1
|
Hong R, Han Y, Chen S. Advances in micro- and nano- delivery systems for increasing the stability, bioavailability and bioactivity of coenzyme Q 10. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 39819160 DOI: 10.1080/10408398.2025.2450543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Coenzyme Q10 acts as a liposoluble quinone compound in mitochondrial oxidative phosphorylation, serving as an electron carrier and protecting the cell membrane structure as an antioxidant. Coenzyme Q10 has notable health benefits, including anti-aging, anti-inflammatory, prevention of cardiovascular diseases, and assistance in cancer treatment. However, its poor water solubility, unstable chemical properties, and low bioavailability significantly limit its application. This article reviewed the design and development processes of various delivery systems for coenzyme Q10, discussing the advantages and disadvantages of different delivery systems and their improvement strategies, including improvements in the stability and accessibility of emulsions, achieving higher penetration rates for oleogels, and reducing the use of toxic substances in the production process of liposomes. The mechanisms behind coenzyme Q10's low stability and bioavailability were analyzed, and the bioactivity and research prospects of coenzyme Q10 were also discussed. In summary, this review offered valuable insights into the design and application of delivery systems for coenzyme Q10, which may provide a reference for its development and application in pharmaceuticals, cosmetics, health products, and other industries in the future.
Collapse
Affiliation(s)
- Ruoxuan Hong
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
- School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Yahong Han
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Maciejewska-Stupska K, Czarnecka K, Szymański P. Bioavailability enhancement of coenzyme Q 10: An update of novel approaches. Arch Pharm (Weinheim) 2024; 357:e2300676. [PMID: 38683827 DOI: 10.1002/ardp.202300676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Coenzyme Q10 (CoQ10) is an essential, lipid-soluble vitamin involved in electron transport in the oxidoreductive reactions of the mitochondrial respiratory chain. Structurally, the quinone ring is connected to an isoprenoid moiety, which has a high molecular weight. Over the years, coenzyme Q10 has become relevant in the treatment of several diseases, like neurodegenerative disorders, coronary diseases, diabetes, hypercholesterolemia, cancer, and others. According to studies, CoQ10 supplementation might be beneficial in the treatment of CoQ10 deficiencies and disorders associated with oxidative stress. However, the water-insoluble nature of CoQ10 is a major hindrance to successful supplementation. So far, many advancements in CoQ10 bioavailability enhancement have been developed using novel drug carriers such as solid dispersion, liposomes, micelles, nanoparticles, nanoemulsions, self-emulsifying drug systems, or various innovative approaches (CoQ10 complexation with proteins). This article aims to provide an update on methods to improve CoQ10 solubility and bioavailability.
Collapse
Affiliation(s)
- Karolina Maciejewska-Stupska
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
3
|
Yang Y, Wang S, Liu L, Yue B, Qi P, Zhang M, Song S. A Triterpene-Based bioactive drug delivery system for combined chemotherapy of liver cancer. Eur J Pharm Biopharm 2024; 201:114378. [PMID: 38917949 DOI: 10.1016/j.ejpb.2024.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Carrier materials always account for the majority particularly in nanosized formulations, which are administrated along with the active ingredient part might result in metabolism related toxicity. The usage of bioactive excipients could not only reduce the sided effect but also provide additional therapeutic effects. In the present study, a triterpene based micellar drug delivery system was developed using a bioactive solanesol derivative. Solanesylamine was prepared firstly followed by conjugating with poly (ethylene glycol) using maleic acid amide linkage. The amphiphilic drug carrier PEGylated (2-propyl-3-methylmaleic acid)-block-solanesol amine (mPEG-CDM-NH-SOL) could be formed into micelles and loaded with doxorubicin (DOX) inside. The micelles were about 112 nm in size and the drug loading content was about 5.97 wt%. An acid triggered drug release behavior was obviously observed for the DOX loaded pH-sensitive micelle mPEG-CDM-NH-SOL-DOX. While not for DOX-loaded micelles without pH-sensitivity (mPEG-NHS-NH-SOL). CCK8 assay showed that the micelles of PEGylated solanesylamines exhibited certain inhibitory effect on tumor cells at high concentration and the pH sensitive ones seemed more toxic. In vivo studies showed that the pH sensitive mPEG-CDM-NH-SOL-DOX had a superior anti-tumor effect, indicating its great potential in cancer treatment.
Collapse
Affiliation(s)
- Yanwei Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Shuaichao Wang
- School of Pharmacy, Henan University, Kaifeng, China 475004
| | - Lei Liu
- School of Pharmacy, Henan University, Kaifeng, China 475004.
| | - Bolin Yue
- School of Pharmacy, Henan University, Kaifeng, China 475004
| | - Peilan Qi
- College of Medical Science, Henan Vocational University of Science and Technology, Zhoukou, China 466000.
| | - Mengke Zhang
- School of Pharmacy, Henan University, Kaifeng, China 475004
| | - Shiyong Song
- School of Pharmacy, Henan University, Kaifeng, China 475004.
| |
Collapse
|
4
|
Lima M, Moreira B, Bertuzzi R, Lima-Silva A. Could nanotechnology improve exercise performance? Evidence from animal studies. Braz J Med Biol Res 2024; 57:e13360. [PMID: 38656076 PMCID: PMC11027182 DOI: 10.1590/1414-431x2024e13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
This review provides the current state of knowledge regarding the use of nutritional nanocompounds on exercise performance. The reviewed studies used the following nanocompounds: resveratrol-loaded lipid nanoparticles, folic acid into layered hydroxide nanoparticle, redox-active nanoparticles with nitroxide radicals, and iron into liposomes. Most of these nutritional nanocompounds seem to improve performance in endurance exercise compared to the active compound in the non-nanoencapsulated form and/or placebo. Nutritional nanocompounds also induced the following physiological and metabolic alterations: 1) improved antioxidant activity and reduced oxidative stress; 2) reduction in inflammation status; 3) maintenance of muscle integrity; 4) improvement in mitochondrial function and quality; 5) enhanced glucose levels during exercise; 6) higher muscle and hepatic glycogen levels; and 7) increased serum and liver iron content. However, all the reviewed studies were conducted in animals (mice and rats). In conclusion, nutritional nanocompounds are a promising approach to improving exercise performance. As the studies using nutritional nanocompounds were all conducted in animals, further studies in humans are necessary to better understand the application of nutritional nanocompounds in sport and exercise science.
