducose® can decrease fasting blood glucose levels and reduce the production of AST, ALT, TG, and TC to a similar extent as metformin (positive control). These results suggested that Reducose® play a role in promoting GSIS but not enough to show that the content and proportion of 1-deoxynojirimycin and l-leucine play an important role in the GSIS activity of Reducose®.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Ji Yun Baek
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Ye Jung Choi
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Min Ji Han
- Vixxol Corporation, Gunpo, 15807, Republic of Korea
| | - Seon Hwa Kim
- Vixxol Corporation, Gunpo, 15807, Republic of Korea
| | - Tae Hoon Kim
- Vixxol Corporation, Gunpo, 15807, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
7
|
Papuc C, Goran GV, Predescu CN, Tudoreanu L, Ștefan G. Plant polyphenols mechanisms of action on insulin resistance and against the loss of pancreatic beta cells. Crit Rev Food Sci Nutr 2022; 62:325-352. [PMID: 32901517 DOI: 10.1080/10408398.2020.1815644] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus describes a group of metabolic disorders characterized by a prolonged period hyperglycemia with long-lasting detrimental effects on the cardiovascular and nervous systems, kidney, vision, and immunity. Many plant polyphenols are shown to have beneficial activity for the prevention and treatment of diabetes, by different mechanisms. This review article is focused on synthesizing the mechanisms by which polyphenols decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function. To achieve the objectives, this review summarizes the results of the researches realized in recent years in clinical trials and in various experimental models, on the effects of foods rich in polyphenols, polyphenolic extracts, and commercially polyphenols on insulin resistance and β-cells death. Dietary polyphenols are able to reduce insulin resistance alleviating the IRS-1/PI3-k/Akt signaling pathway, and to reduce the loss of pancreatic islet β-cell mass and function by several molecular mechanisms, such as protection of the surviving machinery of cells against the oxidative insult; increasing insulin secretion in pancreatic β-cells through activation of the FFAR1; cytoprotective effect on β-cells by activation of autophagy; protection of β-cells to act as activators for anti-apoptotic pathways and inhibitors for apoptotic pathway; stimulating of insulin release, presumably by transient ATP-sensitive K+ channel inhibition and whole-cell Ca2+ stimulation; involvement in insulin release that act on ionic currents and membrane potential as inhibitor of delayed-rectifier K+ current (IK(DR)) and activator of current. dietary polyphenols could be used as potential anti-diabetic agents to prevent and alleviate diabetes and its complications, but further studies are needed.
Collapse
Affiliation(s)
- Camelia Papuc
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Gheorghe V Goran
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Corina N Predescu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Liliana Tudoreanu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Georgeta Ștefan
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| |
Collapse
|
8
|
Kongthitilerd P, Thilavech T, Marnpae M, Rong W, Yao S, Adisakwattana S, Cheng H, Suantawee T. Cyanidin-3-rutinoside stimulated insulin secretion through activation of L-type voltage-dependent Ca 2+ channels and the PLC-IP 3 pathway in pancreatic β-cells. Biomed Pharmacother 2021; 146:112494. [PMID: 34891116 DOI: 10.1016/j.biopha.2021.112494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023] Open
Abstract
Cyanidin-3-rutinoside (C3R) is an anthocyanin with anti-diabetic properties found in red-purple fruits. However, the molecular mechanisms of C3R on Ca2+-dependent insulin secretion remains unknown. This study aimed to identify C3R's mechanisms of action in pancreatic β-cells. Rat INS-1 cells were used to elucidate the effects of C3R on insulin secretion, intracellular Ca2+ signaling, and gene expression. The results showed that C3R at 60, 100, and 300 µM concentrations significantly increased insulin secretion via intracellular Ca2+ signaling. The exposure of cells with C3R concentrations up to 100 μM did not affect cell viability. Pretreatment of cells with nimodipine (voltage-dependent Ca2+ channel (VDCC) blocker), U73122 (PLC inhibitor), and 2-APB (IP3 receptor blocker) inhibited the intracellular Ca2+ signals by C3R. Interestingly, C3R increased intracellular Ca2+ signals and insulin secretion after depletion of endoplasmic reticulum Ca2+ stores by thapsigargin. However, insulin secretion was abolished under extracellular Ca2+-free conditions. Moreover, C3R upregulated mRNA expression for Glut2 and Kir6.2 genes. These findings indicate that C3R stimulated insulin secretion by promoting Ca2+ influx via VDCCs and activating the PLC-IP3 pathway. C3R also upregulates the expression of genes necessary for glucose-induced insulin secretion. This is the first study describing the molecular mechanisms by which C3R stimulates Ca2+-dependent insulin secretion from pancreatic β-cells. These findings contribute to our understanding on how anthocyanins improve hyperglycemia in diabetic patients.
