1
|
Xu B, Shi C, Wang Y, Ma N, Pei F, Yang W, Hu Q, Kimatu BM, Li W, Fang D. Cold-plasma-induced modification of chitosan-zein nanoparticles confer Pickering emulsion stability. Int J Biol Macromol 2025; 313:144217. [PMID: 40379180 DOI: 10.1016/j.ijbiomac.2025.144217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/29/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
To improve the stability and emulsifying properties of chitosan-zein composite nanoparticles, dielectric barrier discharge cold plasma (DBD-CP) was employed in this study, and its potential as a stabilizer was evaluated. The results showed that the DBD-CP treatment reduced the particle size, increased the zeta potential, and enhanced the surface wettability. Scanning electron microscopy imaging revealed dense interfacial adsorption layers of composite nanoparticles at the oil-water interface. Additionally, X-ray diffraction, Fourier transform infrared spectroscopy, intrinsic fluorescence spectroscopy, thermogravimetric analysis, and nuclear magnetic resonance analyses indicated chemical group displacements and new crystal phase formations, suggesting structural reorganization. In the application of Pickering emulsions (PEs) for stabilization, emulsions encapsulated with lemon essential oil demonstrated increased zeta potential and improved emulsion stability, accompanied by sustained oil release. This indicated that DBD-CP technology transformed composite nanoparticles into efficient PEs stabilizers, thereby enhancing emulsion stability and retarding essential-oil release. Furthermore, utilizing DBD-CP technology for treating chitosan and zein separately before combining them to form a stabilizer offered significant advantages. This pre-combination strategy not only augmented the encapsulation efficiency of essential oils from 79.71 ± 1.41 % to 91.57 ± 0.71 % but also improved emulsion stability from 30.80 ± 1.55 % to 80.50 ± 1.24 %, outperforming other treatment groups. These results further confirmed the effectiveness of the proposed method as an optimal DBD-CP treatment strategy for bioactive compound delivery systems.
Collapse
Affiliation(s)
- Bowen Xu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Chong Shi
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yicheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ning Ma
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Fei Pei
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Wenjian Yang
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Qiuhui Hu
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Benard Muinde Kimatu
- Department of Dairy and Food Science and Technology, Egerton University, Egerton, Kenya
| | - Weilin Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Donglu Fang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
2
|
Deng Y, Lu Y, Jiang Y, Yuan G, Yang T, Gao B, Yang J, Guo L, Fan F. Effect of cold plasma treatment time on walnut protein isolate: Revealing structural changes and improving functional properties. Int J Biol Macromol 2025; 311:143693. [PMID: 40328389 DOI: 10.1016/j.ijbiomac.2025.143693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/25/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Cold plasma (CP) was used to modify walnut protein isolate (WalPI), and the effects of different CP treatment times (30 s, 60 s, 90 s, 120 s, and 150 s) on structural and functional properties, along with the modification mechanism, were investigated. The results showed that CP treatment altered the structure of WalPI, primarily by unfolding the tertiary structure and modifying the secondary structure. These modifications included an increase in fluorescence intensity, a decrease in α-helix content, and an increase in β-sheet and random coil content. The three-dimensional network structure exhibited crystalline characteristics, and the microstructure displayed irregular spherical particles. These structural changes led to an improvement in the functional properties, as evidenced by a reduction in average particle size, an increase in solubility to 11.42 %, and improvements in emulsification activity index and emulsification stability index, which increased from 0.50 m2/g and 1.22 min to 2.75 m2/g and 30.50 min. Additionally, water and oil holding capacity increased from 0.45 g/g and 2.54 g/g to 1.21 g/g and 7.46 g/g. Notably, the optimal comprehensive properties of WalPI were achieved after 90 s of CP treatment. This study provides a theoretical foundation for modifying WalPI and enhances its potential for resource utilization.
Collapse
Affiliation(s)
- Yanmei Deng
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Yanling Lu
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Yuxin Jiang
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Guohui Yuan
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Tongqin Yang
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Baoyu Gao
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Jiaojiao Yang
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Lei Guo
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Kunming 650224, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Fangyu Fan
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Kunming 650224, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
3
|
An D, Li L. Synergistic treatment of pH and ultrasound promotes the formation of insoluble soy protein hydrolysate nanofibrils. Food Chem 2025; 470:142659. [PMID: 39742596 DOI: 10.1016/j.foodchem.2024.142659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/03/2025]
Abstract
Enzymatic hydrolysis prior to fibrillation could promote the formation of soy protein isolate (SPI) nanofibrils. However, the large amount of resulting insoluble soy protein hydrolysates (ISPH) demonstrated significantly limited fibrillation capacity. In this study, the modification of ISPH through the combination of pH and ultrasound treatment significantly enhanced their solubility and further promoted fibrillation capacity. Ultrasound treatment at pH 8.0 and 2.0 significantly reduced the particle size of ISPH and enhance their ζ-potential, promoting uniform dispersion in water and improving solubility. In addition, ISPH modified by ultrasound treatment at pH 2.0 and 8.0 contributed to the formation of short, worm-like nanofibrils with characteristic cross-β structure. Ultrasound treatment (250 W) at pH 2.0 conferred the highest surface hydrophobicity (H0) to ISPH, resulting in the increase (9.30 %) in the content of antiparallel β-sheets after heating for 12 h. This study provided theoretical support for the development of insoluble protein resources for manufacturing nanofibrils.