Collapse
Affiliation(s)
- M.R. Lima
- Grupo de Pesquisa em Desempenho Humano, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
| | - B.J. Moreira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | - R. Bertuzzi
- Grupo de Estudos em Desempenho Aeróbio, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A.E. Lima-Silva
- Grupo de Pesquisa em Desempenho Humano, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
5
|
Oggero J, Gasser FB, Zacarías SM, Burns P, Baravalle ME, Renna MS, Ortega HH, Vaillard SE, Vaillard VA. PEGylation of Chrysin Improves Its Water Solubility while Preserving the In Vitro Biological Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19817-19831. [PMID: 38048427 DOI: 10.1021/acs.jafc.3c06357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Chrysin is a natural flavonoid that despite having numerous biological properties, its therapeutic value is limited due to its very low solubility in aqueous media. In this work, chrysin was conjugated with methoxypolyethylene glycols (mPEGs) of different molecular weights (350, 500, 750, and 2000 g/mol), affording PEGylated chrysins with high yields and excellent purities. In all cases, an increase in the water solubility of the conjugates was observed, which was highest when 500 g/mol of mPEG was used in the PEGylation reaction. Furthermore, in aqueous solution, PEGylated chrysins formed aggregates of ellipsoid shape. Electrochemical studies showed that the redox properties were conserved after PEGylation. While in vitro antibacterial and antifungal studies probed that the intrinsic activity was conserved, in vitro antitumor activities against HepG2 (liver carcinoma cells) and PC3 (prostate cancer cell) showed that PEGylated chrysins retained the cytotoxic activity and the ability of induction of apoptosis for the evaluated human cancer cells.
Collapse
Affiliation(s)
- Julia Oggero
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Ruta Nacional 168, km 0, Paraje "El Pozo", Santa Fe 3000, Argentina
| | - Fátima B Gasser
- Instituto de Ciencias Veterinarias del Litoral (ICIVET), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, Esperanza 3080, Argentina
| | - Silvia M Zacarías
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Ruta Nacional 168, km 0, Paraje "El Pozo", Santa Fe 3000, Argentina
| | - Patricia Burns
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ruta Nacional No. 168, km 472, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - María E Baravalle
- Instituto de Ciencias Veterinarias del Litoral (ICIVET), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, Esperanza 3080, Argentina
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Florentino Ameghino 50 bis, Gálvez, Santa Fe S2252, Argentina
| | - Maria Sol Renna
- Instituto de Ciencias Veterinarias del Litoral (ICIVET), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, Esperanza 3080, Argentina
| | - Hugo H Ortega
- Instituto de Ciencias Veterinarias del Litoral (ICIVET), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, Esperanza 3080, Argentina
| | - Santiago E Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Ruta Nacional 168, km 0, Paraje "El Pozo", Santa Fe 3000, Argentina
| | - Victoria A Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Ruta Nacional 168, km 0, Paraje "El Pozo", Santa Fe 3000, Argentina
| |
Collapse
|
6
|
Boateng ID. Polyprenols in Ginkgo biloba; a review of their chemistry (synthesis of polyprenols and their derivatives), extraction, purification, and bioactivities. Food Chem 2023; 418:136006. [PMID: 36996648 DOI: 10.1016/j.foodchem.2023.136006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
The Ginkgo biloba L. (GB) contains high bioactive compounds. To date, flavonoids and terpene trilactone have received the majority of attention in GB studies, and the GB has been utilized globally in functional food and pharmacological firms, with sales > $10 billion since 2017, while the other active components, for instance, polyprenols (a natural lipid) with various bioactivities have received less attention. Hence, this review focused on polyprenols' chemistry (synthesis of polyprenols and their derivatives) extraction, purification, and bioactivities from GB for the first time. The various extractions and purification methods (nano silica-based adsorbent, bulk ionic liquid membrane, etc.) were delved into, and their advantages and limitations were discussed. Besides, numerous bioactivities of the extracted Ginkgo biloba polyprenols (GBP) were reviewed. The review showed that GB contains some polyprenols in acetic esters' form. Prenylacetic esters are free of adverse effects. Besides, the polyprenols from GB have numerous bioactivities such as anti-bacterial, anti-cancer, anti-viral activity, etc. The application of GBPs in the food, cosmetics, and drugs industries such as micelles, liposomes, and nano-emulsions was delved into. Finally, the toxicity of polyprenol was reviewed, and it was concluded that GBP was not carcinogenic, teratogenic, or mutagenic, giving a theoretical justification for using GBP as a raw material for functional foods. This article will aid researchers to better understand the need to explore GBP usage.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, 1406 E Rollins Street, Columbia, MO 65211, United States.
| |
Collapse
|
7
|
Coenzyme Q10 Metabolism: A Review of Unresolved Issues. Int J Mol Sci 2023; 24:ijms24032585. [PMID: 36768907 PMCID: PMC9916783 DOI: 10.3390/ijms24032585] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
The variable success in the outcome of randomised controlled trials supplementing coenzyme Q10 (CoQ10) may in turn be associated with a number of currently unresolved issues relating to CoQ10 metabolism. In this article, we have reviewed what is currently known about these factors and where gaps in knowledge exist that need to be further elucidated. Issues addressed include (i) whether the bioavailability of CoQ10 could be improved; (ii) whether CoQ10 could be administered intravenously; (iii) whether CoQ10 could be administered via alternative routes; (iv) whether CoQ10 can cross the blood-brain barrier; (v) how CoQ10 is transported into and within target cells; (vi) why some clinical trials supplementing CoQ10 may have been unsuccessful; and (vii) which is the most appropriate tissue for the clinical assessment of CoQ10 status.
