1
|
Locali-Pereira AR, Solé-Jamault V, Davy J, Cherkaoui M, Rogniaux H, Mameri H, Le Gall S, Beaumal V, Rabesona H, Laurent S, Nicoletti VR, Berton-Carabin C, Boire A. Large-Scale Chromatography for the Isolation of 7S Globulin Enriched Fraction from Pigeon Pea Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11288-11302. [PMID: 40274608 DOI: 10.1021/acs.jafc.5c01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Pigeon pea (Cajanus cajan) contains around 60% globulin proteins, of which 7S globulin is the most abundant fraction. In this work, a purification protocol for pigeon pea 7S globulin was developed using large-scale chromatography. The process was designed on an analytical scale through desalting of the crude protein extract followed by anion exchange chromatography and size exclusion chromatography. Then, the process was scaled up to a large scale. The purified fraction presented a protein content of 89 g/100 g powder and yield close to 23%. The isolated 7S globulin showed two main subunits of 64 and 49 kDa, identified as the α- and β-chains of β-conglycinin by proteomic analysis. The developed protocol was shown to be suitable for purifying pigeon pea 7S globulin on a large scale, and it is relevant for isolating this fraction from other pulse seeds in sufficient quantities for their characterization and evaluation of functional properties.
Collapse
Affiliation(s)
- Adilson Roberto Locali-Pereira
- Institute of Biosciences, Humanities and Exact Sciences, Department of Food Engineering and Technology, Unesp - São Paulo State University, Cristóvão Colombo Street, 2265, São José do Rio Preto, SP 15054-000, Brazil
| | | | | | - Mehdi Cherkaoui
- INRAE, UR BIA, Nantes F-44316, France
- INRAE, PROBE/CALIS Research Infrastructures, BIBS Facility, Nantes F-44300, France
| | - Hélène Rogniaux
- INRAE, UR BIA, Nantes F-44316, France
- INRAE, PROBE/CALIS Research Infrastructures, BIBS Facility, Nantes F-44300, France
| | - Hamza Mameri
- UMR IATE, Univ Montpellier, INRAE, Institut-Agro Montpellier, Montpellier F-34060, France
| | - Sophie Le Gall
- INRAE, UR BIA, Nantes F-44316, France
- INRAE, PROBE/CALIS Research Infrastructures, BIBS Facility, Nantes F-44300, France
| | | | | | | | - Vânia Regina Nicoletti
- Institute of Biosciences, Humanities and Exact Sciences, Department of Food Engineering and Technology, Unesp - São Paulo State University, Cristóvão Colombo Street, 2265, São José do Rio Preto, SP 15054-000, Brazil
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes F-44316, France
- Laboratory of Food Process Engineering, Wageningen University, P.O. Box 17, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | | |
Collapse
|
2
|
Choudhary R, Ahmad F, Kaya C, Upadhyay SK, Muneer S, Kumar V, Meena M, Liu H, Upadhyaya H, Seth CS. Decrypting proteomics, transcriptomics, genomics, and integrated omics for augmenting the abiotic, biotic, and climate change stress resilience in plants. JOURNAL OF PLANT PHYSIOLOGY 2025; 305:154430. [PMID: 39832424 DOI: 10.1016/j.jplph.2025.154430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
As our planet faces increasing environmental challenges, such as biotic pressures, abiotic stressors, and climate change, it is crucial to understand the complex mechanisms that underlie stress responses in crop plants. Over past few years, the integration of techniques of proteomics, transcriptomics, and genomics like LC-MS, IT-MS, MALDI-MS, DIGE, ESTs, SAGE, WGS, GWAS, GBS, 2D-PAGE, CRISPR-Cas, cDNA-AFLP, HLS, HRPF, MPSS, CAGE, MAS, IEF, MudPIT, SRM/MRM, SWATH-MS, ESI have significantly enhanced our ability to comprehend the molecular pathways and regulatory networks, involved in balancing the ecosystem/ecology stress adaptation. This review offers thorough synopsis of the current research on utilizing these multi-omics methods (including metabolomics, ionomics) for battling abiotic (salinity, temperature (chilling/freezing/cold/heat), flood (hypoxia), drought, heavy metals/loids), biotic (pathogens like fungi, bacteria, virus, pests, and insects (aphids, caterpillars, moths, mites, nematodes) and climate change stress (ozone, ultraviolet radiation, green house gases, carbon dioxide). These strategies can expedite crop improvement, and act as powerful tools with high throughput and instant database generation rates. They also provide a platform for interpreting intricate, systematic signalling pathways and knowing how different environmental stimuli cause phenotypic responses at cellular and molecular level by changing the expression of stress-responsive genes like RAB18, KIN1, RD29B, OsCIPK03, OsSTL, SIAGL, bZIP, SnRK, ABF. This review discusses various case studies that exemplify the successful implementation of these omics tools to enhance stress tolerance in plants. Finally, it highlights challenges and future prospects of utilizing these approaches in combating stress, emphasizing the need for interdisciplinary collaborations and bio-technological advancements for sustainable agriculture and food security.
