1
|
Shaheen N, Hossen MS, Akhter KT, Halima O, Hasan MK, Wahab A, Gamagedara S, Bhargava K, Holmes T, Najar FZ, Khandaker M, Peng Z, Yang Z, Ahsan N. Comparative Seed Proteome Profile Reveals No Alternation of Major Allergens in High-Yielding Mung Bean Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38836763 DOI: 10.1021/acs.jafc.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Mung bean contains up to 32.6% protein and is one of the great sources of plant-based protein. Because many allergens also function as defense-related proteins, it is important to determine their abundance levels in the high-yielding, disease-resistant cultivars. In this study, for the first time, we compared the seed proteome of high-yielding mung bean cultivars developed by a conventional breeding approach. Using a label-free quantitative proteomic platform, we successfully identified and quantified a total of 1373 proteins. Comparative analysis between the high-yielding disease-resistant cultivar (MC5) and the other three cultivars showed that a total of 69 common proteins were significantly altered in their abundances across all cultivars. Bioinformatic analysis of these altered proteins demonstrated that PDF1 (a defensin-like protein) exhibited high sequence similarity and epitope matching with the established peanut allergens, indicating a potential mung bean allergen that showed a cultivar-specific response. Conversely, known mung bean allergen proteins such as PR-2/PR-10 (Vig r 1), Vig r 2, Vig r 4, LTP1, β-conglycinin, and glycinin G4 showed no alternation in the MC5 compared to other cultivars. Taken together, our findings suggest that the known allergen profiles may not be impacted by the conventional plant breeding method to develop improved mung bean cultivars.
Collapse
Affiliation(s)
- Nazma Shaheen
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Sujan Hossen
- Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Kazi Turjaun Akhter
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Oumma Halima
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kamrul Hasan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Asfia Wahab
- Department of Biology, University of York, York YO10, U.K
| | - Sanjeewa Gamagedara
- Department of Chemistry, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Kanika Bhargava
- Department of Human Environmental Sciences, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Tawni Holmes
- Department of Human Environmental Sciences, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Fares Z Najar
- High-Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Morshed Khandaker
- Nanobiology Laboratory, School of Engineering, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
2
|
Wang Y, Bednarcik M, Ament C, Cheever ML, Cummings S, Geng T, Gunasekara DB, Houston N, Kouba K, Liu Z, Shippar J. Immunoassays and Mass Spectrometry for Determination of Protein Concentrations in Genetically Modified Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 38607999 PMCID: PMC11046482 DOI: 10.1021/acs.jafc.3c09188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Quantifying protein levels in genetically modified (GM) crops is crucial in every phase of development, deregulation, and seed production. Immunoassays, particularly enzyme-linked immunosorbent assay, have been the primary protein quantitation techniques for decades within the industry due to their efficiency, adaptability, and credibility. Newer immunoassay technologies like Meso Scale Discovery and Luminex offer enhanced sensitivity and multiplexing capabilities. While mass spectrometry (MS) has been widely used for small molecules and protein detection in the pharmaceutical and agricultural industries (e.g., biomarkers, endogenous allergens), its use in quantifying protein levels in GM crops has been limited. However, as trait portfolios for GM crop have expanded, MS has been increasingly adopted due to its comparable sensitivity, increased specificity, and multiplexing capabilities. This review contrasts the benefits and limitations of immunoassays and MS technologies for protein measurement in GM crops, considering factors such as cost, convenience, and specific analytical needs. Ultimately, both techniques are suitable for assessing protein concentrations in GM crops, with MS offering complementary capabilities to immunoassays. This comparison aims to provide insights into selecting between these techniques based on the user's end point needs.