Collapse
|
8
|
Lan T, Yu C, Li R, Ma Z, Xi X, Chu Q. A Simple and Standardized Method for the Determination of Total Solanesol in Potato Leaves and Its Extracts Based on HPLC-MS. J AOAC Int 2021; 104:479-484. [PMID: 33956983 DOI: 10.1093/jaoacint/qsaa111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Solanesol is an important pharmaceutical intermediate raw material, mainly used to synthesize coenzyme Q10, vitamin K2. It can be found prominent in potato stems and leaves. But now potato stems and leaves are always abandoned or discarded as they are not suitable for use as feed in aquaculture or other purposes. These agricultural waste resources can be reutilized as the corresponding extracts. OBJECTIVE To develop a simple and standardized method for the detection of total solanesol in potato leaves and its extracts. METHODS N-hexane was chosen as the extraction solvent for three times in the solanesol extraction from potato leaves. HPLC-MS was used for the detection. RESULTS The LOQ was 0.3 µg/g and the linear range was from 0.1 to 50 µg/mL. The precision and stability were evaluated by the relative standard deviations (RSDs) of three samples (potato leaves, Extract-1, Extract-2) for interday and intraday. The accuracy of the method was evaluated by the recoveries of three different spiked concentrations of solanesol for three samples, and results showed it ranged from 80.7% to 99.0% with RSDs less than 8.7%. CONCLUSIONS The method we established can provide a simple and standardized way for the extraction and detection of total solanesol. HIGHLIGHTS The work laid a foundation for the resource reutilization of potato stem and leaf.
Collapse
Affiliation(s)
- Tao Lan
- China National Institute of Standardization, Beijing 100191, PR China
| | - Congcong Yu
- Hebei Guanzhuo Detection Technology Stock CO., Ltd, Shijiazhuang 050000, China
- Innovation Center of Food Quality and Safety Testing Technology of Hebei Province, Hangzhou, Zhejiang Province 310018, China
| | - Ren Li
- China National Institute of Standardization, Beijing 100191, PR China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Xingjun Xi
- China National Institute of Standardization, Beijing 100191, PR China
| | - Qiao Chu
- China National Institute of Standardization, Beijing 100191, PR China
| |
Collapse
|
9
|
CYP7A1, NPC1L1, ABCB1, and CD36 Polymorphisms Are Associated with Increased Serum Coenzyme Q 10 after Long-Term Supplementation in Women. Antioxidants (Basel) 2021; 10:antiox10030431. [PMID: 33799730 PMCID: PMC7998724 DOI: 10.3390/antiox10030431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/03/2023] Open
Abstract
Coenzyme Q10 (CoQ10), an essential component for energy production that exhibits antioxidant activity, is considered a health-supporting and antiaging supplement. However, intervention-controlled studies have provided variable results on CoQ10 supplementation benefits, which may be attributed to individual CoQ10 bioavailability differences. This study aimed to investigate the relationship between genetic polymorphisms and CoQ10 serum levels after long-term supplementation. CoQ10 levels at baseline and after one year of supplementation (150 mg) were determined, and eight single nucleotide polymorphisms (SNPs) in cholesterol metabolism and CoQ10 absorption, efflux, and cellular uptake related genes were assessed. Rs2032582 (ABCB1) and rs1761667 (CD36) were significantly associated with a higher increase in CoQ10 levels in women. In addition, in women, rs3808607 (CYP7A1) and rs2072183 (NPC1L1) were significantly associated with a higher increase in CoQ10 per total cholesterol levels. Subgroup analyses showed that these four SNPs were useful for classifying high- or low-responder to CoQ10 bioavailability after long-term supplementation among women, but not in men. On the other hand, in men, no SNP was found to be significantly associated with increased serum CoQ10. These results collectively provide novel evidence on the relationship between genetics and CoQ10 bioavailability after long-term supplementation, which may help understand and assess CoQ10 supplementation effects, at least in women.
Collapse
|
10
|
Fabrication of multilayer structural microparticles for co-encapsulating coenzyme Q10 and piperine: Effect of the encapsulation location and interface thickness. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Cateni F, Zacchigna M, Procida G. Synthesis and controlled drug delivery studies of a novel Ubiquinol-Polyethylene glycol-Vitamin E adduct. Bioorg Chem 2020; 105:104329. [PMID: 33068813 DOI: 10.1016/j.bioorg.2020.104329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/27/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
CoQ10 and Vitamin E are used in medicinal applications, but they are both lipophilic molecules and the poor solubility in aqueous media results in an inefficient administration, poor bioavailability and potential toxicity. A mixed conjugate Ubiquinol-Polyethylene glycol-Vitamin E was synthesized and characterized to improve the bioavailability of CoQ10 and Vitamin E. The synthesized mixed PEG conjugate was characterized by 1H NMR spectroscopy and MALDI spectrometry. The in vitro release of the conjugate was measured at various pH conditions and in human plasma and the evaluation of free CoQ10 and Vitamin E were also conducted. The obtained results demonstrated that more CoQ10 and Vitamin E were released from PEG conjugate at pH 7.4 and in plasma within the 24 h. The antioxidant activity evaluation was carried out by DPPH assay. Our results indicated that the chemical modification after esterification with PEG of the two drugs Ubiquinol and Vitamin E doesn't significantly affected their antioxidant potential.