Collapse
Affiliation(s)
- Rashmi Choudhary
- Department of Botany, University of Delhi, New Delhi, 110007, Delhi, India.
| | - Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey.
| | - Sudhir Kumar Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India.
| | - Sowbiya Muneer
- Department of Horticulture and Food Science, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Vinod Kumar
- Department of Botany, Government College for Women Gandhi Nagar, Jammu, 180004, Jammu & Kashmir, India.
| | - Mukesh Meena
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China.
| | - Hrishikesh Upadhyaya
- Department of Botany, Cotton University, Pan Bazaar, Guwahati, 781001, Assam, India.
| | | |
Collapse
|
3
|
Noor MMA, Tahjib-Ul-Arif M, Alim SMA, Islam MM, Hasan MT, Babar MA, Hossain MA, Jewel ZA, Murata Y, Mostofa MG. Lentil adaptation to drought stress: response, tolerance, and breeding approaches. FRONTIERS IN PLANT SCIENCE 2024; 15:1403922. [PMID: 39228838 PMCID: PMC11368723 DOI: 10.3389/fpls.2024.1403922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024]
Abstract
Lentil (Lens culinaris Medik.) is a cool season legume crop that plays vital roles in food and nutritional security, mostly in the least developed countries. Lentil is often cultivated in dry and semi-dry regions, where the primary abiotic factor is drought, which negatively impacts lentil growth and development, resulting in a reduction of yield. To withstand drought-induced multiple negative effects, lentil plants evolved a variety of adaptation strategies that can be classified within three broad categories of drought tolerance mechanisms (i.e., escape, avoidance, and tolerance). Lentil adapts to drought by the modulation of various traits in the root system, leaf architecture, canopy structure, branching, anatomical features, and flowering process. Furthermore, the activation of certain defensive biochemical pathways as well as the regulation of gene functions contributes to lentil drought tolerance. Plant breeders typically employ conventional and mutational breeding approaches to develop lentil varieties that can withstand drought effects; however, little progress has been made in developing drought-tolerant lentil varieties using genomics-assisted technologies. This review highlights the current understanding of morpho-physiological, biochemical, and molecular mechanisms of lentil adaptation to drought stress. We also discuss the potential application of omics-assisted breeding approaches to develop lentil varieties with superior drought tolerance traits.
Collapse
Affiliation(s)
- Md. Mahmud Al Noor
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - S. M. Abdul Alim
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Mohimenul Islam
- Horticulture Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Toufiq Hasan
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ali Babar
- Agronomy Departments, University of Florida, Gainesville, FL, United States
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Zilhas Ahmed Jewel
- Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Yoshiyuki Murata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Bakala HS, Devi J, Singh G, Singh I. Drought and heat stress: insights into tolerance mechanisms and breeding strategies for pigeonpea improvement. PLANTA 2024; 259:123. [PMID: 38622376 DOI: 10.1007/s00425-024-04401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
MAIN CONCLUSION Pigeonpea has potential to foster sustainable agriculture and resilience in evolving climate change; understanding bio-physiological and molecular mechanisms of heat and drought stress tolerance is imperative to developing resilience cultivars. Pigeonpea is an important legume crop that has potential resilience in the face of evolving climate scenarios. However, compared to other legumes, there has been limited research on abiotic stress tolerance in pigeonpea, particularly towards drought stress (DS) and heat stress (HS). To address this gap, this review delves into the genetic, physiological, and molecular mechanisms that govern pigeonpea's response to DS and HS. It emphasizes the need to understand how this crop combats these stresses and exhibits different types of tolerance and adaptation mechanisms through component traits. The current article provides a comprehensive overview of the complex interplay of factors contributing to the resilience of pigeonpea under adverse environmental conditions. Furthermore, the review synthesizes information on major breeding techniques, encompassing both conventional methods and modern molecular omics-assisted tools and techniques. It highlights the potential of genomics and phenomics tools and their pivotal role in enhancing adaptability and resilience in pigeonpea. Despite the progress made in genomics, phenomics and big data analytics, the complexity of drought and heat tolerance in pigeonpea necessitate continuous exploration at multi-omic levels. High-throughput phenotyping (HTP) is crucial for gaining insights into perplexed interactions among genotype, environment, and management practices (GxExM). Thus, integration of advanced technologies in breeding programs is critical for developing pigeonpea varieties that can withstand the challenges posed by climate change. This review is expected to serve as a valuable resource for researchers, providing a deeper understanding of the mechanisms underlying abiotic stress tolerance in pigeonpea and offering insights into modern breeding strategies that can contribute to the development of resilient varieties suited for changing environmental conditions.
Collapse
Affiliation(s)
- Harmeet Singh Bakala
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jomika Devi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
- Texas A&M University, AgriLife Research Center, Beaumont, TX, 77713, USA.