Collapse
Affiliation(s)
- Di An
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Rao SQ, Jia CC, Du L, Zhou WB, Hu WX, Jiang Y, Wang ZR, Yang ZQ. Contribution of phosphorylation modification by sodium tripolyphosphate to the functional properties of hollow zein nanoparticles. Food Res Int 2025; 203:115845. [PMID: 40022368 DOI: 10.1016/j.foodres.2025.115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
In this study, hollow zein nanoparticles (HZn) have been prepared by Na2CO3 as a sacrificial template, and phosphorylated hollow zein nanoparticles (PHZn) have been further prepared with sodium tripolyphosphate (STP) incorporation. The results indicated that HZn exhibited a smaller particle size in comparison to solid zein nanoparticles (SZn), which consequently led to a higher degree of phosphorylation for HZn when equivalent amounts of STP were incorporated. As phosphorylation increased, the zeta potential, free amino content, and free sulfhydryl content of HZn decreased, attaining the lowest values of -53.2 mV, 0.134 mmol/g, and 14.36 µmol/g, respectively. Scanning electron microscopy, fourier transform infrared spectroscopy, circular dichroism spectroscopy, and intrinsic fluorescence spectroscopy measurements showed that PHZn was more denatured than SZn. This series of changes contributed to the improvement of the functional indicators. Thus, compared to SZn, the functional characteristics of PHZn at the highest phosphorylation level exhibit significant improvements in several aspects: solubility increased from 21.88 % to 43.45 %; excellent storage stability for at least 3 weeks at room temperature; enhancements in emulsification activity and emulsification stability by 118.63 m2/g and 59.54 %, respectively; increases in foaming capacity and foaming stability by 2.73 and 1.22 times, respectively; and improvements in puerarin encapsulation efficiency and loading capacity by 17.10 % and 3.42 %, individually. These findings indicate that the implementation of hollow preparation techniques and the incorporation of STP can enhance the functional properties and broaden the potential applications of zein nanoparticles.
Collapse
Affiliation(s)
- Sheng-Qi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Cao-Chen Jia
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Lin Du
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Wei-Biao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Wen-Xuan Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi Jiang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhi-Rong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
5
|
Zhong H, Wang F, Tang C, Li J, Cheng JH. Combination of Structural Analysis and Proteomics Strategy Revealed the Mechanism of Ultrasound-Assisted Cold Plasma Regulating Shrimp Allergy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356241 DOI: 10.1021/acs.jafc.4c06388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Allergic incidents of crustacean aquatic products occur frequently, and tropomyosin (TM) is the main allergen. Therefore, it is worthwhile to develop technologies to efficiently reduce the allergenicity of TM. In this study, ultrasound-assisted cold plasma (UCP) treatment was used to regulate shrimp allergy. The remarkable changes in TM structure were substantiated by alteration in secondary structure, reduction in sulfhydryl content, change in surface hydrophobicity, and disparity in surface morphology. The IgE and IgG binding ability of TM significantly decreased by 52.40% and 46.51% due to UCP treatment. In the Balb/c mouse model, mice in the UCP group showed most prominent mitigation of allergic symptoms, proved by lower allergy score, changes in levels of TM-specific antibodies, and restoration of Th1/Th2 cytokine imbalance. Using a proteomics approach, 439 differentially expressed proteins (DEPs) in the TM group (vs phosphate-buffered saline group) and 170 DEPs in the UCP group (vs TM group) were determined. Subsequent analysis demonstrated that Col6a5, Col6a6, and Epx were potential biomarkers of TM allergy. Moreover, Col6a5, Col6a6, Dcn, and Kng1 might be the target proteins of UCP treatment, while PI3K/Akt/mTOR might be the regulated signaling pathway. These findings proved that UCP treatment has great potential in reducing TM allergenicity and provide new insights into the development of hypoallergenic shrimp products.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengqi Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Caidie Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
6
|
Chen X, Xiong J, Li HJ. A Review on the Driving Forces in the Formation of Bioactive Molecules-Loaded Prolamin-Based Particles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19549-19565. [PMID: 39186464 DOI: 10.1021/acs.jafc.4c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Prolamin-based particles loaded with bioactive molecules have attracted widespread attention from scientists due to their novel properties in chemistry, physics, and biology. In the self-assembly process of biopolymer-based nanocapsules, noncovalent interactions are the main driving forces for reducing bulk materials to the nanoscale and controlling the release of bioactive molecules. This article reviews the types of interaction forces, binding strength, binding active sites, molecular orientation, and binding affinity that affect the release profile of bioactive molecules during the preparation of protein stabilizer particles. Different preparation formulations, the use of different biopolymers, the inherent nature of the loaded bioactive molecules, and external factors (including pH, biopolymer concentration, temperature, salt, ultrasonication, and atmospheric cold plasma treatment) lead to different types and strengths of intra- and intermolecular interactions. Strategies, such as pH, ultrasonication, and atmospheric cold plasma, to change the protein conformation are key to improving the binding strength between proteins and bioactive substances or stabilizers. This review provides some guidance for scientists and technicians dedicated to improving loading efficiency, delaying release, enhancing colloidal stability, and exploring the binding behavior among proteins, stabilizers, and bioactive molecules.