Collapse
Affiliation(s)
- Francesca Cateni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.zle Europa, 1, 34127 Trieste, Italy.
| | - Marina Zacchigna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.zle Europa, 1, 34127 Trieste, Italy
| | - Giuseppe Procida
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.zle Europa, 1, 34127 Trieste, Italy
| |
Collapse
|
12
|
Setoguchi S, Nagata-Akaho N, Goto S, Yamakawa H, Watase D, Terada K, Koga M, Matsunaga K, Karube Y, Takata J. Evaluation of photostability and phototoxicity of esterified derivatives of ubiquinol-10 and their application as prodrugs of reduced coenzyme Q 10 for topical administration. Biofactors 2020; 46:983-994. [PMID: 33025665 DOI: 10.1002/biof.1678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 11/10/2022]
Abstract
Ubiquinol-10 (UqH-10), the fully reduced form of ubiquinone-10 (Uq-10, coenzyme Q10 ), is an antioxidant and is involved in energy production. However, physicochemical disadvantages, such as rapid oxidation, water-insolubility, photoinstability, and phototoxicity, limit its application. We previously reported that UqH-10 1,4-bis-N,N-dimethylglycinate improved the oxidation susceptibility and poor bioavailability of UqH-10 in rats. Herein, we evaluated the photochemical properties of UqH-esterified derivatives (N,N-dimethylglycinate, hemi-succinate, ethylsuccinate, and hemi-glutarate). Photostability was examined by irradiation using artificial sunlight and monochromatic light. The concentration of each compound was determined using LC-MS/MS. Phototoxicity was assessed by singlet oxygen and superoxide assays. Delivery of UqH-10 via UqH-esters to the HaCaT human keratinocyte cell line was determined using LC-MS/MS. UqH-esters showed higher photostability to artificial sunlight than Uq-10 and UqH-10. Uq-10 and UqH-10 were rapidly degraded by monochromatic light at 279 nm, whereas UqH-esters were more stable. UVA and/or UVB irradiation generated high levels of singlet oxygen and superoxide in Uq-10, whereas UqH-esters were unreactive. Additionally, UqH-esters effectively delivered UqH-10 to HaCaT cells following efficient uptake in their ester forms and ester bond hydrolysis in the cells. In conclusion, UqH-ester derivatives exhibit higher photostability and lower phototoxicity compared with Uq-10 and UqH-10.
Collapse
Affiliation(s)
- Shuichi Setoguchi
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Nami Nagata-Akaho
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shotaro Goto
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Hirofumi Yamakawa
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Daisuke Watase
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kazuki Terada
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Mitsuhisa Koga
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | | | - Yoshiharu Karube
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Jiro Takata
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
13
|
Rajdev K, Siddiqui EM, Jadaun KS, Mehan S. Neuroprotective potential of solanesol in a combined model of intracerebral and intraventricular hemorrhage in rats. IBRO Rep 2020; 8:101-114. [PMID: 32368686 PMCID: PMC7184235 DOI: 10.1016/j.ibror.2020.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) may be caused by trauma, aneurysm and arteriovenous malformation, as can any bleeding within the intracranial vault, including brain parenchyma and adjacent meningeal spaces (aneurism and atreovenous malformation). ICH is the cerebral stroke with the least treatable form. Over time, intraventricular hemorrhage (IVH) is associated with ICH, which contributes to hydrocephalus, and the major cause of most hemorrhagic death (Due to the cerebral hemorrhage and post hemorrhagic surgeries). Most patients suffer from memory impairment, grip strength, posture, and cognitive dysfunctions attributable to cerebral hemorrhage or post-brain hemorrhagic surgery. Nevertheless, a combined model of ICH based IVH is not present pre-clinically. Autologous blood (ALB) injection (20 μl/5 min) in the rat brain triggers hemorrhage, such as factors that further interfere with the normal functioning of neuroinflammatory cytokines, oxidative stress, and neurotransmitter dysfunction, such as CoQ10 insufficiency and dysregulation of mitochondrial ETC-complexes. For the prevention of post-brain hemorrhagic behavioral and neurochemical dysfunctions, there is no specific drug treatment available, only available therapy used to provide symptomatic relief. The current study reveals that long-term administration of Solanesol (SNL) 40 and 60 mg/kg alone and in combination with available drug therapy Donepezil (DNP) 3 mg/kg, Memantine (MEM) 20 mg/kg, Celecoxib (CLB) 20 mg/kg, Pregabalin (PGB) 30 mg/kg, may provide the neuroprotective effect by improving behavioral and neurochemical deficits, and gross pathological changes in ALB induced combined experimental model of ICH-IVH in post brain hemorrhagic conditions in rats. Thus, SNL can be a potential therapeutic approach to improve neuronal mitochondrial dysfunction associated with post brain hemorrhagic behavioral and neurochemical alterations.
Collapse
Affiliation(s)
- Kajal Rajdev
- Neuropharmacology Division, ISF College of Pharmacy, Moga, 142001 Punjab, India
| | | | | | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, 142001 Punjab, India
| |
Collapse
|
14
|
Bioavailability of Coenzyme Q 10: An Overview of the Absorption Process and Subsequent Metabolism. Antioxidants (Basel) 2020; 9:antiox9050386. [PMID: 32380795 PMCID: PMC7278738 DOI: 10.3390/antiox9050386] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
A lack of understanding of the processes determining the absorption and subsequent metabolism of coenzyme Q10 (CoQ10) has resulted in some manufacturers’ making incorrect claims regarding the bioavailability of their CoQ10 supplements, with potential consequences for the use of such products in clinical trials. The purpose of the present review article is, therefore, to describe the various stages of exogenous CoQ10 metabolism, from its first ingestion, stomach transit, absorption from the small intestine into the lymphatic system, transport in blood, and access into cells. In particular, the importance of CoQ10 crystal dispersion in the initial formulation is emphasised, the absence of which reduces bioavailability by 75%. In addition, evidence comparing the relative bioavailability and efficacy of ubiquinone and ubiquinol forms of CoQ10 has been reviewed.
