1
|
da Silva APM, da Silva GS, Oiram Filho F, Silva MFS, Zocolo GJ, de Brito ES. Structural Characterization and In Vitro and In Silico Studies on the Anti- α-Glucosidase Activity of Anacardic Acids from Anacardium occidentale. Foods 2024; 13:4107. [PMID: 39767049 PMCID: PMC11675133 DOI: 10.3390/foods13244107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The growing focus on sustainable use of natural resources has brought attention to cashew nut shell liquid (CNSL), a by-product rich in anacardic acids (AAs) with potential applications in diabetes treatment. In this study, three different AAs from CNSL, monoene (15:1, AAn1), diene (15:2, AAn2), and triene (15:3, AAn3), and a mixture of the three (mix) were evaluated as α-glucosidase inhibitors. The samples were characterized by combining 1D and 2D NMR spectroscopy, along with ESI-MS. In vitro assays revealed that AAn1 had the strongest inhibitory effect (IC50 = 1.78 ± 0.08 μg mL-1), followed by AAn2 (1.99 ± 0.76 μg mL-1), AAn3 (3.31 ± 0.03 μg mL-1), and the mixture (3.72 ± 2.11 μg mL-1). All AAs significantly outperformed acarbose (IC50 = 169.3 μg mL-1). In silico docking suggested that polar groups on the aromatic ring are key for enzyme-ligand binding. The double bond at C15, while not essential, enhanced the inhibitory effects. Toxicity predictions classified AAs as category IV, and pharmacokinetic analysis suggested moderately favorable drug-like properties. These findings highlight AAs as a promising option in the search for new hypoglycemic compounds.
Collapse
Affiliation(s)
- Ana Priscila Monteiro da Silva
- Embrapa Agroindústria Tropical, Fortaleza 60511-110, CE, Brazil; (A.P.M.d.S.); (G.S.d.S.); (F.O.F.); (G.J.Z.)
- Department of Chemical Engineering, UFC, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza 60455-760, CE, Brazil
| | - Gisele Silvestre da Silva
- Embrapa Agroindústria Tropical, Fortaleza 60511-110, CE, Brazil; (A.P.M.d.S.); (G.S.d.S.); (F.O.F.); (G.J.Z.)
| | - Francisco Oiram Filho
- Embrapa Agroindústria Tropical, Fortaleza 60511-110, CE, Brazil; (A.P.M.d.S.); (G.S.d.S.); (F.O.F.); (G.J.Z.)
- Department of Chemical Engineering, UFC, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza 60455-760, CE, Brazil
| | - Maria Francilene Souza Silva
- Research and Development of Medicines, Federal University of Ceará, Rua Coronel Nunes de Melo 1000, Rodolfo Teófilo, Fortaleza 60420-275, CE, Brazil;
| | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Fortaleza 60511-110, CE, Brazil; (A.P.M.d.S.); (G.S.d.S.); (F.O.F.); (G.J.Z.)
- Embrapa Soja, Londrina 86085-981, PR, Brazil
| | | |
Collapse
|
2
|
Alves OJA, Ozelin SD, Magalhães LF, Candido ACBB, Gimenez VMM, Silva MLAE, Cunha WR, Januário AH, Tavares DC, Magalhães LG, Pauletti PM. HPLC method for quantifying verbascoside in Stizophyllum perforatum and assessment of verbascoside acute toxicity and antileishmanial activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1324680. [PMID: 38143582 PMCID: PMC10749199 DOI: 10.3389/fpls.2023.1324680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
We report the chemical composition of the crude leaf extracts obtained from Stizophyllum perforatum (Cham.) Miers (Bignoniaceae), a simple high-performance liquid chromatography-diode array detection (HPLC-DAD) method based on mangiferin as an internal standard to quantify verbascoside, and the verbascoside acute oral toxicity and antileishmanial activity. HPLC-high-resolution mass spectrometry-DAD (HPLC-HRMS-DAD) analyses of the crude ethanol S. perforatum leaf extracts (CE-1 and CE-2) revealed that verbascoside was the major constituent in both extracts. CE-1 was purified, and verbascoside and casticin, among other compounds, were isolated. The developed HPLC-DAD method was validated and met the required standards. Investigation of the CE-2 acute toxicity indicated a lethal dose (LD50) greater than 2,000 mg/kg of body weight. Both CE-1 and CE-2 exhibited antileishmanial activity. The isolated compounds, verbascoside and casticin, also displayed antileishmanial activity with effective concentrations (IC50) of 6.23 and 24.20 µM against promastigote forms and 3.71 and 18.97 µM against amastigote forms of Leishmania amazonensis, respectively, but they were not cytotoxic to J774A.1 macrophages. Scanning electron microscopy of the L. amazonensis promastigotes showed that the parasites became more rounded and that their plasma membrane was altered in the presence of verbascoside. Additionally, transmission electron microscopy demonstrated that vacuoles emerged, lipids accumulated, kinetoplast size increased, and interstitial extravasation occurred in L. amazonensis promastigotes exposed to verbascoside. These findings suggest that S. perforatum is a promising candidate for further in vivo investigations against L. amazonensis.