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
5
|
Fernández Sosa EI, Chaves MG, Peyrano F, Quiroga AV, Avanza MV. Thermal Gelation of Proteins from Cajanus cajan Influenced by pH and Ionic Strength. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:574-583. [PMID: 37597067 DOI: 10.1007/s11130-023-01086-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
Cajanus cajan [pigeon pea (PP)] is an important legume crop for subsistence agriculture and its seeds are an alternative plant-based protein source. PP protein isolates (PPI) are able to form heat-induced gels that could be used for food applications. The aim of this work was to study the influence of pH (2.1, 3.9, 6.3, and 8.3) and ionic strength (μ) (0.10 and 0.54) on thermal stability and thermal gelation of PPI obtained by alkaline extraction (pH 8.0) and isoelectric precipitation. Thermal stability of PPI changed with pH variation at low ionic strength (μ = 0.10), decreasing this dependence with the increase of ionic strength (μ = 0.54). At μ = 0.10, gelation capacity of PPI was lower at pH 2.1 and pH 3.9. These gels presented a coarse network, which entails low WHC. At pH 6.3 and pH 8.3, gels showed a solid-like character with a compact and homogeneous matrix, with better WHC. At μ = 0.54, gel formation was favoured at pH 2.1 and pH 3.9. G'20/G'95 ratio values and differential solubility results suggest that hydrogen bonds and electrostatic interactions could play an important role in gel formation at pH 6.3 and pH 8.3.
Collapse
Affiliation(s)
- Eliana Isabel Fernández Sosa
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE) and Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBANEA), UNNE-CONICET, Avenida Libertad 5470 (3400), Corrientes, República Argentina.
| | - María Guadalupe Chaves
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE) and Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBANEA), UNNE-CONICET, Avenida Libertad 5470 (3400), Corrientes, República Argentina
| | - Felicitas Peyrano
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE) and Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBANEA), UNNE-CONICET, Avenida Libertad 5470 (3400), Corrientes, República Argentina
| | - Alejandra Viviana Quiroga
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET, 47 y 116 (1900), La Plata, Buenos Aires, República Argentina
| | - María Victoria Avanza
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE) and Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBANEA), UNNE-CONICET, Avenida Libertad 5470 (3400), Corrientes, República Argentina
| |
Collapse
|
6
|
Jan N, Rather AMUD, John R, Chaturvedi P, Ghatak A, Weckwerth W, Zargar SM, Mir RA, Khan MA, Mir RR. Proteomics for abiotic stresses in legumes: present status and future directions. Crit Rev Biotechnol 2023; 43:171-190. [PMID: 35109728 DOI: 10.1080/07388551.2021.2025033] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Legumes are the most important crop plants in agriculture, contributing 27% of the world's primary food production. However, productivity and production of Legumes is reduced due to increasing environmental stress. Hence, there is a pressing need to understand the molecular mechanism involved in stress response and legumes adaptation. Proteomics provides an important molecular approach to investigate proteins involved in stress response. Both the gel-based and gel-free-based techniques have significantly contributed to understanding the proteome regulatory network in leguminous plants. In the present review, we have discussed the role of different proteomic approaches (2-DE, 2 D-DIGE, ICAT, iTRAQ, etc.) in the identification of various stress-responsive proteins in important leguminous crops, including soybean, chickpea, cowpea, pigeon pea, groundnut, and common bean under variable abiotic stresses including heat, drought, salinity, waterlogging, frost, chilling and metal toxicity. The proteomic analysis has revealed that most of the identified differentially expressed proteins in legumes are involved in photosynthesis, carbohydrate metabolism, signal transduction, protein metabolism, defense, and stress adaptation. The proteomic approaches provide insights in understanding the molecular mechanism of stress tolerance in legumes and have resulted in the identification of candidate genes used for the genetic improvement of plants against various environmental stresses. Identifying novel proteins and determining their expression under different stress conditions provide the basis for effective engineering strategies to improve stress tolerance in crop plants through marker-assisted breeding.
Collapse
Affiliation(s)
- Nelofer Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | | | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Sajad Majeed Zargar
- Division of Plant Biotechnology, Faculty of Horticulture, SKUAST-Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Jammu, India
| | - Mohd Anwar Khan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| |
Collapse
|
7
|
Protein isolates from Cajanus cajan L. as surfactant for o:w emulsions: pH and ionic strength influence on protein structure and emulsion stability. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Fernández Sosa EI, Chaves MG, Quiroga AV, Avanza MV. Comparative Study of Structural and Physicochemical Properties of Pigeon Pea (Cajanus cajan L.) Protein Isolates and its Major Protein Fractions. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:37-45. [PMID: 33387172 DOI: 10.1007/s11130-020-00871-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Pigeon pea protein isolates (PPI) are an option to obtain a high yield of good quality proteins and represent a great potential for the food industry. In this work, physicochemical and structural properties of albumin (ALB), globulin (GLB), and PPI obtained at different pHs (8, 9, 10, and 11) were studied to deepen the knowledge of these proteins for future application. GLB presented protein aggregates and polypeptides characteristics of 7S vicilin subunits while ALB presented polypeptides with low molecular masses. GLB showed a more compact and less flexible structure than ALB fraction due to the distinct conformational characteristics found in DSC, fluorescence spectroscopy, Ho. These structural characteristics conferred GLB greater conformational stability (∆GH2O) than ALB fraction. The latter presented a higher proportion of β-strand in aggregated structures. PPI11 showed the highest protein recovery, but the least So with more presence of protein aggregates with the least proportion of β-strands in aggregated structures. A higher percentage of protein unfolding and exposure of hydrophobic residues to solvent was observed as the extraction pH of the isolates increased. Enthalpy change of transition decreased, and the maximum emission wavelength shifted to red in fluorescence spectroscopy. However, PPI11 showed only a slight increase in Ho (10%) with respect to PPI8. The variation in pH for protein extraction constitutes a simple, rapid, and low-cost method to obtain PPI with physicochemical and structural properties that will determine its functional properties and their use as food ingredients.