Collapse
Affiliation(s)
- Yanfei Wang
- Bayer
CropScience, 700 Chesterfield
Pkwy West, Chesterfield, Missouri 63017, United
States
| | - Mark Bednarcik
- Syngenta
Crop Protection, Limited Liability Company, 9 Davis Drive, Post Office Box 12257, Research Triangle Park, North Carolina 27709-2257, United
States
| | - Christopher Ament
- Eurofins
Food Chemistry Testing Madison, Incorporated, 6304 Ronald Reagan Avenue, Madison, Wisconsin 53704, United States
| | - Matthew L. Cheever
- BASF
Corporation, 26 Davis Drive, Research Triangle Park, North Carolina 27709, United States
| | - Simone Cummings
- Syngenta
Crop Protection, Limited Liability Company, 9 Davis Drive, Post Office Box 12257, Research Triangle Park, North Carolina 27709-2257, United
States
| | - Tao Geng
- Bayer
CropScience, 700 Chesterfield
Pkwy West, Chesterfield, Missouri 63017, United
States
| | - Dulan B. Gunasekara
- BASF
Corporation, 26 Davis Drive, Research Triangle Park, North Carolina 27709, United States
| | - Norma Houston
- Corteva
Agriscience, Johnston, Iowa 50131, United States
| | - Kristen Kouba
- Corteva
Agriscience, Johnston, Iowa 50131, United States
| | - Zi Liu
- Bayer
CropScience, 700 Chesterfield
Pkwy West, Chesterfield, Missouri 63017, United
States
| | - Jeffrey Shippar
- Eurofins
Food Chemistry Testing Madison, Incorporated, 6304 Ronald Reagan Avenue, Madison, Wisconsin 53704, United States
| |
Collapse
|
3
|
Liu A, Yang L, Yang Y, Lei S, Li Z, He P. Simultaneous detection of glycinin and β-conglycinin in processed soybean products by high-performance liquid chromatography-tandem mass spectrometry with stable isotope-labeled standard peptides. Food Res Int 2023; 173:113387. [PMID: 37803724 DOI: 10.1016/j.foodres.2023.113387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Glycinin and β-conglycinin are the two main allergic proteins in soybean. Due to their complex structures and lack of protein standards, it is difficult to achieve quantitative determination of these proteins in soybeans. In this study, an HPLC-MS/MS method was developed for the simultaneous determination of five subunits of glycinin (G1, G2, G3, G4, and G5) and three subunits of β-conglycinin (α, α', and β) in processed soybean products based on 8 specific peptides and their stable isotope-labeled peptides. Here, each specific peptide was derived from one of the above 8 subunits. When soy protein was extracted and digested with trypsin, 8 specific peptides, and corresponding stable isotope-labeled peptides were analyzed by HPLC-MS/MS. The linear range for the specific peptides was between 3.2 and 1000 ng/mL (R2 > 0.9955). The recoveries of added peptides ranged from 83.4% to 117.8%, and the intra-day precisions (% CV) were below 17.4%. The limit of quantification of each subunit of glycinin and β-conglycinin in processed soybean products (in terms of protein amount) was between 15.1 and 156.1 g/g. This method was successfully applied to the analysis of 8 subunits of glycinin and β-conglycinin in 68 different processed soybean products, which provides technical support for processed product quality evaluation and monitoring soybean processing technology.
Collapse
Affiliation(s)
- Anguo Liu
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, PR China
| | - Luqing Yang
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, PR China
| | - Yuanhe Yang
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, PR China
| | - Siqi Lei
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, PR China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
4
|
Song Q, Liu A, Zhang S, Li R, Qiao S, He P. Quantum Dot Nanobead-Based Fluorescence-Linked Immunosorbent Assay for Detection of Glycinin in Soybeans and Soy Products. Molecules 2022; 27:3664. [PMID: 35744793 PMCID: PMC9228775 DOI: 10.3390/molecules27123664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Soybean glycinin, as a major soybean allergen, is difficult to accurately quantify due to its large molecular weight and complex structure. CdSe/ZnS quantum dot nanobead (QB) is a core/shell fluorescent nanomaterial with strong fluorescent signals and high sensitivity at 630 nm. An immunosorbent assay based on CdSe/ZnS quantum dot nanobeads (QBs-FLISA) was developed for the glycinin quantification in soybean and soybean products. Here, the purified glycinin was coated on the microporous plate to serve as the coating antigen, and CdSe/ZnS nanobead conjugated with anti-glycinin polyclonal antibodies was used as fluorescent detection probe. The target glycinin in the sample and the coated antigen on the plate competitively adsorbed the antibody labeled the CdSe/ZnS QBs probes. The limits of detection and quantitation for glycinin were 0.035 and 0.078 μg mL-1, respectively. The recoveries of the spiked samples ranged from 89.8% to 105.6%, with relative standard deviation less than 8.6%. However, compared with ELISA, the sensitivities of QBs-FLISA for the detection of glycinin were increased by 7 times, and the detection time was shortened by two-thirds. This QBs-FLISA method has been effectively applied to the detection of soybean seeds with different varieties and soy products with different processing techniques, which will provide a rapid screening method for soybean and soybean products with low allergens.