Collapse
|
15
|
Yan N, Gai X, Xue L, Du Y, Shi J, Liu Y. Effects of NtSPS1 Overexpression on Solanesol Content, Plant Growth, Photosynthesis, and Metabolome of Nicotiana tabacum. PLANTS 2020; 9:plants9040518. [PMID: 32316447 PMCID: PMC7238068 DOI: 10.3390/plants9040518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Nicotiana tabacum solanesyl diphosphate synthase 1 (NtSPS1) is the key enzyme in solanesol biosynthesis. However, changes in the solanesol content, plant growth, photosynthesis, and metabolome of tobacco plants after NtSPS1 overexpression (OE) have not been previously reported. In the present study, these parameters, as well as photosynthetic gas exchange, chlorophyll content, and chlorophyll fluorescence parameters, were compared between NtSPS1 OE and wild type (WT) lines of tobacco. As expected, NtSPS1 OE significantly increased solanesol content in tobacco leaves. Although NtSPS1 OE significantly increased leaf growth, photosynthesis, and chlorophyll content, the chlorophyll fluorescence parameters in the leaves of the NtSPS1 OE lines were only slightly higher than those in the WT leaves. Furthermore, NtSPS1 OE resulted in 64 differential metabolites, including 30 up-regulated and 34 down-regulated metabolites, between the OE and WT leaves. Pathway enrichment analysis of these differential metabolites identified differentially enriched pathways between the OE and WT leaves, e.g., carbon fixation in photosynthetic organisms. The maximum carboxylation rate of RuBisCO and the maximum rate of RuBP regeneration were also elevated in the NtSPS1 OE line. To our knowledge, this is the first study to confirm the role of NtSPS1 in solanesol biosynthesis and its possible functional mechanisms in tobacco.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
- Correspondence: (N.Y.); (Y.L.); Tel.: +86-532-8870-1035 (N.Y. & Y.L.)
| | - Xiaolei Gai
- Yunnan Tobacco Leaf Company, Kunming 650000, China;
| | - Lin Xue
- Anhui Wannan Tobacco Leaf Co., Ltd., Xuancheng 242000, China;
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
- Correspondence: (N.Y.); (Y.L.); Tel.: +86-532-8870-1035 (N.Y. & Y.L.)
| |
Collapse
|
16
|
Miso Soup Consumption Enhances the Bioavailability of the Reduced Form of Supplemental Coenzyme Q 10. J Nutr Metab 2020; 2020:5349086. [PMID: 31998536 PMCID: PMC6969983 DOI: 10.1155/2020/5349086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential compound that is involved in energy production and is a lipid-soluble antioxidant. Although it has been proposed as an antiaging and a health-supporting supplement, its low bioavailability remains a significant issue. Concurrent food intake enhances the absorption of orally administered CoQ10, but it has not been fully established whether specific food substances affect intestinal CoQ10 absorption. Therefore, to determine whether the bioavailability of supplemental CoQ10 is affected by diet, P30, a granulated and reduced form of CoQ10, was dispersed in four different foods, clear soup, miso soup, milk soup, and raw egg sauce. Those foods which contained CoQ10 were consumed on different occasions at intervals of 6–14 weeks by the same participants. Thirteen participants were recruited in the single-dose and repeated clinical study. When miso soup containing P30 was provided, the serum CoQ10 concentration increased faster than when participants consumed other P30-containing soups or a P30-containing raw egg sauce. The area under the curve for serum CoQ10 during the first 5 h after consumption of the P30-containing miso soup was approximately 1.5 times larger than those after the consumption of other P30-containing meals. These data imply that the absorption of CoQ10 supplements can be enhanced by consuming them with food and in particular with specific food substances, such as miso soup.
Collapse
|
17
|
Solanesol derived therapeutic carriers for anticancer drug delivery. Int J Pharm 2019; 572:118823. [PMID: 31715346 DOI: 10.1016/j.ijpharm.2019.118823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/04/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
Metabolites of a large number of inert drug carriers can cause long-term exogenous biological toxicity. Therefore, carriers with simultaneous therapeutic effects may be a good choice for drug delivery. Herein, a series of pharmacologically active solanesol derivatives were synthesized and investigated for use as micellar drug carriers for cancer therapy. Solanesyl thiosalicylic acid (STS) was first synthesized by introducing a thiosalicylic acid group to solanesol, inspired by the characteristic structure of farnesyl thiosalicylic acid (FTS) which is a non-toxic inhibitor of all active forms of the RAS protein. Then, two amphiphilic derivatives of STS were formed with ester- and hydrazone (HZ)-bond linked methyl poly(ethylene glycol)(mPEG), mPEG-STS and mPEG-HZ-STS, respectively. The PEGylated STS could be formed stable nano-sized micelles loaded with Doxorubicin (DOX). In vitro, DOX loaded mPEG-STS and mPEG-HZ-STS micelles exhibited stronger tumor inhibition ability compared with free DOX. In vivo, blank mPEG-STS and mPEG-HZ-STS micelles showed an obvious inhibiting effect on tumor growth while the drug loaded micelles had the greatest tumor inhibition effect. The enhanced therapeutic effects and the synergistic effect observed with this solanesol-based drug delivery system could be attributed to the inherent therapeutic qualities of the drug carriers.