Collapse
Affiliation(s)
- Eliana Isabel Fernández Sosa
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE) and Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBANEA) UNNE-CONICET, Avenida Libertad 5470, 3400, Corrientes, República Argentina.
| | - María Guadalupe Chaves
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE) and Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBANEA) UNNE-CONICET, Avenida Libertad 5470, 3400, Corrientes, República Argentina
| | - Alejandra Viviana Quiroga
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) UNLP-CONICET, 47 y 116, 1900, La Plata, República Argentina
| | - María Victoria Avanza
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE) and Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBANEA) UNNE-CONICET, Avenida Libertad 5470, 3400, Corrientes, República Argentina
| |
Collapse
|
9
|
Sun X, Ohanenye IC, Ahmed T, Udenigwe CC. Microwave treatment increased protein digestibility of pigeon pea (Cajanus cajan) flour: Elucidation of underlying mechanisms. Food Chem 2020; 329:127196. [DOI: 10.1016/j.foodchem.2020.127196] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/17/2020] [Accepted: 05/29/2020] [Indexed: 01/28/2023]
|
10
|
Singh N, Rai V, Singh NK. Multi-omics strategies and prospects to enhance seed quality and nutritional traits in pigeonpea. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00341-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
11
|
Awana M, Jain N, Samota MK, Rani K, Kumar A, Ray M, Gaikwad K, Praveen S, Singh NK, Singh A. Protein and gene integration analysis through proteome and transcriptome brings new insight into salt stress tolerance in pigeonpea (Cajanus cajan L.). Int J Biol Macromol 2020; 164:3589-3602. [PMID: 32882275 DOI: 10.1016/j.ijbiomac.2020.08.223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/09/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Salt stress is a major constrain to the productivity of nutritionally rich pigeonpea, an important legume of SE Asia and other parts of the world. The present study provides a comprehensive insight on integrated proteomic and transcriptomic analysis of root and shoot tissues of contrasting pigeonpea varieties (ICP1071- salt-sensitive; ICP7- salt-tolerant) to unravel salt stress induced pathways. Proteome analysis revealed 82 differentially expressed proteins (DEPs) with ≥±1.5 fold expression on 2-Dimensional (2D) gel. Of these, 25 DEPs identified through MALDI-TOF/TOF were classified using Uniprot software into functional categories. Pathways analyses using KAAS server showed the highest abundance of functional genes regulating metabolisms of carbohydrate followed by protein folding/degradation, amino acids and lipids. Expression studies on six genes (triosephosphate isomerase, oxygen evolving enhancer protein 1, phosphoribulokinase, cysteine synthase, oxygen evolving enhancer protein 2 and early nodulin like protein 2) with ≥±3 fold change were performed, and five of these showed consistency in transcript and protein expressions. Transcript analysis of root and shoot led to positive identification of 25 differentially expressed salt-responsive genes, with seven genes having ≥±5 fold change have diverse biological functions. Our combinatorial analysis suggests important role of these genes/proteins in providing salt tolerance in pigeonpea.
Collapse
Affiliation(s)
- Monika Awana
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Neha Jain
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Mahesh Kumar Samota
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; Horticulture Crop Processing Division, ICAR - Central Institute of Post Harvest Engineering and Technology, Abohar, Punjab 152116, India
| | - Kirti Rani
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Arbind Kumar
- Psichem Biotech Private Limited, Uttar Pradesh 201005, India
| | - Mrinmoy Ray
- Division of Forecasting and Agricultural Systems Modelling, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
12
|
Ohanenye IC, Tsopmo A, Ejike CE, Udenigwe CC. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Bu G, Li T, Zhu T, Xi G. Identification of the linear immunodominant epitopes in the β subunit of β-conglycinin and preparation of epitope antibodies. Int J Biol Macromol 2020; 154:724-731. [PMID: 32198043 DOI: 10.1016/j.ijbiomac.2020.03.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 11/29/2022]
Abstract
β-conglycinin is one of the major allergens in soybean protein. The purpose of this study was to predict and to identify the major linear epitopes of the β subunit of β-conglycinin. Potential linear epitopes were predicted and confirmed by three immunoinformatics tools combined with the Immune Epitope Database (IEDB). Ten potential epitope peptides were synthesized by Fmoc (9-fluorenylmethoxycarbonyl) solid phase peptide synthesis and were validated by the indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) using sera from soybean allergic patients. Polyclonal antibodies, which were prepared by immunizing rabbits with synthesized peptides, were used to confirm their binding ability with β-conglycinin through western blot and dot blot assays. The results showed that 10 peptides were screened as the main epitopes for the β subunit of β-conglycinin. All 10 peptides (P1-P10) presented IgG binding activity, and P2 and P6 were also validated as IgE binding peptides. Moreover, the results of dot blot showed that P5 and P8 might be located inside the protein molecule. Western blot indicated that most of polyclonal antibodies were bound effectively to the β subunit of β-conglycinin. In addition, few polyclonal antibodies exhibited an immune cross-reaction with the α and α' subunits.
