1
|
Xie Y, Zhu M, Bao H, Chen K, Wang S, Dai J, Chen H, Li H, Song Q, Wang X, Yu L, Pei J. Enhanced Antitumor Efficacy and Reduced Toxicity in Colorectal Cancer Using a Novel Multifunctional Rg3- Targeting Nanosystem Encapsulated with Oxaliplatin and Calcium Peroxide. Int J Nanomedicine 2025; 20:1021-1046. [PMID: 39877588 PMCID: PMC11774109 DOI: 10.2147/ijn.s502076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Purpose Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Oxaliplatin (OXA) is currently the primary chemotherapeutic agent for CRC, but its efficacy is limited by the tumor microenvironment (TME). Here, we present a combined approach of chemotherapy and TME modulation for CRC treatment. A multifunctional nanosystem (Rg3-Lip-OXA/CaO2) was established using Ginsenoside Rg3 liposomes targeting glucose transporter 1 overexpressed on the surface of CRC cells to co-deliver OXA and calcium peroxide (CaO2). Methods The CaO2 nanoparticles were synthesized via the CaCl2-H2O2 reaction under alkaline conditions and characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Rg3-Lip-OXA/CaO2 was prepared through a thin-film hydration approach and characterized; additionally, its stability and release behavior were studied. The O2, H2O2, and Ca2+ generation ability of Rg3-Lip-OXA/CaO2 in solution and HCT116 cells were measured. The in vitro cellular uptake was observed via fluorescence microscope and flow cytometry. In vitro cytotoxicity was evaluated using the CCK-8 assay, flow cytometry, and live/dead cell staining. The in vivo targeting effect as well as antitumor efficacy were determined in HCT116 tumor-bearing mice. Finally, the acute toxicity of Rg3-Lip-OXA/CaO2 was investigated in ICR mice to explore its safety. Results The XRD and XPS analyses confirmed the successful synthesis of CaO2 nanoparticles. The Rg3-Lip-OXA/CaO2 exhibited an average particle size of approximately 92.98 nm with good stability and sustained release behavior. In vitro and in vivo studies confirmed optimal targeting by Rg3-Lip and demonstrated that the nanosystem effectively produced O2, H2O2 and Ca2+, resulting in significant cytotoxicity. Additionally, in vivo studies revealed substantial tumor growth suppression and reduced tumor-associated fibroblasts (TAFs) and collagen. Acute toxicity studies indicated that Rg3-Lip-OXA/CaO2 markedly reduced the toxicity of chemotherapeutic drugs. Conclusion This multifunctional nanosystem enhances chemotherapy efficacy and reduces toxicity, offering a promising approach for optimizing CRC treatment and potential clinical application.
Collapse
Affiliation(s)
- Yizhuo Xie
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Ming Zhu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Han Bao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Kejia Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Shanshan Wang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Jingwen Dai
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Hongzhu Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - He Li
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Qi Song
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xinlu Wang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Liangping Yu
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Zhong J, He G, Ma X, Ye J, Tao ZY, Li Z, Zhang F, Feng P, Wang Y, Lan X, Su YX. Triterpene-Based Prodrug for Self-Boosted Drug Release and Targeted Oral Squamous Cell Carcinoma Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41960-41972. [PMID: 39082953 DOI: 10.1021/acsami.4c10175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Chemotherapy is one of the main treatments for oral squamous cell carcinoma (OSCC), especially as a combined modality approach with and after surgery or radiotherapy. Limited therapeutic efficiency and serious side effects greatly restrict the clinical performance of chemotherapeutic drugs. The development of smart nanomedicines has provided new research directions, to some extent. However, the involvement of complex carrier compositions inevitably brings biosafety concerns and greatly limits the "bench-to-bed" translation of most nanomedicines reported. In this study, a carrier-free self-assembled prodrug was fabricated by two triterpenes (glycyrrhetinic acid, GA and ginsenoside Rh2, Rh2) isolated from medicinal plants, licorice, and ginseng, for the targeted and highly effective treatment of OSCC. Reactive oxygen species (ROS) self-supplied molecule TK-GA2 was synthesized with ROS-responsive thioketal linker and prodrug was prepared by a rapid-solvent-exchange method with TK-GA2 and Rh2. After administration, oral tumor cells transported large amounts of prodrugs with glucose ligands competitively. Endogenous ROS in oral tumor cells then promoted the release of GA and Rh2. GA further evoked the generation of a large number of ROS to help self-boosted drug release and increase oxidative stress, synergistically causing tumor cell apoptosis with Rh2. Overall, this carrier-free triterpene-based prodrug might provide a preeminent opinion on the design of effective chemotherapeutics with low systemic toxicity against OSCC.