Collapse
Affiliation(s)
| | - Saulo Duarte Ozelin
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | | | | | - Valéria Maria Melleiro Gimenez
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Wilson Roberto Cunha
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Ana Helena Januário
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Denise Crispim Tavares
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Lizandra Guidi Magalhães
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Patricia Mendonça Pauletti
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| |
Collapse
|
3
|
Azevedo CM, Meira CS, da Silva JW, Moura DMN, de Oliveira SA, da Costa CJ, Santos EDS, Soares MBP. Therapeutic Potential of Natural Products in the Treatment of Schistosomiasis. Molecules 2023; 28:6807. [PMID: 37836650 PMCID: PMC10574020 DOI: 10.3390/molecules28196807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 10/15/2023] Open
Abstract
It is estimated that 250 million people worldwide are affected by schistosomiasis. Disease transmission is related to the poor sanitation and hygiene habits that affect residents of impoverished regions in tropical and subtropical countries. The main species responsible for causing disease in humans are Schistosoma Mansoni, S. japonicum, and S. haematobium, each with different geographic distributions. Praziquantel is the drug predominantly used to treat this disease, which offers low effectiveness against immature and juvenile parasite forms. In addition, reports of drug resistance prompt the development of novel therapeutic approaches. Natural products represent an important source of new compounds, especially those obtained from plant sources. This review compiles data from several in vitro and in vivo studies evaluating various compounds and essential oils derived from plants with cercaricidal and molluscicidal activities against both juvenile and adult forms of the parasite. Finally, this review provides an important discussion on recent advances in molecular and computational tools deemed fundamental for more rapid and effective screening of new compounds, allowing for the optimization of time and resources.
Collapse
Affiliation(s)
- Carine Machado Azevedo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
| | - Cássio Santana Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Jaqueline Wang da Silva
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Danielle Maria Nascimento Moura
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Sheilla Andrade de Oliveira
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Cícero Jádson da Costa
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| |
Collapse
|
4
|
Mariath F, Baratto LC. Female naturalists and the patterns of suppression of women scientists in history: the example of Maria Sibylla Merian and her contributions about useful plants. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:17. [PMID: 37173737 PMCID: PMC10182609 DOI: 10.1186/s13002-023-00589-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND This work reunites many women naturalists who registered knowledge about native flora in scientific expeditions around the globe between the seventeenth and nineteenth centuries. Since male naturalists are more recognized in this period of time, we aimed to list female naturalists that published plant descriptions and observations, focusing on the work of Maria Sibylla Merian and to analyze her trajectory as an example to discuss the patterns of the suppression of women scientists. A second aim was to inventory the useful plants described in Maria Sibylla's Metamorphosis Insectorum Surinamensium and find pharmacological evidence about the traditional uses described for those plants cited as medicinal and toxic. METHODS A survey of female naturalists was carried out by searching information in Pubmed, Scielo, Google Scholar and Virtual Health Library. Once Maria Sibylla published her book Metamorphosis Insectorum Surinamensium by her own, without male co-authors, and also this book is one of the only to have text and illustrations altogether and there are reports indicating information on useful plants in this work, she and her book were chosen as subject of this research. All the information was tabulated by dividing the plants into food, medicinal, toxic, aromatic or other uses. Finally, with the combinations