Collapse
Affiliation(s)
| | | | | | | | | | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Q.S.); (A.L.); (S.Z.); (R.L.); (S.Q.)
| |
Collapse
|
5
|
Kutateladze T, Bitskinashvili K, Sapojnikova N, Kartvelishvili T, Asatiani N, Vishnepolsky B, Datukishvili N. Development of Multiplex PCR Coupled DNA Chip Technology for Assessment of Endogenous and Exogenous Allergens in GM Soybean. BIOSENSORS 2021; 11:481. [PMID: 34940238 PMCID: PMC8699511 DOI: 10.3390/bios11120481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
Allergenicity assessment of transgenic plants and foods is important for food safety, labeling regulations, and health protection. The aim of this study was to develop an effective multi-allergen diagnostic approach for transgenic soybean assessment. For this purpose, multiplex polymerase chain reaction (PCR) coupled with DNA chip technology was employed. The study was focused on the herbicide-resistant Roundup Ready soya (RRS) using a set of certified reference materials consisting of 0, 0.1%, 0.5%, and 10% RRS. Technically, the procedure included design of PCR primers and probes; genomic DNA extraction; development of uniplex and multiplex PCR systems; DNA analysis by agarose gel electrophoresis; microarray development, hybridization, and scanning. The use of the asymmetric multiplex PCR method is shown to be very efficient for DNA hybridization with biochip probes. We demonstrate that newly developed fourplex PCR methods coupled with DNA-biochips enable simultaneous identification of three major endogenous allergens, namely, Gly m Bd 28K, Gly m Bd 30K, and lectin, as well as exogenous 5-enolppyruvyl shikimate-phosphate synthase (epsps) expressed in herbicide-resistant roundup ready GMOs. The approach developed in this study can be used for accurate, cheap, and fast testing of food allergens.
Collapse
Affiliation(s)
- Tamara Kutateladze
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua str., Tbilisi 0160, Georgia; (T.K.); (K.B.); (B.V.)
| | - Kakha Bitskinashvili
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua str., Tbilisi 0160, Georgia; (T.K.); (K.B.); (B.V.)
- School of Natural Sciences and Medicine, Ilia State University, 3/5 Kakutsa Cholokashvili Ave, Tbilisi 0162, Georgia
| | - Nelly Sapojnikova
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0162, Georgia; (N.S.); (T.K.); (N.A.)
| | - Tamar Kartvelishvili
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0162, Georgia; (N.S.); (T.K.); (N.A.)
| | - Nino Asatiani
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0162, Georgia; (N.S.); (T.K.); (N.A.)
| | - Boris Vishnepolsky
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua str., Tbilisi 0160, Georgia; (T.K.); (K.B.); (B.V.)
| | - Nelly Datukishvili
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua str., Tbilisi 0160, Georgia; (T.K.); (K.B.); (B.V.)
- School of Natural Sciences and Medicine, Ilia State University, 3/5 Kakutsa Cholokashvili Ave, Tbilisi 0162, Georgia
| |
Collapse
|
6
|
Wen Y, Liu A, Meng C, Li Z, He P. Quantification of lectin in soybeans and soy products by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1185:122987. [PMID: 34656828 DOI: 10.1016/j.jchromb.2021.122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/21/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
Lectin is one of the major anti-nutritional factors in soybeans and inhibits digestion of dietary protein. Here, an absolute quantification method was developed to detect lectin using synthetic peptide 183TTSWDLANNK192 as reference standard and corresponding isotope labeled peptide TTSWDLANNK (Alanine-13C3,15N) as internal standard to normalize results. After the ground soybeans and soy products were defatted with n-hexane and extracted with extraction buffer, the crude protein extract was digested on filter membrane by trypsin. Further, the enzymatic hydrolysis peptides were quantified using liquid chromatography-tandem mass spectrometry. The synthetic reference peptide showed a detection limit of 0.27 ng/mL and a linear relationship in the range of 3.2-1000 ng/mL (r2 > 0.997). Correspondingly, the detect limit of lectin in soybean samples was 35.5 μg/g. The results showed that the recoveries of the lectin in spiked samples ranged from 80.9% to 108.7% with intra-day precisions (% CV) less than 9%. The method was successfully used to evaluate lectin levels in hundreds of soybean seeds from different varieties and soy products from different soybean processing techniques. Furthermore, the method may provide a potential application as a general method for the ultrasensitive detection of various protein anti-nutritional factors in food.