Collapse
Affiliation(s)
- Guanhao Bu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Tanghao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Tingwei Zhu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Guanpeng Xi
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
14
|
Seed protein content and its relationships with agronomic traits in pigeonpea is controlled by both main and epistatic effects QTLs. Sci Rep 2020; 10:214. [PMID: 31937848 PMCID: PMC6959250 DOI: 10.1038/s41598-019-56903-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/10/2019] [Indexed: 11/08/2022] Open
Abstract
The genetic architecture of seed protein content (SPC) and its relationships to agronomic traits in pigeonpea is poorly understood. Accordingly, five F2 populations segregating for SPC and four agronomic traits (seed weight (SW), seed yield (SY), growth habit (GH) and days to first flowering (DFF)) were phenotyped and genotyped using genotyping-by-sequencing approach. Five high-density population-specific genetic maps were constructed with an average inter-marker distance of 1.6 to 3.5 cM, and subsequently, integrated into a consensus map with average marker spacing of 1.6 cM. Based on analysis of phenotyping data and genotyping data, 192 main effect QTLs (M-QTLs) with phenotypic variation explained (PVE) of 0.7 to 91.3% were detected for the five traits across the five populations. Major effect (PVE ≥ 10%) M-QTLs included 14 M-QTLs for SPC, 16 M-QTLs for SW, 17 M-QTLs for SY, 19 M-QTLs for GH and 24 M-QTLs for DFF. Also, 573 epistatic QTLs (E-QTLs) were detected with PVE ranging from 6.3 to 99.4% across traits and populations. Colocalization of M-QTLs and E-QTLs explained the genetic basis of the significant (P < 0.05) correlations of SPC with SW, SY, DFF and GH. The nature of genetic architecture of SPC and its relationship with agronomic traits suggest that genomics-assisted breeding targeting genome-wide variations would be effective for the simultaneous improvement of SPC and other important traits.
Collapse
|
15
|
Boachie RT, Okoro FL, Imai K, Sun L, Elom SO, Nwankwo JO, Ejike CECC, Udenigwe CC. Enzymatic release of dipeptidyl peptidase-4 inhibitors (gliptins) from pigeon pea (Cajanus cajan) nutrient reservoir proteins: In silico and in vitro assessments. J Food Biochem 2019; 43:e13071. [PMID: 31576595 DOI: 10.1111/jfbc.13071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
In silico and in vitro parameters were used to assess the potential of pigeon pea (Cajanus cajan) nutrient reservoir proteins as sources of dipeptidyl peptidase (DPP)-4 inhibitors. In silico, 40 pigeon pea proteins evaluated had 46% of amino acids associated with DPP-4 inhibition. After virtual hydrolysis, pepsin had the highest frequency of release and bioactivity of released DPP-4 inhibiting peptides, compared to papain and thermolysin. In vitro, thermolysin released the most active DPP-4 inhibitors. The protein hydrolysates contained similar amino acids but different particle sizes. Thus, the bioactivity patterns are attributable to the different nature and behavior of proteins/peptides under actual and virtual conditions. Using eight physicochemical variables, a random forest model with moderate prediction accuracy was developed for predicting DPP-4 inhibitory activity of papain hydrolysates. The findings demonstrate that proteins from pigeon pea are precursors of DPP-4 inhibitors, with potential use in formulating functional food for managing type 2 diabetes. PRACTICAL APPLICATIONS: The emerging use of in silico simulations to predict bioactivity of peptides can provide a framework to direct further wet lab assessments. This pattern can enhance focusing on factors relevant to the bioactive properties of interest. However, there is still limited evidence to confirm the reliability and accuracy of this tool. This study therefore provides insight into the practical use of in silico simulations to predict bioactivity of food peptides by assessing the factors relevant to the enzymatic release of dipeptidyl peptidase-4 inhibitors from pigeon pea seed storage proteins and validating the findings with wet lab assessment. This work also provides important information that can enhance the utilization of pigeon pea, which is an orphan crop, in developing functional food products for managing type 2 diabetes mellitus in developing countries.