Collapse
|
18
|
Enhancement of intestinal absorption of coenzyme Q10 using emulsions containing oleyl polyethylene acetic acids. Eur J Pharm Sci 2019; 142:105144. [PMID: 31730802 DOI: 10.1016/j.ejps.2019.105144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/08/2019] [Accepted: 11/10/2019] [Indexed: 01/17/2023]
Abstract
Emulsions have often been prepared to improve absorption of lipophilic compounds that have poor solubility. Coenzyme Q10 (CoQ10) is a lipophilic compound that has been used as an anti-aging supplement. We focused on oleyl polyethyleneoxy acetic acid, an oxa acid derivative, to prepare emulsions of CoQ10 with the expectation of application to oral pharmaceutics. Oxa acids were purified and classified into four groups based on the average length of the ethylene oxide chain. The emulsion that were prepared using the four oxa acid groups were administered to rats and the plasma concentration profiles of CoQ10 were analyzed. The absorption of CoQ10 was improved in all emulsion groups compared with that in the powder group. The emulsion using oxa acid (n = 9.0) greatly increased the plasma concentration of CoQ10. Absorption was also improved by using emulsions containing larger percentage of oxa acids (6%, 15% and 23%) to compared with the same oxa acid (n = 9.0). The effects of oxa acids on cell viability were almost the same as those of conventional surfactants such as polyoxyethylene (20) sorbitan monooleate (Tween 80). The results showed that oxa acids are useful to prepare emulsions for oral administration and that the absorption of CoQ10 using oxa acids is significantly improved by using our formulations.
Collapse
|
19
|
Uchiyama H, Chae J, Kadota K, Tozuka Y. Formation of Food Grade Microemulsion with Rice Glycosphingolipids to Enhance the Oral Absorption of Coenzyme Q10. Foods 2019; 8:E502. [PMID: 31618946 PMCID: PMC6835640 DOI: 10.3390/foods8100502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study is to examine the possible use of rice glycosphingolipids (RGSLs) as an emulsifier to form food grade microemulsions (mean particle size, 10-20 nm) and improve the absorption of CoQ10 with a poor solubility property by prepared emulsion. Because RGSLs could act as an auxiliary emulsifying agent, its addition to the surfactant/oil mixture decreased the emulsion's particle size. This suggests that RGSLs exist between the water and oil phases to decrease oil droplet size via reduced interfacial tension. CoQ10-loaded microemulsion was also successfully prepared with RGSLs and powdered after freeze-drying with a cryoprotectant. CoQ10's solubility in freeze-dried particles was dramatically improved compared to that of CoQ10 powder. Moreover, oral absorption of CoQ10 was significantly enhanced when administered via CoQ10-loaded microemulsion. The area under the plasma concentration-time curve for the microemulsion improved up to seven-fold compared to CoQ10 powder. The use of RGSLs could, therefore, be an effective processing technique for improving CoQ10's solubility and absorption.
Collapse
Affiliation(s)
- Hiromasa Uchiyama
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Jisoon Chae
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Kazunori Kadota
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Yuichi Tozuka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
20
|
Alavi S, Akhlaghi S, Dadashzadeh S, Haeri A. Green Formulation of Triglyceride/Phospholipid-Based Nanocarriers as a Novel Vehicle for Oral Coenzyme Q10 Delivery. J Food Sci 2019; 84:2572-2583. [PMID: 31436862 DOI: 10.1111/1750-3841.14763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
This study was aimed to develop a novel nanocarrier for coenzyme Q10 (CoQ10) by a green process that prevented the use of surfactants and organic solvents. Triglyceride/phospholipid-based nanocarriers were developed through high-pressure homogenization (an industrial feasible process), and a 25-1 fractional factorial design was adopted to assess the influences of formulation variables on the considered responses, including vesicle size, entrapment efficiency, loading capacity, and solubility of the vehicles in simulated gastrointestinal fluids. The optimized formulation was further in-depth characterized in terms of morphology, release behavior, biocompatibility (Caco-2 cell cytotoxicity and histological examination), thermal behavior, and Fourier transform infrared analysis. Optimal nanocarriers were found to have mean particle size of 75 nm, narrow particle distribution, and CoQ10 entrapment of 95%. The optimized formulation was stable upon incubation in simulated gastrointestinal fluids without considerable leakage of cargo, which was in agreement with their sustained release behavior. Microscopic observations also confirmed nanosized nature of the vesicles and revealed their spherical shape. Moreover, toxicity evaluations at the cellular and tissue levels revealed their nontoxic nature. In conclusion, triglyceride/phospholipid-based nanocarriers proved to be a green safe vehicle for delivery of CoQ10 with industrial-scale production capability and could provide a new horizon for delivery of hydrophobic nutraceuticals. PRACTICAL APPLICATION: Green nanostructure formulation approaches have recently gained tremendous attraction for their safe profile especially when it comes to supplements, which are generally recommended for daily use. However, their sufficient association with cargoes and industrial-scale production have remained considerable challenges. This study focuses on the development of lipid-based nanocarriers for CoQ10 by an industrial feasible process that prevents the use of any surfactants or organic solvents.