of the scientific name of medicinal and toxic plants with information about their popular uses, a search was carried out in databases in order to indicate current pharmacological studies that reported evidences about the traditional uses described. RESULTS We found 28 women naturalists who participated in scientific expeditions or trips, or in a curiosity cabinet, or who were collectors of Natural History between the seventeenth and nineteenth centuries. All these women illustrated botanical species and/or recorded their everyday or medicinal use or reported their observations in the form of a published work, letters or diaries. Also, the trajectory of Maria Sibylla Merian revealed that her scientific relevance has been neglected from the eighteenth century by mechanisms of suppression, most of the time by male depreciation, which can be seen as a pattern for suppression of women in science. However, Maria Sibyllas' contributions have been valued again in the twenty-first century. In Maria Sibylla's work, 54 plants were identified, 26 of them used for food, 4 of them aromatic, 8 medicinal, 4 toxic and 9 other uses. CONCLUSION This study evidences that there are female naturalists whose work could be an important source for ethnopharmacological studies. Researching about women scientists, talking about them and highlighting the gender bias present in the scientific academy about the way the history of science is told is essential for the construction of a more diverse and richer scientific academy. The traditional use of 7 of 8 medicinal plants and 3 of 4 toxic plants reported was correlated with pharmacological studies, highlighting the importance of this historical record and its potential to direct strategic research in traditional medicine.
Collapse
Affiliation(s)
- Fernanda Mariath
- Laboratory of Applied Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leopoldo C Baratto
- Laboratory of Applied Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Kuhn Agnes KN, Boeff DD, de Oliveira Carvalho L, Konrath EL. Ethnobotanical knowledge on native Brazilian medicinal plants traditionally used as anthelmintic agents - A review. Exp Parasitol 2023; 249:108531. [PMID: 37044282 DOI: 10.1016/j.exppara.2023.108531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Intestinal helminthiasis is a neglected disease that affects a significant portion of the global population, specifically in developing countries, where medicinal plants are widely used for therapeutic purposes. With the purpose to identify the native species used in traditional Brazilian medicine for the management of helminthiasis, ethnopharmacological books edited in Brazil documenting the folk use of medicinal plants were analyzed. The native species cited in at least three studies were selected, and bibliographic research was performed using electronic databases to identify their scientifically validated anthelmintic properties. The search retrieved 133 native species belonging to 88 genera and 43 families from all six Brazilian biomes. Fabaceae (14 Genera and 25 Species) and Asteraceae (7 Genera and 8 Species) were the most frequently cited families. The most reported native species were Baccharis crispa Spreng., Hymenaea courbaril L., Senna occidentalis (L.) Link, Carapa guianensis Aubl., Stachytarpheta cayennensis (Rich.) Vahl, Annona glabra L., Hymenaea stigonocarpa Mart. ex Hayne, Spigelia anthelmia L., Simarouba versicolor A.St.-Hil. and Anacardium occidentale L. Bark (19%) and leaves (17%) were the most commonly used plant parts, and decoction (27%) was the most preferred method of preparation. Evidence of the anthelmintic properties of most species was confirmed using in vitro assays for key human and animal parasites, including Haemonchus contortus, Hymenolepis diminuta, Schistosoma mansoni and Trichostrongylus spp. The species S. alata, S. occidentalis, A. occidentale, and S. anthelmia have been the subject of many biological studies, supporting their use as vermicides. The overall results obtained in this review revealed that Brazil is rich in traditional herbal medicines used to manage helminthiasis; however pharmacological investigations are lacking to confirm their therapeutic properties. Thus, this study could serve as a baseline to validate their use and encourage further clinical investigation of their vermifuge potential.