Collapse
Affiliation(s)
- Yang Wen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Anguo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Chengzhen Meng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
7
|
Lidzba N, García Arteaga V, Schiermeyer A, Havenith H, Muranyi I, Schillberg S, Lehmann J, Ueberham E. Development of Monoclonal Antibodies against Pea Globulins for Multiplex Assays Targeting Legume Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2864-2874. [PMID: 33630578 DOI: 10.1021/acs.jafc.0c07177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Legume proteins are widely used as food ingredients, but only some (soybean, lupin, and peanut) must be declared under consumer safety regulations to protect allergy sufferers. It is not yet mandatory to declare pea proteins as allergens even though they are predicted to be allergenic based on cross-reactivity in sensitized people. The processing of legume proteins can modify their allergenic properties and hence the need for specific and precise methods for the detection of all major legume allergens. There are many commercially available tests for known food allergens but not for ingredients that are yet to be classified as allergenic. We therefore generated sets of pea-specific antibodies targeting globulins to be used in a multiplex assay for the simultaneous detection of soybean, lupin, peanut, and pea proteins. We focused on the 7S globulin family, which is the least conserved among the four legumes, allowing the specific detection of proteins from each species. Having confirmed the specificity and sensitivity of the multiplex assay, we evaluated different processing steps for proteins rich in pea globulins to demonstrate the impact of food processing on antibody binding. Our sensitive multiplex assay provides a fast and reliable method for the specific detection of soybean, lupin, peanut, and pea allergens and is therefore ideal for food safety and authenticity testing applications.
Collapse
Affiliation(s)
- Norbert Lidzba
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstraße 1, Leipzig 04103, Germany
| | - Verónica García Arteaga
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, Freising 85354, Germany
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, Aachen 52074, Germany
| | - Heide Havenith
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, Aachen 52074, Germany
| | - Isabel Muranyi
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, Freising 85354, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, Aachen 52074, Germany
| | - Jörg Lehmann
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstraße 1, Leipzig 04103, Germany
| | - Elke Ueberham
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstraße 1, Leipzig 04103, Germany
| |
Collapse
|
8
|
Islam N, Krishnan HB, Natarajan S. Proteomic Profiling of Fast Neutron-Induced Soybean Mutant Unveiled Pathways Associated with Increased Seed Protein Content. J Proteome Res 2020; 19:3936-3944. [PMID: 32819100 DOI: 10.1021/acs.jproteome.0c00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutagenesis through fast neutron (FN) radiation of soybean resulted in a mutant with a 15% increase in seed protein content. A comparative genomic hybridization analysis confirmed that the mutant is lacking 24 genes located at chromosomes 5 and 10. A tandem mass tag-based proteomic profiling of the wild type and the FN mutant revealed 3,502 proteins, of which 206 proteins exhibited increased abundance and 214 proteins showed decreased abundance. Among the abundant proteins, basic 7S globulin increased fourfold, followed by vacuolar-sorting receptor and protein transporters. The differentially expressed proteins were mapped on the global metabolic pathways. It was observed that there was an enrichment of 29 ribosomal proteins, 16 endoplasmic reticular proteins, and several proteins in export metabolic pathways. The deletion of the sequence-specific DNA binding transcription factor along with 23 other genes may have altered the negative regulation of protein syntheses processes, resulting in an increase in the overall protein content of the mutant seed. This mutant is a valuable resource for researchers to understand the metabolic pathways that may affect an increase in seed protein content (the mass spectrometry data files were submitted to massive.ucsd.edu # MassIVE MSV000084228).