Collapse
Affiliation(s)
- Ruth T Boachie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Faith L Okoro
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki, Nigeria
| | - Kento Imai
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Lu Sun
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sunday O Elom
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki, Nigeria
| | - Joseph O Nwankwo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki, Nigeria
| | - Chukwunonso E C C Ejike
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki, Nigeria
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki, Nigeria
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Miranda C, Xu Q, Oehrle NW, Islam N, Garrett WM, Natarajan SS, Gillman JD, Krishnan HB. Proteomic Comparison of Three Extraction Methods Reveals the Abundance of Protease Inhibitors in the Seeds of Grass Pea, a Unique Orphan Legume. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10296-10305. [PMID: 31464437 DOI: 10.1021/acs.jafc.9b04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Grass pea is an orphan legume that is grown in many places in the world. It is a high-protein, drought-tolerant legume that is capable of surviving extreme environmental challenges and can be a sole food source during famine. However, grass pea produces the neurotoxin β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), which can cause a neurological disease. This crop is promising as a food source for both animals and humans if β-ODAP levels and other antinutritional factors such as protease inhibitors are lowered or removed. To understand more about these proteins, a proteomic analysis of grass pea was conducted using three different extraction methods to determine which was more efficient at isolating antinutritional factors. Seed proteins extracted with Tris-buffered saline (TBS), 30% ethanol, and 50% isopropanol were identified by mass spectrometry, resulting in the documentation of the most abundant proteins for each extraction method. Mass spectrometry spectral data and BLAST2GO analysis led to the identification of 1376 proteins from all extraction methods. The molecular function of the extracted proteins revealed distinctly different protein functional profiles. The majority of the TBS-extracted proteins were annotated with nutrient reservoir activity, while the isopropanol extraction yielded the highest percentage of endopeptidase proteinase inhibitors. Our results demonstrate that the 50% isopropanol extraction method was the most efficient at isolating antinutritional factors including protease inhibitors.
Collapse
Affiliation(s)
- Carrie Miranda
- Plant Genetics Research, USDA-Agricultural Research Service , University of Missouri , Columbia , Missouri 65211 , United States
| | - Quanle Xu
- College of Life Sciences , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Nathan W Oehrle
- Plant Genetics Research, USDA-Agricultural Research Service , University of Missouri , Columbia , Missouri 65211 , United States
| | - Nazrul Islam
- Soybean Genomics and Improvement Laboratory , USDA-ARS , Beltsville , Maryland 20705 , United States
| | - Wesley M Garrett
- Animal Bioscience and Biotechnology Laboratory , USDA-Agricultural Research Service , Beltsville 20705 , United States
| | - Savithiry S Natarajan
- Soybean Genomics and Improvement Laboratory , USDA-ARS , Beltsville , Maryland 20705 , United States
| | - Jason D Gillman
- Plant Genetics Research, USDA-Agricultural Research Service , University of Missouri , Columbia , Missouri 65211 , United States
| | - Hari B Krishnan
- Plant Genetics Research, USDA-Agricultural Research Service , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
17
|
Sharma JK, Sihmar M, Santal AR, Singh NP. Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update. Biotechnol Genet Eng Rev 2019; 35:126-160. [PMID: 31478455 DOI: 10.1080/02648725.2019.1657682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abiotic stresses adversely affect the plant's growth and development leading to loss of crop plants and plant products in terms of both the quality and quantity. Two main strategies are adopted by plants to acclimatize to stresses; avoidance and tolerance. These adaptive strategies of plants at the cellular and metabolic level enable them to withstand such detrimental conditions. Acclimatization is associated with intensive changes in the proteome of plants and these changes are directly involved in plants response to stress. Proteome studies can be used to screen for these proteins and their involvement in plants response to various abiotic stresses evaluated. In this review, proteomic studies of different plants species under different abiotic stresses, particularly drought, salinity, heat, cold, and waterlogging, are discussed. From different proteomic studies, the stress response can be determined by an interaction between proteomic and physiological changes which occur in plants during such stress conditions. These identified proteins from different processes under different abiotic stress conditions definitely add to our understanding for exploiting them in various biotechnological applications in crop improvement.
Collapse
Affiliation(s)
| | - Monika Sihmar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - N P Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
18
|
Kumar J, Choudhary AK, Gupta DS, Kumar S. Towards Exploitation of Adaptive Traits for Climate-Resilient Smart Pulses. Int J Mol Sci 2019; 20:E2971. [PMID: 31216660 PMCID: PMC6627977 DOI: 10.3390/ijms20122971] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Pulses are the main source of protein and minerals in the vegetarian diet. These are primarily cultivated on marginal lands with few inputs in several resource-poor countries of the world, including several in South Asia. Their cultivation in resource-scarce conditions exposes them to various abiotic and biotic stresses, leading to significant yield losses. Furthermore, climate change due to global warming has increased their vulnerability to emerging new insect pests and abiotic stresses that can become even more serious in the coming years. The changing climate scenario has made it more challenging to breed and develop climate-resilient smart pulses. Although pulses are climate smart, as they simultaneously adapt to and mitigate the effects of climate change, their narrow genetic diversity has always been a major constraint to their improvement for adaptability. However, existing genetic diversity still provides opportunities to exploit novel attributes for developing climate-resilient cultivars. The mining and exploitation of adaptive traits imparting tolerance/resistance to climate-smart pulses can be accelerated further by using cutting-edge approaches of biotechnology such as transgenics, genome editing, and epigenetics. This review discusses various classical and molecular approaches and strategies to exploit adaptive traits for breeding climate-smart pulses.