Collapse
Affiliation(s)
- Kelin Natalia Kuhn Agnes
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, 90610-000, Porto Alegre, RS, Brazil
| | - Daiana Daniele Boeff
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, 90610-000, Porto Alegre, RS, Brazil
| | - Letícia de Oliveira Carvalho
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, 90610-000, Porto Alegre, RS, Brazil
| | - Eduardo Luis Konrath
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Discovery of anti-infective adipostatins through bioactivity-guided isolation and heterologous expression of a type III polyketide synthase. Bioorg Chem 2021; 112:104925. [PMID: 34022708 DOI: 10.1016/j.bioorg.2021.104925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Antibiotic resistance and emerging viral pandemics have posed an urgent need for new anti-infective drugs. By screening our microbial extract library against the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the notorious ESKAPE pathogens, an active fraction was identified and purified, leading to an initial isolation of adipostatins A (1) and B (2). In order to diversify the chemical structures of adipostatins toward enhanced biological activities, a type III polyketide synthase was identified from the native producer, Streptomyces davawensis DSM101723, and was subsequently expressed in an E. coli host, resulting in the isolation of nine additional adipostatins 3-11, including two new analogs (9 and 11). The structures of 1-11 were established by HRMS, NMR, and chemical derivatization, including using a microgram-scale meta-chloroperoxybenzoic acid epoxidation-MS/MS analysis to unambiguously determine the double bond position in the alkyl chain. The present study discovered SARS-CoV-2 main protease inhibitory activity for the class of adipostatins for the first time. Several of the adipostatins isolated also exhibited antimicrobial activity against selected ESKAPE pathogens.
Collapse
|
7
|
Aneklaphakij C, Saigo T, Watanabe M, Naake T, Fernie AR, Bunsupa S, Satitpatipan V, Tohge T. Diversity of Chemical Structures and Biosynthesis of Polyphenols in Nut-Bearing Species. FRONTIERS IN PLANT SCIENCE 2021; 12:642581. [PMID: 33889165 PMCID: PMC8056029 DOI: 10.3389/fpls.2021.642581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 05/27/2023]
Abstract
Nuts, such as peanut, almond, and chestnut, are valuable food crops for humans being important sources of fatty acids, vitamins, minerals, and polyphenols. Polyphenols, such as flavonoids, stilbenoids, and hydroxycinnamates, represent a group of plant-specialized (secondary) metabolites which are characterized as health-beneficial antioxidants within the human diet as well as physiological stress protectants within the plant. In food chemistry research, a multitude of polyphenols contained in culinary nuts have been studied leading to the identification of their chemical properties and bioactivities. Although functional elucidation of the biosynthetic genes of polyphenols in nut species is crucially important for crop improvement in the creation of higher-quality nuts and stress-tolerant cultivars, the chemical diversity of nut polyphenols and the key biosynthetic genes responsible for their production are still largely uncharacterized. However, current technical advances in whole-genome sequencing have facilitated that nut plant species became model plants for omics-based approaches. Here, we review the chemical diversity of seed polyphenols in majorly consumed nut species coupled to insights into their biological activities. Furthermore, we present an example of the annotation of key genes involved in polyphenolic biosynthesis in peanut using comparative genomics as a case study outlining how we are approaching omics-based approaches of the nut plant species.
Collapse
Affiliation(s)
- Chaiwat Aneklaphakij
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoki Saigo
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Thomas Naake
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Somnuk Bunsupa
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Veena Satitpatipan
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
8
|
Loaiza-Cano V, Monsalve-Escudero LM, Filho CDSMB, Martinez-Gutierrez M, de Sousa DP. Antiviral Role of Phenolic Compounds against Dengue Virus: A Review. Biomolecules 2020; 11:biom11010011. [PMID: 33374457 PMCID: PMC7823413 DOI: 10.3390/biom11010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Phenolic compounds have been related to multiple biological activities, and the antiviral effect of these compounds has been demonstrated in several viral models of public health concern. In this review, we show the antiviral role of phenolic compounds against dengue virus (DENV), the most widespread arbovirus globally that, after its re-emergence, has caused multiple epidemic outbreaks, especially in the last two years. Twenty phenolic compounds with anti-DENV activity are discussed, including the multiple mechanisms of action, such as those directed against viral particles or viral proteins, host proteins or pathways related to the productive replication viral cycle and the spread of the infection.
Collapse
Affiliation(s)
- Vanessa Loaiza-Cano
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
| | - Laura Milena Monsalve-Escudero
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
| | | | - Marlen Martinez-Gutierrez
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
- Correspondence: (M.M.-G.); (D.P.d.S.); Tel.: +57-310-543-8583 (M.M.-G.); +55-833-216-7347 (D.P.d.S.)