Collapse
Affiliation(s)
- Sonia Alavi
- Dept. of Pharmaceutics, School of Pharmacy, Shahid Beheshti Univ. of Medical Sciences, Tehran, Iran
| | - Sarah Akhlaghi
- Dept. of Pharmaceutics, School of Pharmacy, Shahid Beheshti Univ. of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Dept. of Pharmaceutics, School of Pharmacy, Shahid Beheshti Univ. of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Dept. of Pharmaceutics, School of Pharmacy, Shahid Beheshti Univ. of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shahid Beheshti Univ. of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Yan N, Liu Y, Liu L, Du Y, Liu X, Zhang H, Zhang Z. Bioactivities and Medicinal Value of Solanesol and Its Accumulation, Extraction Technology, and Determination Methods. Biomolecules 2019; 9:biom9080334. [PMID: 31382471 PMCID: PMC6722674 DOI: 10.3390/biom9080334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/20/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022] Open
Abstract
Solanesol, an aliphatic terpene alcohol composed of nine isoprene units, is mainly found in solanaceous plants. Particularly, tobacco (Nicotiana tabacum), belonging to the Solanaceae family, is the richest plant source of solanesol, and its leaves have been regarded as the ideal material for solanesol extraction. Since the discovery of solanesol in tobacco, significant progress has been achieved in research on solanesol’s bioactivities, medicinal value, accumulation, extraction technology, and determination methods. Solanesol possesses strong free radical absorption ability and antioxidant activity owing to the presence of several non-conjugated double bonds. Notably, solanesol’s anti-inflammatory, neuroprotective, and antimicrobial activities have been previously demonstrated. Solanesol is a key intermediate in the synthesis of coenzyme Q10, vitamin K2, and the anticancer agent synergiser N-solanesyl-N,N′-bis(3,4-dimethoxybenzyl) ethylenediamine. Other applications of solanesol include solanesol derivative micelles for hydrophobic drug delivery, solanesol-derived scaffolds for bioactive peptide multimerization, and solanesol-anchored DNA for mediating vesicle fusion. Solanesol accumulation in plants is influenced by genetic and environmental factors, including biotic stresses caused by pathogen infections, temperature, illumination, and agronomic measures. Seven extraction technologies and seven determination methods of solanesol are also systematically summarized in the present review. This review can serve as a reference for solanesol’s comprehensive application.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Linqing Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
22
|
Yan N, Du Y, Zhang H, Zhang Z, Liu X, Shi J, Liu Y. RNA Sequencing Provides Insights into the Regulation of Solanesol Biosynthesis in Nicotiana tabacum Induced by Moderately High Temperature. Biomolecules 2018; 8:E165. [PMID: 30544626 PMCID: PMC6316125 DOI: 10.3390/biom8040165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 12/19/2022] Open
Abstract
Solanesol is a terpene alcohol composed of nine isoprene units that mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum). The present study aimed to investigate the regulation of solanesol accumulation in tobacco leaves induced by moderately high temperature (MHT). Exposure to MHT resulted in a significant increase in solanesol content, dry weight, and net photosynthetic rate in tobacco leaves. In MHT-exposed tobacco leaves, 492 and 1440 genes were significantly up- and downregulated, respectively, as revealed by RNA-sequencing. Functional enrichment analysis revealed that most of the differentially expressed genes (DEGs) were mainly related to secondary metabolite biosynthesis, metabolic pathway, carbohydrate metabolism, lipid metabolism, hydrolase activity, catalytic activity, and oxidation-reduction process. Moreover, 122 transcription factors of DEGs were divided into 22 families. Significant upregulation of N. tabacum 3-hydroxy-3-methylglutaryl-CoA reductase (NtHMGR), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (NtDXR), geranylgeranyl diphosphate synthase (NtGGPS), and solanesyl diphosphate synthase (NtSPS) and significant downregulation of N. tabacum 1-deoxy-d-xylulose 5-phosphate synthase (NtDXS) and farnesyl diphosphate synthase (NtFPS) transcription upon MHT exposure were monitored by quantitative real-time PCR (qRT-PCR). This study indicated that solanesol accumulation in tobacco leaves can be manipulated through regulation of the environmental temperature and established a basis for further elucidation of the molecular mechanism of temperature regulation of solanesol accumulation.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
23
|
Massaad-Massade L, Boutary S, Caillaud M, Gracia C, Parola B, Gnaouiya SB, Stella B, Arpicco S, Buchy E, Desmaële D, Couvreur P, Urbinati G. New Formulation for the Delivery of Oligonucleotides Using "Clickable" siRNA-Polyisoprenoid-Conjugated Nanoparticles: Application to Cancers Harboring Fusion Oncogenes. Bioconjug Chem 2018; 29:1961-1972. [PMID: 29727181 DOI: 10.1021/acs.bioconjchem.8b00205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of the present study is to take advantage of the unique property of polyisoprenoid chains to adopt a compact molecular conformation and to use these natural and biocompatible lipids as nanocarriers of drugs to deliver siRNA. A new chemical strategy is applied here to conjugate squalene (SQ) and solanesol (SOLA) to siRNA consisting of an activated variant of the azide-alkyne Huisgen cycloaddition also known as copper-free (Cu-free) click chemistry. We conjugated siRNA against TMPRSS2-ERG, a fusion oncogene found in more than 50% of prostate cancers to SQ or SOLA. First, several parameters such as molar ratio, solvents, temperature, incubation time, and the annealing schedule between both siRNA strands were investigated to bioconjugate the SQ or SOLA via Cu-free click chemistry. The best parameters of the new bioconjugation approach allowed us to (i) increase the synthesis yield up to 95%, (ii) avoid the formation of byproducts during the synthesis, and (iii) improve the reproducibility of the bioconjugation. Then, the biological activity of the resulting nanoparticles was assessed. In vitro, all four formulations were able to decrease the corresponding oncogene and oncoprotein expression. In vivo, only two of the four nanoformulations showed anti-neoplastic activity that seems to be tightly related to their dissimilar biodistribution behavior. In conclusion, we performed a new approach easily transposable for pharmaceutical development to synthesize siRNA-SQ and siRNA-SOLA and to obtain efficient siRNA-nanoparticles. The robustness of the process could be extended to several other polyterpenes and likely applied to other siRNA targeting genes whose overexpression results in the development of cancers or other genetic diseases.