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-ARS, University of Missouri, Columbia, Missouri 65211, United States
| | - Savithiry Natarajan
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| |
Collapse
|
9
|
Allgöwer SM, Hartmann CA, Holzhauser T. The Development of Highly Specific and Sensitive Primers for the Detection of Potentially Allergenic Soybean ( Glycine max) Using Loop-Mediated Isothermal Amplification Combined with Lateral Flow Dipstick (LAMP-LFD). Foods 2020; 9:foods9040423. [PMID: 32260089 PMCID: PMC7231045 DOI: 10.3390/foods9040423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 01/27/2023] Open
Abstract
The soybean (Glycine max) has been recognized as a frequent elicitor of food allergy worldwide. A lack of causative immunotherapy of soybean allergy makes soybean avoidance essential. Therefore, sensitive and specific methods for soybean detection are needed to allow for soybean verification in foods. Loop-mediated isothermal amplification (LAMP) represents a rapid and simple DNA-based detection method principally suitable for field-like applications or on-site analytical screening for allergens during the manufacturing of foods. This work describes the systematic development and selection of suitable LAMP primers based on soybean multicopy genes. The chemistry applied allows for a versatile detection of amplified DNA, using either gel electrophoresis, fluorescence recording, or a simple Lateral Flow Dipstick (LFD). LAMP based on the ORF160b gene was highly specific for the soybean and may allow for a detection level equivalent to approximately 10 mg soy per kg food. Various soybean cultivars were detectable at a comparable level of sensitivity. LAMP combined with LFD-like detection facilitates a simple, highly specific and sensitive detection of the soybean without the need for expensive analytical equipment. In contrast to the majority of antibody-based methods for soybean detection, all identified primer sequences and optimized protocols are disclosed and broadly available to the community.
Collapse
|
10
|
Islam N, Stupar RM, Qijian S, Luthria DL, Garrett W, Stec AO, Roessler J, Natarajan SS. Genomic changes and biochemical alterations of seed protein and oil content in a subset of fast neutron induced soybean mutants. BMC PLANT BIOLOGY 2019; 19:420. [PMID: 31604426 PMCID: PMC6790046 DOI: 10.1186/s12870-019-1981-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Soybean is subjected to genetic manipulation by breeding, mutation, and transgenic approaches to produce value-added quality traits. Among those genetic approaches, mutagenesis through fast neutrons radiation is intriguing because it yields a variety of mutations, including single/multiple gene deletions and/or duplications. Characterizing the seed composition of the fast neutron mutants and its relationship with gene mutation is useful towards understanding oil and protein traits in soybean. RESULTS From a large population of fast neutron mutagenized plants, we selected ten mutants based on a screening of total oil and protein content using near infra-red spectroscopy. These ten mutants were regrown, and the seeds were analyzed for oil by GC-MS, protein profiling by SDS-PAGE and gene mapping by comparative genomic hybridization. The mutant 2R29C14Cladecr233cMN15 (nicknamed in this study as L10) showed higher protein and lower oil content compared to the wild type, followed by three other lines (nicknamed in this study as L03, L05, and L06). We characterized the fatty acid methyl esters profile of the trans-esterified oil and found the presence of five major fatty acids (palmitic, stearic, oleic, linoleic, and linolenic acids) at varying proportions among the mutants. Protein profile using SDS-PAGE of the ten mutants did exhibit discernable variation between storage (glycinin and β-conglycinin) and anti-nutritional factor (trypsin inhibitor) proteins. In addition, we physically mapped the position of the gene deletions or duplications in each mutant using comparative genomic hybridization. CONCLUSION Characterization of oil and protein profile in soybean fast neutron mutants will assist scientist and breeders to develop new value-added soybeans with improved protein and oil quality traits.
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA-ARS, NEA, 10300, Baltimore Avenue, Beltsville, MD, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Song Qijian
- Soybean Genomics and Improvement Laboratory, USDA-ARS, NEA, 10300, Baltimore Avenue, Beltsville, MD, USA
| | - Devanand L Luthria
- Food Composition and Methods Development Laboratory, USDA-ARS, NEA, Beltsville, MD, USA
| | - Wesley Garrett
- Animal Biosciences & Biotechnology Laboratory, USDA-ARS, NEA, Beltsville, MD, USA
| | - Adrian O Stec
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Jeff Roessler
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Savithiry S Natarajan
- Soybean Genomics and Improvement Laboratory, USDA-ARS, NEA, 10300, Baltimore Avenue, Beltsville, MD, USA.