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, CEP 58051-970 João Pessoa, PB, Brazil;
- Correspondence: (M.M.-G.); (D.P.d.S.); Tel.: +57-310-543-8583 (M.M.-G.); +55-833-216-7347 (D.P.d.S.)
| |
Collapse
|
9
|
Salehi B, Gültekin-Özgüven M, Kirkin C, Özçelik B, Morais-Braga MFB, Carneiro JNP, Bezerra CF, da Silva TG, Coutinho HDM, Amina B, Armstrong L, Selamoglu Z, Sevindik M, Yousaf Z, Sharifi-Rad J, Muddathir AM, Devkota HP, Martorell M, Jugran AK, Cho WC, Martins N. Antioxidant, Antimicrobial, and Anticancer Effects of Anacardium Plants: An Ethnopharmacological Perspective. Front Endocrinol (Lausanne) 2020; 11:295. [PMID: 32595597 PMCID: PMC7303264 DOI: 10.3389/fendo.2020.00295] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Anacardium plants have received increasing recognition due to its nutritional and biological properties. A number of secondary metabolites are present in its leaves, fruits, and other parts of the plant. Among the diverse Anacardium plants' bioactive effects, their antioxidant, antimicrobial, and anticancer activities comprise those that have gained more attention. Thus, the present article aims to review the Anacardium plants' biological effects. A special emphasis is also given to their pharmacological and clinical efficacy, which may trigger further studies on their therapeutic properties with clinical trials.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mine Gültekin-Özgüven
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Celale Kirkin
- Department of Gastronomy and Culinary Arts, School of Applied Sciences, Özyegin University, Istanbul, Turkey
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
- Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Istanbul, Turkey
| | | | - Joara Nalyda Pereira Carneiro
- Laboratory of Applied Mycology of Cariri, Department of Biological Sciences, Cariri Regional University, Crato, Brazil
| | - Camila Fonseca Bezerra
- Laboratory of Planning and Synthesis of Drugs, Department of Antibiotics, Federal University of Pernambuco, Recife, Brazil
| | - Teresinha Gonçalves da Silva
- Laboratory of Planning and Synthesis of Drugs, Department of Antibiotics, Federal University of Pernambuco, Recife, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil
| | - Benabdallah Amina
- Department of Agronomy, SAPVESA Laboratory, Nature and Life Sciences Faculty, University Chadli Bendjedid, El-Tarf, Algeria
| | - Lorene Armstrong
- State University of Ponta Grossa, Department of Pharmaceutical Sciences, Ponta Grossa, Paraná, Brazil
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, Nigde, Turkey
| | - Mustafa Sevindik
- Osmaniye Korkut Ata University, Bahçe Vocational School, Department of Food Processing, Osmaniye, Turkey
| | - Zubaida Yousaf
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mahmoud Muddathir
- Department of Horticulture, Faculty of Agriculture, University of Khartoum, Shambat, Sudan
| | - Hari Prasad Devkota
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción, Chile
| | - Arun Kumar Jugran
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre, Uttarakhand, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Barbatic acid from Cladia aggregata (lichen): Cytotoxicity and in vitro schistosomicidal evaluation and ultrastructural analysis against adult worms of Schistosoma mansoni. Toxicol In Vitro 2020; 65:104771. [DOI: 10.1016/j.tiv.2020.104771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/04/2019] [Accepted: 01/10/2020] [Indexed: 11/21/2022]
|
11
|
Rodrigues-Costa F, Slivinski J, Ióca LP, Bertonha AF, de Felício R, Cunha MGD, da Mata Madeira PV, Cauz ACG, Trindade DM, Freire VF, Ropke CD, Gales A, Brocchi M, Ferreira AG, Gueiros-Filho F, Trivella DBB, Berlinck RGS, Dessen A. Merulinic acid C overcomes gentamicin resistance in Enterococcus faecium. Bioorg Chem 2020; 100:103921. [PMID: 32464403 DOI: 10.1016/j.bioorg.2020.103921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022]
Abstract
Enterococci are gram-positive, widespread nosocomial pathogens that in recent years have developed resistance to various commonly employed antibiotics. Since finding new infection-control agents based on secondary metabolites from organisms has proved successful for decades, natural products are potentially useful sources of compounds with activity against enterococci. Herein are reported the results of a natural product library screening based on a whole-cell assay against a gram-positive model organism, which led to the isolation of a series of anacardic acids identified by analysis of their spectroscopic data and by chemical derivatizations. Merulinic acid C was identified as the most active anacardic acid derivative obtained against antibiotic-resistant enterococci. Fluorescence microscopy analyses showed that merulinic acid C targets the bacterial membrane without affecting the peptidoglycan and causes rapid cellular ATP leakage from cells. Merulinic acid C was shown to be synergistic with gentamicin against Enterococcus faecium, indicating that this compound could inspire the development of new antibiotic combinations effective against drug-resistant pathogens.