Collapse
Affiliation(s)
- Jie Zhong
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Guantong He
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xu Ma
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhuo-Ying Tao
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhongxian Li
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fuxue Zhang
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Peijian Feng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinmiao Lan
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Shi C, Cheng C, Lin X, Qian Y, Du Y, Chen G. Flammulina velutipes polysaccharide-iron(III) complex used to treat iron deficiency anemia after being absorbed via GLUT2 and SGLT1 transporters. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Liu G, Duan Y, Yang S, Yu M, Lv Z. Simultaneous quantification of marine neutral neoagaro-oligosaccharides and agar-oligosaccharides by the UHPLC-MS/MS method: application to the intestinal transport study by using the Caco-2 cell monolayer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2227-2234. [PMID: 35616101 DOI: 10.1039/d2ay00700b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sensitive and robust ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for the first time to simultaneously quantify marine neutral neoagaro-oligosaccharides (NAOS) and agar-oligosaccharides (AOS) with different degrees of polymerization (DP) in Hanks' balanced salt solution (HBSS). The separation was achieved on a BEH amide column using a mobile phase of acetonitrile-10 mmol L-1 ammonium acetate (58 : 42, v/v) with an isocratic elution program. The total analysis time was 3.5 min. The mass spectra were acquired in the multiple reaction monitoring (MRM) pattern by using a heated-electrospray ionization (H-ESI) source operating in the positive ionization mode. The linear range was 40-20 000 nmol L-1. The accuracy and precision ranged from 91.5 to 110.0% and 0.9 to 10.4%, respectively. The extraction recovery was consistent and reproducible. The stability was within 90.3-110.8%. The matrix effect, carryover, and dilution integrity were all satisfactory. Moreover, the validated method was successfully applied to the intestinal transport study by using the Caco-2 cell monolayer in vitro. The results revealed that neoagarobiose, neoagarotetraose, neoagarohexaose, agarotriose, agaropentose, and agaroheptose were transported by a paracellular pathway.
Collapse
Affiliation(s)
- Guilin Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Yunhai Duan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
5
|
Green fluorescent carbon dots as targeting probes for LED‐dependent bacterial killing. NANO SELECT 2021. [DOI: 10.1002/nano.202100183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
6
|
Li Q, Ren C, Yan S, Wang K, Hrynets Y, Xiang L, Xue X, Betti M, Wu L. Extract of Unifloral Camellia sinensis L. Pollen Collected by Apis mellifera L. Honeybees Exerted Inhibitory Effects on Glucose Uptake and Transport by Interacting with Glucose Transporters in Human Intestinal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1877-1887. [PMID: 33543617 DOI: 10.1021/acs.jafc.0c07160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bee pollen possesses potential hypoglycemic effects but its inhibitory mechanisms on glucose absorption and transportation in intestinal cells still need to be clarified. Here, we determined the inhibitory effects of bee pollen extract originating from Camellia sinensis L. (BP-Cs) as well as its representative phenolic compounds on glucose uptake and transport through a human intestinal Caco-2 cell monolayer model. It showed that three representative phenolic compounds, including gallic acid (GA), 3-O-[6'-O-(trans-p-coumaroyl)-β-d-glucopyranosyl]kaempferol (K1), and 3-O-[2',6'-di-O-(trans-p-coumaroyl)-β-d-glucopyranosyl]kaempferol (K2), with contents of 27.7 ± 0.86, 9.88 ± 0.54, and 7.83 ± 0.46 μg/mg in BP-Cs extract, respectively, exerted mutual antagonistic actions interacting with glucose transporters to inhibit glucose uptake and transport based on their combination index (CI) and molecular docking analysis. K1, K2, and GA might compete with d-glucose to form hydrogen bonds with the same active residues including GLU-412, GLY-416, GLN-314, and TRP-420 in GLUT2. These findings provide us a deep understanding of the mechanisms underlying the anti-hyperglycemia by bee pollen, which provide a new sight on dietary intervention strategies against diabetes.