| |
Collapse
|
11
|
Islam N, Bates PD, Maria John KM, Krishnan HB, J Zhang Z, Luthria DL, Natarajan SS. Quantitative Proteomic Analysis of Low Linolenic Acid Transgenic Soybean Reveals Perturbations of Fatty Acid Metabolic Pathways. Proteomics 2019; 19:e1800379. [PMID: 30784187 DOI: 10.1002/pmic.201800379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/06/2019] [Indexed: 12/15/2022]
Abstract
To understand the effect of fatty acid desaturase gene (GmFAD3) silencing on perturbation of fatty acid (FA) metabolic pathways, the changes are compared in protein profiling in control and low linolenic acid transgenic soybeans using tandem mass tag based mass spectrometry. Protein profiling of the transgenic line unveiled changes in several key enzymes of FA metabolism. This includes enzymes of lower abundance; fabH, fabF, and thioestrase associated with FA initiation, elongation, and desaturation processes and LOX1_5, ACOX, ACAA1, MFP2 associated with β-oxidation of α-linolenic acids pathways. In addition, the GmFAD3 silencing results in a significant reduction in one of the major allergens, Gly m 4 (C6T3L5). These results are important for exploring how plants adjust in their biological processes when certain changes are induced in the genetic makeup. A complete understanding of these processes will aid researchers to alter genes for developing value-added soybeans.
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - K M Maria John
- Food Composition and Methods Development Laboratory, BHNRC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-ARS, University of Missouri, Columbia, MO, 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhanyuan J Zhang
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Devanand L Luthria
- Food Composition and Methods Development Laboratory, BHNRC, USDA-ARS, Beltsville, MD, 20705, USA
| | | |
Collapse
|
12
|
|
13
|
Jia H, Zhou T, Zhu H, Shen L, He P. Quantification of Gly m 5.0101 in Soybean and Soy Products by Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2018; 24:E68. [PMID: 30585221 PMCID: PMC6337133 DOI: 10.3390/molecules24010068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/06/2023] Open
Abstract
Gly m 5.0101, the alpha subunit of β-conglycinin, is one of the major allergens found in soybeans that has been identified as causing an allergic reaction. Here, we developed a quantification method of Gly m 5.0101 with multiple reaction monitoring using the synthetic peptide 194NPFLFGSNR202 as the external standard. Firstly, the ground soybean was defatted and extracted with a protein extraction buffer. Then the crude extract was on-filter digested by trypsin and analyzed by liquid chromatography-tandem mass spectrometry. The selected peptide exhibited a detection limit of 0.48 ng/mL and a linear relationship in a concentration range from 1.6 to 500 ng/mL (r² > 0.99). The developed method was successfully applied to quantify the Gly m 5.0101 level in dozens of soybean varieties from different sources and soybean products derived from different processing techniques. The developed method could be used to further analyze β-conglycinin in soybean seeds combined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis.
Collapse
Affiliation(s)
- Hongmin Jia
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Tianjiao Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Hong Zhu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
| | - Li Shen
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
- Logistics School, Beijing Wuzi University, Beijing 101149, China.
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Abstract
Among targeted proteomic techniques, AQUA-MRM is considered as one of the most reliable for accurate protein quantitation. This method displays high sensitivity, specificity, and reproducibility compared to many common biochemical techniques by coupling the use of unique, heavy-labeled peptide standards and triple-quadrupole mass spectrometry. However, there are several important steps that are required for successful development and validation of a robust AQUA-MRM assay. The following protocol outlines and details the key steps necessary for plant sample preparation as well as AQUA-MRM development and validation, specifically for absolute quantitation of plant proteins in vivo. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine, Brown University, Providence, Rhode Island.,Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, Rhode Island
| | - Rashaun S Wilson
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri
| |
Collapse
|
15
|
Lu M, Jin Y, Ballmer-Weber B, Goodman RE. A comparative study of human IgE binding to proteins of a genetically modified (GM) soybean and six non-GM soybeans grown in multiple locations. Food Chem Toxicol 2018; 112:216-223. [PMID: 29307601 DOI: 10.1016/j.fct.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/28/2017] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
Abstract
Prior to commercialization, genetically modified (GM) crops are evaluated to determine the allergenicity of the newly expressed protein. Some regulators require an evaluation of endogenous allergens in commonly allergenic crops including soybean to determine if genetic transformation increased endogenous allergen concentrations, even asking for IgE testing using sera from individual sensitized subjects. Little is known about the variability of the expression of endogenous allergens among non-GM varieties or under different environmental conditions. We tested IgE binding to endogenous allergenic proteins in an experimental non-commercial GM line, a non-GM near-isoline control, and five non-GM commercial soybean lines replicated at three geographically separated locations. One-dimensional (1D) and two-dimensional (2D) immunoblotting and ELISA were performed using serum or plasma from eleven soybean allergic patients. The results of immunoblots and ELISA showed no significant differences in IgE binding between the GM line and its non-GM near-isoline control. However, some distinct differences in IgE binding patterns were observed among the non-GM commercial soybean lines and between different locations, highlighting the inherent variability in endogenous allergenic proteins. Understanding the potential variability in the levels of endogenous allergens is necessary to establish a standard of acceptance for GM soybeans compared to non-GM soybean events and lines.