Collapse
Affiliation(s)
- Fernanda Rodrigues-Costa
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, 13083-970 Campinas, SP, Brazil; Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Juliano Slivinski
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Ariane F Bertonha
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Rafael de Felício
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, 13083-970 Campinas, SP, Brazil
| | | | - Paulo Vinicius da Mata Madeira
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, 13083-970 Campinas, SP, Brazil; Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Ana C G Cauz
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, São Paulo, Brazil
| | | | - Vítor F Freire
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | | | - Ana Gales
- Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Antônio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| | - Frederico Gueiros-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), CEP 05508-000, São Paulo, Brazil
| | | | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil.
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, 13083-970 Campinas, SP, Brazil; Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
12
|
Chemical Constituents of Anacardium occidentale as Inhibitors of Trypanosoma cruzi Sirtuins. Molecules 2019; 24:molecules24071299. [PMID: 30987092 PMCID: PMC6479711 DOI: 10.3390/molecules24071299] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 11/17/2022] Open
Abstract
Benznidazole and nifurtimox, the only drugs available for the treatment of Chagas disease, have limited efficacy and have been associated with severe adverse side effects. Thus, there is an urgent need to find new biotargets for the identification of novel bioactive compounds against the parasite and with low toxicity. Silent information regulator 2 (Sir2) enzymes, or sirtuins, have emerged as attractive targets for the development of novel antitrypanosomatid agents. In the present work, we evaluated the inhibitory effect of natural compounds isolated from cashew nut (Anacardium occidentale, L. Anacardiaceae) against the target enzymes TcSir2rp1 and TcSir2rp3 as well as the parasite. Two derivates of cardol (1, 2), cardanol (3, 4), and anacardic acid (5, 6) were investigated. The two anacardic acids (5, 6) inhibited both TcSir2rp1 and TcSir2rp3, while the cardol compound (2) inhibited only TcSir2rp1. The most potent sirtuin inhibitor active against the parasite was the cardol compound (2), with an EC50 value of 12.25 µM, similar to that of benznidazole. Additionally, compounds (1, 4), which were inactive against the sirtuin targets, presented anti-T. cruzi effects. In conclusion, our results showed the potential of Anacardium occidentale compounds for the development of potential sirtuin inhibitors and anti-Trypanosoma cruzi agents.
Collapse
|
13
|
Gemma S, Federico S, Brogi S, Brindisi M, Butini S, Campiani G. Dealing with schistosomiasis: Current drug discovery strategies. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1016/bs.armc.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Antiplasmodial evaluation of Anacardium occidentale and alkyl-phenols. REVISTA BRASILEIRA DE FARMACOGNOSIA 2019. [DOI: 10.1016/j.bjp.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Cardol triene inhibits dengue infectivity by targeting kl loops and preventing envelope fusion. Sci Rep 2018; 8:16643. [PMID: 30413789 PMCID: PMC6226472 DOI: 10.1038/s41598-018-35035-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/28/2018] [Indexed: 02/07/2023] Open
Abstract
Dengue virus causes a global burden that specific chemotherapy has not been established. A previous report suggested that anacardic acid inhibited hepatitis C virus infection. Here, we explored structure activity relationship of anacardic acid, cardanol, and cardol homologues with anti-DENV cellular infectivities. Cardol triene showed the highest therapeutic index at 29.07 with the CC50 and EC50 of 207.30 ± 5.24 and 7.13 ± 0.72 µM, respectively. Moreover, we observed that the more unsaturated the hydrocarbon tail, the higher the CC50s in all head groups. High CC50s were also found in HepG-2, THP-1, and HEK-293 cell lines where cardol triene CC50s were 140.27 ± 8.44, 129.77 ± 12.08, and 92.80 ± 3.93 µM, respectively. Cardol triene expressed pan-dengue inhibition with the EC50s of 5.35 to 8.89 µM and kl loops of dengue envelope proteins were major targets. The strong binding energy at T48, E49, A50, P53, K128, V130, L135, M196, L198, Q200, W206, L207, I270, and L277 prevented cellular pH-dependent fusion. Zika virus kl loops were aligned in the closed position preventing cardol triene to bind and inhibit fusion and infectivity. This study showed for the first time that cardol triene had a potential for further development as anti-dengue inhibitors.