Collapse
Affiliation(s)
- Phutthida Kongthitilerd
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Thavaree Thilavech
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10440, Thailand.
| | - Marisa Marnpae
- The Halal Science Center, Chulalongkorn University, Bangkok 10330, Thailand; Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Weiqiong Rong
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Sirichai Adisakwattana
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Tanyawan Suantawee
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
9
|
Ding W, Liu H, Qin Z, Liu M, Zheng M, Cai D, Liu J. Dietary Antioxidant Anthocyanins Mitigate Type II Diabetes through Improving the Disorder of Glycometabolism and Insulin Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13350-13363. [PMID: 34730960 DOI: 10.1021/acs.jafc.1c05630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insulin resistance (IR) is one of the pathological reasons for type II diabetes mellitus (T2DM). Therefore, it is important to prevent the body from developing T2DM by improving IR and maintaining glucose homeostasis. Anthocyanins (ACNs) are water-soluble pigments and are widely distributed in natural products. This article summarizes research on the bioavailability and metabolism of ACNs. Moreover, we further elaborate on how ACNs reduce IR and hyperglycemia during the development of T2DM based on studies over the past 20 years. Many studies have demonstrated that ACNs are small molecules that target the pancreatic, liver, muscle, and adipose tissues, preventing IR and hyperglycemia. However, the molecular mechanisms are still unclear. Therefore, we envision whether the molecular mechanism of reducing T2DM by ACNs could be more deeply investigated.
Collapse
Affiliation(s)
- Wei Ding
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Ziqi Qin
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| |
Collapse
|
10
|
Likhitwitayawuid K. Oxyresveratrol: Sources, Productions, Biological Activities, Pharmacokinetics, and Delivery Systems. Molecules 2021; 26:4212. [PMID: 34299485 PMCID: PMC8307110 DOI: 10.3390/molecules26144212] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Oxyresveratrol has recently attracted much research attention due to its simple chemical structure and diverse therapeutic potentials. Previous reviews describe the chemistry and biological activities of this phytoalexin, but additional coverage and greater accessibility are still needed. The current review provides a more comprehensive summary, covering research from 1955 to the present year. Oxyresveratrol occurs in both gymnosperms and angiosperms. However, it has never been reported in plants in the subclass Sympetalae, and this point might be of both chemotaxonomic and biosynthetic importance. Oxyresveratrol can be easily obtained from plant materials by conventional methods, and several systems for both qualitative and quantitative analysis of oxyresveratrol contents in plant materials and plant products are available. Oxyresveratrol possesses diverse biological and pharmacological activities such as the inhibition of tyrosinase and melanogenesis, antioxidant and anti-inflammatory activities, and protective effects against neurological disorders and digestive ailments. However, the unfavorable pharmacokinetic properties of oxyresveratrol, including low water solubility and poor oral availability and stability, have posed challenges to its development as a useful therapeutic agent. Recently, several delivery systems have emerged, with promising outcomes that may improve chances for the clinical study of oxyresveratrol.