Collapse
Affiliation(s)
- Jitendra Kumar
- Indian Institute of Pulses Research, Kalyanpur, Kanpur 208 024, Uttar Pradesh, India.
| | | | - Debjyoti Sen Gupta
- Indian Institute of Pulses Research, Kalyanpur, Kanpur 208 024, Uttar Pradesh, India.
| | - Shiv Kumar
- Biodiversity and Integrated Gene Management Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 6299, Rabat-Institute, Rabat, Morocco.
| |
Collapse
|
19
|
Krishnan HB, Oehrle NW, Alaswad AA, Stevens WG, Maria John KM, Luthria DL, Natarajan SS. Biochemical and Anatomical Investigation of Sesbania herbacea (Mill.) McVaugh Nodules Grown under Flooded and Non-Flooded Conditions. Int J Mol Sci 2019; 20:E1824. [PMID: 31013805 PMCID: PMC6514687 DOI: 10.3390/ijms20081824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/26/2023] Open
Abstract
Sesbania herbacea, a native North American fast-growing legume, thrives in wet and waterlogged conditions. This legume enters into symbiotic association with rhizobia, resulting in the formation of nitrogen-fixing nodules on the roots. A flooding-induced anaerobic environment imposes a challenge for the survival of rhizobia and negatively impacts nodulation. Very little information is available on how S. herbacea is able to thrive and efficiently fix N2 in flooded conditions. In this study, we found that Sesbania plants grown under flooded conditions were significantly taller, produced more biomass, and formed more nodules when compared to plants grown on dry land. Transmission electron microscopy of Sesbania nodules revealed bacteroids from flooded nodules contained prominent polyhydroxybutyrate crystals, which were absent in non-flooded nodules. Gas and ion chromatography mass spectrometry analysis of nodule metabolites revealed a marked decrease in asparagine and an increase in the levels of gamma aminobutyric acid in flooded nodules. 2-D gel electrophoresis of nodule bacteroid proteins revealed flooding-induced changes in their protein profiles. Several of the bacteroid proteins that were prominent in flooded nodules were identified by mass spectrometry to be members of the ABC transporter family. The activities of several key enzymes involved in nitrogen metabolism was altered in Sesbania flooded nodules. Aspartate aminotransferase (AspAT), an enzyme with a vital role in the assimilation of reduced nitrogen, was dramatically elevated in flooded nodules. The results of our study highlight the potential of S. herbacea as a green manure and sheds light on the morphological, structural, and biochemical adaptations that enable S. herbacea to thrive and efficiently fix N2 in flooded conditions.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, USDA-ARS, Columbia, MO 65211, USA.
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
| | - Nathan W Oehrle
- Plant Genetics Research Unit, USDA-ARS, Columbia, MO 65211, USA.
| | - Alaa A Alaswad
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
| | - William Gene Stevens
- Plant Science Division, University of Missouri, Delta Center, Portageville, MO 63873, USA.
| | - K M Maria John
- Food Composition and Methods Development Laboratory, BHNRC, USDA-ARS, Beltsville, MD 20705, USA.
| | - Devanand L Luthria
- Food Composition and Methods Development Laboratory, BHNRC, USDA-ARS, Beltsville, MD 20705, USA.
| | | |
Collapse
|
20
|
Mamontova T, Lukasheva E, Mavropolo-Stolyarenko G, Proksch C, Bilova T, Kim A, Babakov V, Grishina T, Hoehenwarter W, Medvedev S, Smolikova G, Frolov A. Proteome Map of Pea ( Pisum sativum L.) Embryos Containing Different Amounts of Residual Chlorophylls. Int J Mol Sci 2018; 19:E4066. [PMID: 30558315 PMCID: PMC6320946 DOI: 10.3390/ijms19124066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Due to low culturing costs and high seed protein contents, legumes represent the main global source of food protein. Pea (Pisum sativum L.) is one of the major legume crops, impacting both animal feed and human nutrition. Therefore, the quality of pea seeds needs to be ensured in the context of sustainable crop production and nutritional efficiency. Apparently, changes in seed protein patterns might directly affect both of these aspects. Thus, here, we address the pea seed proteome in detail and provide, to the best of our knowledge, the most comprehensive annotation of the functions and intracellular localization of pea seed proteins. To address possible intercultivar differences, we compared seed proteomes of yellow- and green-seeded pea cultivars in a comprehensive case study. The analysis revealed totally 1938 and 1989 nonredundant proteins, respectively. Only 35 and 44 proteins, respectively, could be additionally identified after protamine sulfate precipitation (PSP), potentially indicating the high efficiency of our experimental workflow. Totally 981 protein groups were assigned to 34 functional classes, which were to a large extent differentially represented in yellow and green seeds. Closer analysis of these differences by processing of the data in KEGG and String databases revealed their possible relation to a higher metabolic status and reduced longevity of green seeds.
Collapse
Affiliation(s)
- Tatiana Mamontova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199178, Russia.
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199178, Russia.
| | | | - Carsten Proksch
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Tatiana Bilova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Ahyoung Kim
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Vladimir Babakov
- Research Institute of Hygiene, Occupational Pathology, and Human Ecology, Federal Medicobiological Agency, 188663 Kapitolovo, Russia.
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199178, Russia.