Collapse
Affiliation(s)
- Mei Lu
- Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE, USA.
| | - Yuan Jin
- Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE, USA.
| | - Barbara Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland.
| | - Richard E Goodman
- Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE, USA.
| |
Collapse
|
16
|
Hill RC, Fast BJ, Herman RA. Transgenesis affects endogenous soybean allergen levels less than traditional breeding. Regul Toxicol Pharmacol 2017; 89:70-73. [PMID: 28720347 DOI: 10.1016/j.yrtph.2017.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/22/2022]
Abstract
The regulatory body that oversees the safety assessment of genetically modified (GM) crops in the European Union, the European Food Safety Authority (EFSA), uniquely requires that endogenous allergen levels be quantified as part of the compositional characterization of GM versions of crops, such as soybean, that are considered to be major allergenic foods. The value of this requirement for assessing food safety has been challenged for multiple reasons including negligible risk of altering allergen levels compared with traditional non-GM breeding. Scatter plots comparing the mean endogenous allergen levels in non-GM soybean isoline grain with the respective levels in GM grain or concurrently grown non-GM commercial reference varieties clearly show that transgenesis causes less change compared with traditional breeding. This visual assessment is confirmed by the quantitative fit of the line of identity (y = x) to the datasets. The current science on allergy does not support the requirement for quantifying allergen levels in GM crops to support safety assessment.
Collapse
Affiliation(s)
- Ryan C Hill
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, United States.
| | - Brandon J Fast
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, United States
| | - Rod A Herman
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, United States
| |
Collapse
|
17
|
Gampala SS, Fast BJ, Richey KA, Gao Z, Hill R, Wulfkuhle B, Shan G, Bradfisch GA, Herman RA. Single-Event Transgene Product Levels Predict Levels in Genetically Modified Breeding Stacks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7885-7892. [PMID: 28825812 DOI: 10.1021/acs.jafc.7b03098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The concentration of transgene products (proteins and double-stranded RNA) in genetically modified (GM) crop tissues is measured to support food, feed, and environmental risk assessments. Measurement of transgene product concentrations in breeding stacks of previously assessed and approved GM events is required by many regulatory authorities to evaluate unexpected transgene interactions that might affect expression. Research was conducted to determine how well concentrations of transgene products in single GM events predict levels in breeding stacks composed of these events. The concentrations of transgene products were compared between GM maize, soybean, and cotton breeding stacks (MON-87427 × MON-89034 × DAS-Ø15Ø7-1 × MON-87411 × DAS-59122-7 × DAS-40278-9 corn, DAS-81419-2 × DAS-44406-6 soybean, and DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 × MON-88913-8 × DAS-81910-7 cotton) and their component single events (MON-87427, MON-89034, DAS-Ø15Ø7-1, MON-87411, DAS-59122-7, and DAS-40278-9 corn, DAS-81419-2, and DAS-44406-6 soybean, and DAS-21023-5, DAS-24236-5, SYN-IR102-7, MON-88913-8, and DAS-81910-7 cotton). Comparisons were made within a crop and transgene product across plant tissue types and were also made across transgene products in each breeding stack for grain/seed. Scatter plots were generated comparing expression in the stacks to their component events, and the percent of variability accounted for by the line of identity (y = x) was calculated (coefficient of identity, I2). Results support transgene concentrations in single events predicting similar concentrations in breeding stacks containing the single events. Therefore, food, feed, and environmental risk assessments based on concentrations of transgene products in single GM events are generally applicable to breeding stacks composed of these events.
Collapse
Affiliation(s)
| | - Brandon J Fast
- Dow AgroSciences , Building 312, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Kimberly A Richey
- Dow AgroSciences , Building 312, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Zhifang Gao
- Dow AgroSciences , Building 312, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Ryan Hill
- Dow AgroSciences , Building 312, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Bryant Wulfkuhle
- Dow AgroSciences , Building 312, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Guomin Shan
- Dow AgroSciences , Building 312, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Greg A Bradfisch
- Dow AgroSciences , Building 312, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Rod A Herman
- Dow AgroSciences , Building 312, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|