Collapse
|
16
|
Pan Z, Baerson SR, Wang M, Bajsa‐Hirschel J, Rimando AM, Wang X, Nanayakkara NPD, Noonan BP, Fromm ME, Dayan FE, Khan IA, Duke SO. A cytochrome P450 CYP71 enzyme expressed in Sorghum bicolor root hair cells participates in the biosynthesis of the benzoquinone allelochemical sorgoleone. THE NEW PHYTOLOGIST 2018; 218:616-629. [PMID: 29461628 PMCID: PMC5887931 DOI: 10.1111/nph.15037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 05/24/2023]
Abstract
Sorgoleone, a major component of the hydrophobic root exudates of Sorghum spp., is probably responsible for many of the allelopathic properties attributed to members of this genus. Much of the biosynthetic pathway for this compound has been elucidated, with the exception of the enzyme responsible for the catalysis of the addition of two hydroxyl groups to the resorcinol ring. A library prepared from isolated Sorghum bicolor root hair cells was first mined for P450-like sequences, which were then analyzed by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) to identify those preferentially expressed in root hairs. Full-length open reading frames for each candidate were generated, and then analyzed biochemically using both a yeast expression system and transient expression in Nicotiana benthamiana leaves. RNA interference (RNAi)-mediated repression in transgenic S. bicolor was used to confirm the roles of these candidates in the biosynthesis of sorgoleone in planta. A P450 enzyme, designated CYP71AM1, was found to be capable of catalyzing the formation of dihydrosorgoleone using 5-pentadecatrienyl resorcinol-3-methyl ether as substrate, as determined by gas chromatography-mass spectroscopy (GC-MS). RNAi-mediated repression of CYP71AM1 in S. bicolor resulted in decreased sorgoleone contents in multiple independent transformant events. Our results strongly suggest that CYP71AM1 participates in the biosynthetic pathway of the allelochemical sorgoleone.
Collapse
Affiliation(s)
- Zhiqiang Pan
- US Department of AgricultureAgricultural Research ServiceNatural Products Utilization Research UnitUniversityMS 38677USA
| | - Scott R. Baerson
- US Department of AgricultureAgricultural Research ServiceNatural Products Utilization Research UnitUniversityMS 38677USA
| | - Mei Wang
- National Center for Natural Products ResearchSchool of PharmacyUniversity of MississippiUniversityMS 38677USA
| | - Joanna Bajsa‐Hirschel
- US Department of AgricultureAgricultural Research ServiceNatural Products Utilization Research UnitUniversityMS 38677USA
| | - Agnes M. Rimando
- US Department of AgricultureAgricultural Research ServiceNatural Products Utilization Research UnitUniversityMS 38677USA
| | - Xiaoqiang Wang
- Department of Biological SciencesUniversity of North TexasDentonTX 76203USA
| | - N. P. Dhammika Nanayakkara
- National Center for Natural Products ResearchSchool of PharmacyUniversity of MississippiUniversityMS 38677USA
| | - Brice P. Noonan
- Department of BiologyUniversity of MississippiUniversityMS 38677USA
| | - Michael E. Fromm
- Epicrop Technologies Inc.5701 N. 58th Street, Suite 1LincolnNE 68507USA
| | - Franck E. Dayan
- US Department of AgricultureAgricultural Research ServiceNatural Products Utilization Research UnitUniversityMS 38677USA
| | - Ikhlas A. Khan
- National Center for Natural Products ResearchSchool of PharmacyUniversity of MississippiUniversityMS 38677USA
| | - Stephen O. Duke
- US Department of AgricultureAgricultural Research ServiceNatural Products Utilization Research UnitUniversityMS 38677USA
| |
Collapse
|