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199178, Russia.
| |
Collapse
|
21
|
Warsame AO, O'Sullivan DM, Tosi P. Seed Storage Proteins of Faba Bean ( Vicia faba L): Current Status and Prospects for Genetic Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12617-12626. [PMID: 30403850 DOI: 10.1021/acs.jafc.8b04992] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Faba bean ( Vicia faba L.) is one of the foremost candidate crops for simultaneously increasing both sustainability and global supply of plant protein. On a dry matter basis, its seeds contain about 29% protein of which more than 80% consists of globulin storage proteins (vicilin and legumin). However, to achieve optimum utilization of this crop for human and animal nutrition, both protein content and quality have to be improved. Though initial investigations on the heritability of these traits indicated the possibility for genetic improvement, little has been achieved so far, partly due to the lack of genetic information coupled with the complex relationship between protein content and grain yield. This review reports on the current knowledge on Vicia faba seed storage proteins, their structure, composition, and genetic control, and highlights key areas for further improvement of the content and composition of Vicia faba seed storage proteins on the basis of recent advances in Vicia faba genome knowledge and genetic tools.
Collapse
Affiliation(s)
- Ahmed O Warsame
- School of Agriculture, Policy and Development, University of Reading , Reading RG6 6AR , United Kingdom
| | - Donal M O'Sullivan
- School of Agriculture, Policy and Development, University of Reading , Reading RG6 6AR , United Kingdom
| | - Paola Tosi
- School of Agriculture, Policy and Development, University of Reading , Reading RG6 6AR , United Kingdom
| |
Collapse
|
22
|
Obala J, Saxena RK, Singh VK, Kumar CVS, Saxena KB, Tongoona P, Sibiya J, Varshney RK. Development of sequence-based markers for seed protein content in pigeonpea. Mol Genet Genomics 2018; 294:57-68. [PMID: 30173295 DOI: 10.1007/s00438-018-1484-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Pigeonpea is an important source of dietary protein to over a billion people globally, but genetic enhancement of seed protein content (SPC) in the crop has received limited attention for a long time. Use of genomics-assisted breeding would facilitate accelerating genetic gain for SPC. However, neither genetic markers nor genes associated with this important trait have been identified in this crop. Therefore, the present study exploited whole genome re-sequencing (WGRS) data of four pigeonpea genotypes (~ 12X coverage) to identify sequence-based markers and associated candidate genes for SPC. By combining a common variant filtering strategy on available WGRS data with knowledge of gene functions in relation to SPC, 108 sequence variants from 57 genes were identified. These genes were assigned to 19 GO molecular function categories with 56% belonging to only two categories. Furthermore, Sanger sequencing confirmed presence of 75.4% of the variants in 37 genes. Out of 30 sequence variants converted into CAPS/dCAPS markers, 17 showed high level of polymorphism between low and high SPC genotypes. Assay of 16 of the polymorphic CAPS/dCAPS markers on an F2 population of the cross ICP 5529 (high SPC) × ICP 11605 (low SPC), resulted in four of the CAPS/dCAPS markers significantly (P < 0.05) co-segregated with SPC. In summary, four markers derived from mutations in four genes will be useful for enhancing/regulating SPC in pigeonpea crop improvement programs.
Collapse
Affiliation(s)
- Jimmy Obala
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
- University of KwaZulu-Natal, African Center for Crop Improvement, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Vikas K Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - C V Sameer Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - K B Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Pangirayi Tongoona
- University of KwaZulu-Natal, African Center for Crop Improvement, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Julia Sibiya
- University of KwaZulu-Natal, African Center for Crop Improvement, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| |
Collapse
|
23
|
Martinović T, Šrajer Gajdošik M, Josić D. Sample preparation in foodomic analyses. Electrophoresis 2018; 39:1527-1542. [DOI: 10.1002/elps.201800029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Djuro Josić
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Department of Medicine; Brown Medical School; Brown University; Providence RI USA
| |
Collapse
|
24
|
Rossi GB, Valentim-Neto PA, Blank M, Faria JCD, Arisi ACM. Comparison of Grain Proteome Profiles of Four Brazilian Common Bean (Phaseolus vulgaris L.) Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7588-7597. [PMID: 28777559 DOI: 10.1021/acs.jafc.7b03220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is a source of proteins for about one billion people worldwide. In Brazil, 'BRS Sublime', 'BRS Vereda', 'BRS Esteio', and 'BRS Estilo' cultivars were developed by Embrapa to offer high yield to farmers and excellent quality to final consumers. In this work, grain proteomes of these common bean cultivars were compared based on two-dimensional gel electrophoresis (2-DE) and tandem mass spectrometry (MS/MS). Principal component analysis (PCA) was applied to compare 349 matched spots in these cultivars proteomes, and all cultivars were clearly separated in PCA plot. Thirty-two differentially accumulated proteins were identified by MS. Storage proteins such as phaseolins, legumins, and lectins were the most abundant, and novel proteins were also identified. We have built a useful platform that could be used to analyze other Brazilian cultivars and genotypes of common beans.
Collapse
Affiliation(s)
| | | | | | - Josias Correa de Faria
- Embrapa Arroz e Feijão, Caixa Postal 179, 75375-000 Santo Antônio de Goiás, Goiás, Brazil
| | | |
Collapse
|