Collapse
Affiliation(s)
- Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Caijun Ren
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Sha Yan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuliya Hrynets
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Mirko Betti
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
7
|
Elferink H, Bruekers JPJ, Veeneman GH, Boltje TJ. A comprehensive overview of substrate specificity of glycoside hydrolases and transporters in the small intestine : "A gut feeling". Cell Mol Life Sci 2020; 77:4799-4826. [PMID: 32506169 PMCID: PMC7658089 DOI: 10.1007/s00018-020-03564-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
The human body is able to process and transport a complex variety of carbohydrates, unlocking their nutritional value as energy source or as important building block. The endogenous glycosyl hydrolases (glycosidases) and glycosyl transporter proteins located in the enterocytes of the small intestine play a crucial role in this process and digest and/or transport nutritional sugars based on their structural features. It is for these reasons that glycosidases and glycosyl transporters are interesting therapeutic targets to combat sugar related diseases (such as diabetes) or to improve drug delivery. In this review we provide a detailed overview focused on the molecular structure of the substrates involved as a solid base to start from and to fuel research in the area of therapeutics and diagnostics.
Collapse
Affiliation(s)
- Hidde Elferink
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands
| | - Jeroen P J Bruekers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands
| | | | - Thomas J Boltje
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Hill SA, Sheikh S, Zhang Q, Sueiro Ballesteros L, Herman A, Davis SA, Morgan DJ, Berry M, Benito-Alifonso D, Galan MC. Selective photothermal killing of cancer cells using LED-activated nucleus targeting fluorescent carbon dots. NANOSCALE ADVANCES 2019; 1:2840-2846. [PMID: 36133617 PMCID: PMC9417209 DOI: 10.1039/c9na00293f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/14/2019] [Indexed: 05/06/2023]
Abstract
The development of effective theranostic probes in cancer therapy is hampered due to issues with selectivity and off-target toxicity. We report the selective LED-photothermal ablation of cervical (HeLa) cancer cells over human dermal fibroblasts (HDF) using a new class of green-emissive fluorescent carbon dots (FCDs). The FCDs can be easily prepared in one pot using cheap and commercial starting materials. Physico-chemical characterization revealed that a surface coating of 2,5-deoxyfructosazine on a robust amorphous core gives rise to the nanomaterial's unique properties. We show that intracellular uptake mostly involves passive mechanisms in combination with intracellular DNA interactions to target the nucleus and that cancer cell selective killing is likely due to an increase in intracellular temperature in combination with ATP depletion, which is not observed upon exposure to either the "naked" core FCDs or the surface components individually. The selectivity of these nanoprobes and the lack of apparent production of toxic metabolic byproducts make these new nanomaterials promising agents in cancer therapy.
Collapse
Affiliation(s)
- Stephen A Hill
- School of Chemistry, University of Bristol Cantock's Close Bristol UK
| | - Sadiyah Sheikh
- School of Chemistry, University of Bristol Cantock's Close Bristol UK
| | - Qiaoyu Zhang
- School of Chemistry, University of Bristol Cantock's Close Bristol UK
| | - Lorena Sueiro Ballesteros
- School of Cellular and Molecular Medicine, Faculty of Life Sciences Flow Cytometry Facility University Walk Bristol UK
| | - Andrew Herman
- School of Cellular and Molecular Medicine, Faculty of Life Sciences Flow Cytometry Facility University Walk Bristol UK
| | - Sean A Davis
- School of Chemistry, University of Bristol Cantock's Close Bristol UK
| | - David J Morgan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Park Place Cardiff UK
| | - Monica Berry
- School of Chemistry, University of Bristol Cantock's Close Bristol UK
| | | | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close Bristol UK
| |
Collapse
|
9
|
Improved bactericidal capacity of UV-B radiation against E. coli strains by photosensitizing bacteria with fructosazine - An advanced Maillard reaction product. Food Chem 2019; 271:354-361. [PMID: 30236687 DOI: 10.1016/j.foodchem.2018.07.191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 11/20/2022]
Abstract
This study investigated the effect of UV-B irradiation and the combinational effect with glucosamine caramel, fructosazine and riboflavin on the antimicrobial activities against Bacillus subtilis (ATCC 6633) and two strains of Escherichia coli (AW 1.7 and ATCC 25922). The quantum yield of fructosazine was two times less than that of tryptophan, indicating its ability to emit fluorescent light but less efficiently than tryptophan. UV-B treatment alone was efficient to achieve a bactericidal effect for both E. coli stains tested, however no effect was found for Bacillus subtilis for up to 80 mJ/cm2 UV-B. The combination of UV-B with photosensitizers fructosazine, glucosamine caramel and riboflavin enhanced the UV-B efficacy against E. coli strains at lower UV-B doses, while Bacillus subtilis ATCC 6633 was more resistant to the treatment combinations. High-performance liquid chromatography showed the production of different fructosazine reaction products occurred during irradiation, including the possible formation of endoperoxides.