Collapse
Affiliation(s)
- Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Zhang R, Zhang Y, Xin X, Huang G, Zhang N, Zeng Q, Tang L, Attaribo T, Lee KS, Jin BR, Gui Z. Dual-Targeting Antiproliferation Hybrids Derived from 1-Deoxynojirimycin and Kaempferol Induce MCF-7 Cell Apoptosis through the Mitochondria-Mediated Pathway. JOURNAL OF NATURAL PRODUCTS 2021; 84:1534-1543. [PMID: 33979163 DOI: 10.1021/acs.jnatprod.1c00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
1-Deoxynojirimycin, an α-glucosidase inhibitor, possesses various biological activities such as antitumor, antidiabetic, and antiviral effects. However, the application of 1-deoxynojirimycin is restricted by its poor lipophilicity and low bioavailability. In this study, three 1-deoxynojirimycin derivatives (8-10) comprising 1-deoxynojirimycin and kaempferol were designed and synthesized to modify their pharmacokinetics and improve their antitumor efficacy. Among them, compound 10, a conjugate of 1-deoxynojirimycin and kaempferol linked through an undecane chain, exhibited excellent lipophilicity, antiproliferative effects, and α-glucosidase inhibitory activity. Compared with 1-deoxynojirimycin, kaempferol, and their combination, compound 10 downregulated cyclooxygenase-2 (COX-2) expression, arrested the cell cycle at the S phase, induced cellular apoptosis, and inhibited the migration of MCF-7 cells. Moreover, further investigation indicated that compound 10 induced MCF-7 cell apoptosis through a mitochondrial-mediated pathway via the loss of mitochondrial membrane potential. This led to increasing intracellular levels of reactive oxygen species (ROS) and Ca2+, the downregulation of Bcl-2 expression, and the upregulation of Bax levels.
Collapse
Affiliation(s)
- Ran Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, People's Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, People's Republic of China
| | - Yueyue Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, People's Republic of China
| | - Xiangdong Xin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, People's Republic of China
| | - Gaiqun Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, People's Republic of China
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan 637000, People's Republic of China
| | - Ning Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, People's Republic of China
| | - Qinglei Zeng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, People's Republic of China
| | - Liumei Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, People's Republic of China
| | - Thomas Attaribo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, People's Republic of China
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, People's Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, People's Republic of China
| |
Collapse
|
12
|
Structure – Activity Relationship and Therapeutic Benefits of Flavonoids in the Management of Diabetes and Associated Disorders. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02329-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
The role of anthocyanins as antidiabetic agents: from molecular mechanisms to in vivo and human studies. J Physiol Biochem 2020; 77:109-131. [PMID: 32504385 DOI: 10.1007/s13105-020-00739-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease characterized by high blood glucose concentration. Nowadays, type 2 diabetes or insulin resistant diabetes is the most common diabetes, mainly due to unhealthy lifestyle. Healthy habits like appropriate nutritional approaches or the consumption of certain natural products or food supplements have been suggested as non-pharmacological strategies for the treatment and prevention of type 2 diabetes. Some of the main bioactive compounds from plant foods are polyphenols, important mainly for their antioxidant capacity in oxidative stress conditions and ageing. Anthocyanins are polyphenols of the flavonoid group, which act as pigments in plants, especially in fruits such as berries. A search of in vitro, in vivo and human studies in relation with antidiabetic properties of anthocyanins has been performed in different electronic databases. Results of this review demonstrate that these compounds have the ability to inhibit different enzymes as well as to influence gene expression and metabolic pathways of glucose, such as AMPK, being able to modulate diabetes and other associated disorders, as hyperlipidaemia, overweight, obesity and cardiovascular diseases. Additionally, human interventional studies have shown that high doses of anthocyanins have potential in the prevention or treatment of type 2 diabetes; nevertheless, anthocyanins used in these studies should be standardized and quantified in order to make general conclusions about its use and to claim benefits for the human population.