Collapse
Affiliation(s)
- Liliane Massaad-Massade
- Université Paris-Saclay , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805.,CNRS , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805.,Gustave Roussy , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805
| | - Suzan Boutary
- Université Paris-Saclay , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805.,CNRS , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805.,Gustave Roussy , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805
| | - Marie Caillaud
- Université Paris-Saclay , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805.,CNRS , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805.,Gustave Roussy , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805
| | - Celine Gracia
- Université Paris-Saclay , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805.,CNRS , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805.,Gustave Roussy , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805
| | - Beatrice Parola
- Università degli Studi di Torino , Dipartimento di Scienza e Tecnologia del Farmaco , Via Pietro Giuria 9 , 10125 Torino , Italy
| | - Soukaina Bel Gnaouiya
- Università degli Studi di Torino , Dipartimento di Scienza e Tecnologia del Farmaco , Via Pietro Giuria 9 , 10125 Torino , Italy
| | - Barbara Stella
- Università degli Studi di Torino , Dipartimento di Scienza e Tecnologia del Farmaco , Via Pietro Giuria 9 , 10125 Torino , Italy
| | - Silvia Arpicco
- Università degli Studi di Torino , Dipartimento di Scienza e Tecnologia del Farmaco , Via Pietro Giuria 9 , 10125 Torino , Italy
| | - Eric Buchy
- Institut Galien , UMR CNRS 8612, Université Paris-Saclay, Faculté de Pharmacie , 5 rue J. B. Clément , 92296 Châtenay-Malabry , France
| | - Didier Desmaële
- Institut Galien , UMR CNRS 8612, Université Paris-Saclay, Faculté de Pharmacie , 5 rue J. B. Clément , 92296 Châtenay-Malabry , France
| | - Patrick Couvreur
- Institut Galien , UMR CNRS 8612, Université Paris-Saclay, Faculté de Pharmacie , 5 rue J. B. Clément , 92296 Châtenay-Malabry , France
| | - Giorgia Urbinati
- Université Paris-Saclay , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805.,CNRS , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805.,Gustave Roussy , Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif , France - 94805
| |
Collapse
|
24
|
Qin B, Liu L, Wu X, Liang F, Hou T, Pan Y, Song S. mPEGylated solanesol micelles as redox-responsive nanocarriers with synergistic anticancer effect. Acta Biomater 2017; 64:211-222. [PMID: 28963017 DOI: 10.1016/j.actbio.2017.09.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
We prepared an amphiphilic redox-responsive conjugate based on mPEGylated solanesol, solanesyl poly(ethylene glycol) dithiodipropionate (SPDP), along with its inert counterpart solanesyl poly(ethylene glycol) succinate (SPGS), which self-assembled in aqueous solution to form redox-responsive micelles. Used as efficient drug carriers for doxorubicin (DOX), the micelles acted as synergistic agents for cancer therapy. Dynamic light scattering (DLS) measurements showed that the SPDP micelles had average diameters of 111nm, which decreased to 88nm after the encapsulation of DOX. The mean diameters and size distribution of the disulfide-containing micelles changed obviously in the presence of the reducing agent glutathione (GSH), whereas no changes occurred in the case of redox-insensitive SPGS micelles. DOX could be loaded into both types of micelles, with drug loading content of about 4.0%. A significantly accelerated release of DOX was triggered by GSH for DOX-loaded SPDP micelles, compared with DOX-loaded SPGS micelles. Blank SPGS and SPDP micelles displayed higher inhibition of HeLa and MCF-7 cell proliferation but less cytotoxicity to normal L-02 cells at similar concentrations. Confocal microscopic observation indicated that a greater amount of DOX was delivered into the nuclei of cells following 9 or 12h incubation with DOX-loaded micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded SPDP micelles over free DOX and DOX-loaded SPGS micelles. All of the data presented here suggested that these SPDP micelles may have a dual function, as they are preferentially toxic for tumor cells alone and are efficient and safe carriers for anticancer drugs. STATEMENT OF SIGNIFICANCE Various nanoscale drug carriers were used to enhance therapeutic effect of many drugs. While, the metabolites of high quantities of carriers may cause additional short- or long-term toxicities. In this study, a new systems based on solanesol derivatives was developed for anticancer drug delivery. There are two features for this system. One is solanesol originated bioactivity of the carrier, which will synergistically facilitate therapeutic effect of the encapsulated drug. The other is the redox-responsive drug release behavior adaptable to the glutathione-rich atmosphere of tumor cell. All the hypothesis have been elucidated in this work through in vitro and in vivo studies. It was found that this drug delivery system may have a dual function, as they are preferentially toxic for tumor cells alone and are efficient and safe carriers for anticancer drugs.
Collapse
|
25
|
Lee JS, Suh JW, Kim ES, Lee HG. Preparation and Characterization of Mucoadhesive Nanoparticles for Enhancing Cellular Uptake of Coenzyme Q10. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8930-8937. [PMID: 28933847 DOI: 10.1021/acs.jafc.7b03300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The mucoadhesive nanoparticles (NPs) for oral delivery of coenzyme Q10 (CoQ10) were prepared using natural mucoadhesive polysaccharides, chitosan (CS), and dextran sulfate sodium salt (DS) in order to improve the solubility, cellular uptake, and thermo- and photostability of CoQ10. CoQ10-loaded NPs were prepared in the range of 340-450 nm with an entrapment efficiency of 60-98%. The mucoadhesiveness and cellular uptake of NPs were evaluated by measuring the amount of mucin adsorbed on NPs and CoQ10 absorbed in Caco-2 cells, respectively. CS/DS NPs had higher mucoadhesive strength than CS/sodium triphosphate pentabasic NPs (control group). Moreover, the solubility, cellular uptake, thermo- and photostability of CS/DS NPs were significantly improved compared with non-nanoencapsulated free CoQ10. Particularly, CS/DS NPs prepared with 0.5 mg/mL of CS and DS produced the highest mucoadhesiveness, solubility, cellular uptake, and cellular antioxidant activity. Thus, mucoadhesive CS/DS NPs may be an effective oral delivery platform for improving bioavailability of CoQ10.
Collapse
Affiliation(s)
- Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University , 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Ji Woon Suh
- Department of Food and Nutrition, Hanyang University , 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Eun Suh Kim
- Department of Food and Nutrition, Hanyang University , 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University , 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|