Collapse
|
10
|
In Vitro Models for Studying Transport Across Epithelial Tissue Barriers. Ann Biomed Eng 2018; 47:1-21. [DOI: 10.1007/s10439-018-02124-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
|
11
|
Zhou F, Huang W, Li M, Zhong Y, Wang M, Lu B. Bioaccessibility and Absorption Mechanism of Phenylethanoid Glycosides Using Simulated Digestion/Caco-2 Intestinal Cell Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4630-4637. [PMID: 29687721 DOI: 10.1021/acs.jafc.8b01307] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acteoside and salidroside are major phenylethanoid glycosides (PhGs) in Osmanthus fragrans Lour. flowers with extensive pharmacological activities and poor oral bioavailability. The absorption mechanisms of these two compounds remain unclear. This study aimed to investigate the bioaccessibility of these compounds using an in vitro gastrointestinal digestion model and to examine the absorption and transport mechanisms of PhGs using the Caco-2 cell model. The in vitro digestion model revealed that the bioaccessibility of salidroside (98.7 ± 1.35%) was higher than that of acteoside (50.1 ± 3.04%), and the superior bioaccessibility of salidroside can be attributed to its stability. The absorption percentages of total phenylethanoid glycoside, salidroside, and acteoside were 1.42-1.54%, 2.10-2.68%, and 0.461-0.698% in the Caco-2 model, respectively. Salidroside permeated Caco-2 cell monolayers through passive diffusion. At the concentration of 200 μg/mL, the apparent permeability ( Papp) of salidroside in the basolateral (BL)-to-apical (AP) direction was 23.7 ± 1.33 × 10-7 cm/s, which was 1.09-fold of that in the AP-to-BL direction (21.7 ± 1.38 × 10-7 cm/s). Acteoside was poorly absorbed with low Papp (AP to BL) (4.75 ± 0.251 × 10-7 cm/s), and its permeation mechanism was passive diffusion with active efflux mediated by P-glycoprotein (P-gp). This study clarified the bioaccessibility, absorption, and transport mechanisms of PhGs. It also demonstrated that the low bioavailability of acteoside might be attributed to its poor bioaccessibility, low absorption, and P-gp efflux transporter.
Collapse
Affiliation(s)
- Fei Zhou
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Weisu Huang
- Department of Applied Technology , Zhejiang Economic & Trade Polytechnic , Hangzhou 310018 , China
| | - Maiquan Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Yongheng Zhong
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Mengmeng Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Baiyi Lu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
12
|
Vila L, García-Rodríguez A, Marcos R, Hernández A. Titanium dioxide nanoparticles translocate through differentiated Caco-2 cell monolayers, without disrupting the barrier functionality or inducing genotoxic damage. J Appl Toxicol 2018; 38:1195-1205. [PMID: 29722448 DOI: 10.1002/jat.3630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/22/2018] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
The widespread use of titanium dioxide nanoparticles (TiO2 NPs) in commercial food products makes intestinal cells a suitable target. Accordingly, we have used the human colon adenocarcinoma Caco-2 cells to detect their potential harmful effects. Caco-2 cells can differentiate in to enterocytic-like cells, forming consistent cell monolayers and are used as a model of the intestinal barrier. Using both undifferentiated and differentiated Caco-2 cells, we have explored a set of biomarkers, aiming to evaluate undesirable effects associated to TiO2 NP exposure. Results indicate non-toxic effects in exposures ranging 1-200 μg ml-1 . Significant differences were observed in cell uptake, with a higher amount of incorporated TiO2 NPs in undifferentiated cells, as visualized using confocal microscopy. In well-established monolayers, translocation was detected using both confocal microscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy. In spite of the observed uptake and translocation, TiO2 NP exposures did not modify the integrity of the monolayer, as measured using the transepithelial electrical resistance and Lucifer yellow methods. The potential genotoxic effects in differentiated cells were evaluated in the comet assay, with and without formamidopyrimidine DNA glycosylase enzyme to detect oxidatively the damaged DNA bases. Although some changes were detected at the lower dose (10 μg ml-1 ), no effects were observed at higher doses.
Collapse
Affiliation(s)
- Laura Vila
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba García-Rodríguez
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|