Collapse
|
14
|
Thakur K, Zhang YY, Mocan A, Zhang F, Zhang JG, Wei ZJ. 1-Deoxynojirimycin, its potential for management of non-communicable metabolic diseases. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Ding Y, An F, Zhu X, Yu H, Hao L, Lu Y. Curdepsidones B⁻G, Six Depsidones with Anti-Inflammatory Activities from the Marine-Derived Fungus Curvularia sp. IFB-Z10. Mar Drugs 2019; 17:E266. [PMID: 31060304 PMCID: PMC6562388 DOI: 10.3390/md17050266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Six new depsidones, curdepsidones B-G (1-6), were obtained from the marine-derived fungus Curvularia sp. IFB-Z10. Their planar structures were determined by comprehensive analysis of HRESIMS and 1D/2D-NMR data. The absolute configuration of curdepsidones B-C (1-2) were established by synergistic use of DFT/NMR (density functional theory/nuclear magnetic resonance) and TDDFT/ECD (time-dependent density functional theory/electronic circular dichroism) calculations. Partial isolated compounds were tested for their anti-inflammatory activities in Propionibacterium acnes-induced THP-1 cells. Curdepsidone C (2) displayed significant anti-inflammatory properties with an IC50 value of 7.47 ± 0.35 μM, and reduced the P. acnes-induced phosphorylation levels of JNK and ERK in a dose-dependent mechanism. The possible anti-inflammatory mechanism of 2 was also investigated by molecular docking.
Collapse
Affiliation(s)
- Yi Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| | - Xiaojing Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| | - Haiyuan Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| | - Liling Hao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| | - Yanhua Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
16
|
Luna-Vital DA, Gonzalez de Mejia E. Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS One 2018; 13:e0200449. [PMID: 29995924 PMCID: PMC6040766 DOI: 10.1371/journal.pone.0200449] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to evaluate the ability of anthocyanins (ANC) present in purple corn to enhance insulin secretion and hepatic glucose uptake in pancreatic cells and hepatocytes, through activation of the free fatty acid receptor-1 (FFAR1) and glucokinase (GK), respectively. Using a dual-layer cell culture with Caco-2 cells, INS-1E or HepG2 cells were treated with an anthocyanin-rich extract from the pericarp of purple corn (PCW), as well as pure ANC cyanidin-3-O-glucoside (C3G), peonidin-3-O-glucoside, pelargonidin-3-O-glucoside. Delphinidin-3-O-glucoside (D3G) was used for comparative purposes. Semipurified C3G (C3G-P) and condensed forms (CF-P) isolated from PCW were also used. At 100 μM, the pure ANC enhanced glucose-stimulated insulin secretion (GSIS) in INS-1E cells ranging from 18% to 40% (p<0.05) compared to untreated cells. PCW increased GSIS by 51%. D3G was the most effective anthocyanin activating FFAR1 (EC50: 196.6 μM). PCW had activating potential on FFAR1 (EC50: 77 μg/mL). PCW, as well as C3G and D3G increased the expression of FFAR1, PLC, and phosphorylation of PKD, related to the FFAR1-dependent insulin secretory pathway. The treatment with 100 μM of P3G and C3G increased (p<0.05) glucose uptake in HepG2 cells by 19% and 31%. PCW increased the glucose uptake in HepG2 cells by 48%. It was determined that CF-P was the most effective for activating GK (EC50: 39.9 μM) and the PCW extracts had an efficacy of EC50: 44 μg/mL. The ANC in purple corn also reduced AMPK phosphorylation and PEPCK expression in HepG2 cells, known to be related to reduction in gluconeogenesis. It is demonstrated for the first time that dietary ANC can enhance the activity of novel biomarkers FFAR1 and GK and potentially ameliorate type-2 diabetes comorbidities.
Collapse
Affiliation(s)
- Diego A. Luna-Vital
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
17
|
4- O -Caffeoylquinic acid as an antioxidant marker for mulberry leaves rich in phenolic compounds. J Food Drug Anal 2018; 26:985-993. [PMID: 29976416 PMCID: PMC9303035 DOI: 10.1016/j.jfda.2017.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/19/2017] [Accepted: 11/25/2017] [Indexed: 11/26/2022] Open
Abstract
Mulberry (Morus alba L.) leaves are widely used as herbal tea to prevent heat stroke. Potential chemical markers of the antioxidant properties and its correlation with harvesting times and leaf location were explored in this study. A 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay guided isolation of mulberry leaves extract provided five phenolic compounds: 5-O-caffeoylquinic acid (1), 4-O-caffeoylquinic acid (2), gastrodin (3), isoquercetin (4) and rutin (5). The 50% radical-scavenging concentrations (SC50) of these compounds were 32.76 ± 0.27, 11.41 ± 0.48, 404.30 ± 4.92, 10.63 ± 0.96, and 10.57 ± 0.61 μg/mL, respectively. Chromatographic fingerprinting allowed content analysis of 1–5 in samples over a 12-month period. Compounds 1–5 were abundance in apical leaves (0–10 cm) in January and February at temperatures < 20 °C. Contents of 2 and 5 were highest in these months and were strongly correlated to the antioxidant property. Therefore, we suggested that the mulberry leaves harvested during January and February have high yield of 4-O-caffeoylquinic acid and this compound can be used as antioxidative marker in mulberry leaves.
Collapse
|
18
|
Lin MH, Hsu CC, Lin J, Cheng JT, Wu MC. Investigation of morin-induced insulin secretion in cultured pancreatic cells. Clin Exp Pharmacol Physiol 2017; 44:1254-1262. [PMID: 28699234 DOI: 10.1111/1440-1681.12815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
Abstract
Morin is a flavonoid contained in guava that is known to reduce hyperglycemia in diabetes. Insulin secretion has been demonstrated to increase following the administration of morin. The present study is designed to investigate the potential mechanism(s) of morin-induced insulin secretion in the MIN6 cell line. First, we identified that morin induced a dose-dependent increase in insulin secretion and intracellular calcium content in MIN6 cells. Morin potentiated glucose-stimulated insulin secretion (GSIS). Additionally, we used siRNA for the ablation of imidazoline receptor protein (NISCH) expression in MIN6 cells. Interestingly, the effects of increased insulin secretion by morin and canavanine were markedly reduced in Si-NISCH cells. Moreover, we used KU14R to block imidazoline I3 receptor (I-3R) that is known to enhance insulin release from the pancreatic β-cells. Without influence on the basal insulin secretion, KU14R dose-dependently inhibited the increased insulin secretion induced by morin or efaroxan in MIN6 cells. Additionally, effects of increased insulin secretion by morin or efaroxan were reduced by diazoxide at the dose sufficient to open KATP channels and attenuated by nifedipine at the dose used to inhibit L-type calcium channels. Otherwise, phospholipase C (PLC) is introduced to couple with imidazoline receptor (I-R). The PLC inhibitor dose-dependently inhibited the effects of morin in MIN6 cells. Similar blockade was also observed in protein kinase C (PKC) inhibitor-treated cells. Taken together, we found that morin increases insulin secretion via the activation of I-R in pancreatic cells. Therefore, morin would be useful to develop in the research and treatment of diabetic disorders.
Collapse
Affiliation(s)
- Mang Hung Lin
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Chief Secretary's Office, Chiayi Hospital, Ministry of Health and Welfare, Chiayi, Taiwan
| | - Chia-Chen Hsu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jenshinn Lin
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Juei Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Ming Chang Wu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
19
|
Flavonoids and Their Metabolites: Prevention in Cardiovascular Diseases and Diabetes. Diseases 2017; 5:diseases5030019. [PMID: 32962323 PMCID: PMC5622335 DOI: 10.3390/diseases5030019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/12/2022] Open
Abstract
The occurrence of atherosclerosis and diabetes is expanding rapidly worldwide. These two metabolic disorders often co-occur, and are part of what is often referred to as the metabolic syndrome. In order to determine future therapies, we propose that molecular mechanisms should be investigated. Once the aetiology of the metabolic syndrome is clear, a nutritional intervention should be assessed. Here we focus on the protective effects of some dietary flavonoids, and their metabolites. Further studies may also pave the way for development of novel drug candidates.
Collapse
|