Collapse
Affiliation(s)
- Xiao Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Jia Xiong
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081, United States
| | - Hui-Jing Li
- Weihai Marine Organism and Medical Technology Research Institute, School of Chemistry and Chemical Engineering,, Harbin Institute of Technology, Harbin 150006, PR China
| |
Collapse
|
7
|
Tan G, Ning Y, Sun C, Bu Y, Zhang X, Zhu W, Li J, Li X. Effects of plasma-activated slightly acidic electrolyzed water on salmon myofibrillar protein: Insights from structure and molecular docking. Food Chem X 2024; 22:101389. [PMID: 38681232 PMCID: PMC11046062 DOI: 10.1016/j.fochx.2024.101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
The present study investigated the impact of plasma-activated water (PAW), slightly acidic electrolytic water (SAEW) and plasma-activated slightly acidic electrolytic water (PASW) treatment on myofibrillar protein (MP) in salmon fillets. Additionally, the interaction mechanism between myosin and reactive oxygen species was explored by molecular docking. Compared with the control group (719.26 nm), PASW treatment group exhibited the smallest particle size (408.97 nm). The PASW treatment exhibited efficacy in reducing MP aggregation and inhibiting protein oxidation. In comparison with other treatments, PASW treatment demonstrated a greater ability to mitigate damage to the secondary and tertiary structures of MP. O3 and H2O2 interact with myosin through hydrogen bonding. Specifically, O3 interacts with Lys676, Gly677, and Met678 of myosin while H2O2 binds to Thr681, Asp626, Arg680, and Met678. This study offers novel insights into the impact of PASW on MP, and provides a theoretical foundation for its application in aquatic product processing.
Collapse
Affiliation(s)
- Guizhi Tan
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yue Ning
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Chaonan Sun
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xiaomin Zhang
- Jinzhou experimental school, Jinzhou, Liaoning 121013, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| |
Collapse
|
8
|
Liu Z, Ma X, Ge Y, Hei X, Zhang X, Hu H, Zhu J, Adhari B, Wang Q, Shi A. Preparation and Regulation of Natural Amphiphilic Zein Nanoparticles by Microfluidic Technology. Foods 2024; 13:1730. [PMID: 38890958 PMCID: PMC11171580 DOI: 10.3390/foods13111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Microfluidic technology, as a continuous and mass preparation method of nanoparticles, has attracted much attention in recent years. In this study, zein nanoparticles (ZNPs) were continuously fabricated in a highly controlled manner by combining a microfluidics platform with the antisolvent method. The impact of ethanol content (60~95%, v/v) and flow rates of inner and outer phases in the microfluidics platform on particle properties were examined. Among all ZNPS, 90%-ZNPs have the highest solubility (32.83%) and the lowest hydrophobicity (90.43), which is the reverse point of the hydrophobicity of ZNPs. Moreover, when the inner phase flow rate was 1.5 mL/h, the particle size decreased significantly from 182.81 nm to 133.13 nm as the outer phase flow rate increased from 10 mL/h to 50 mL/h. The results revealed that ethanol content had significant impacts on hydrophilic-hydrophobic properties of ZNPs. The flow rates of ethanol-water solutions and deionized water (solvent and antisolvent) in the microfluidics platform significantly affected the particle size of ZNPs. These findings demonstrated that the combined application of a microfluidics platform and an antisolvent method could be an effective pathway for precisely controlling the fabrication process of protein nanoparticles and modulating their physicochemical properties.
Collapse
Affiliation(s)
- Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
| | - Yanzheng Ge
- Food Laboratory of Zhongyuan, Luohe 462300, China;
| | - Xue Hei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
| | - Xinyu Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
| | - Jinjin Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
| | - Benu Adhari
- College of Science, RMIT University, Melbourne, VIC 3083, Australia;
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
- School of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210093, China
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Ürümqi 830052, China
| |
Collapse
|
9
|
Lotos ED, Mihai M, Vasiliu AL, Rosca I, Mija A, Simionescu BC, Pispas S. Zein/Polysaccharide Nanoscale Electrostatic Complexes: Preparation, Drug Encapsulation and Antibacterial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:197. [PMID: 38251161 PMCID: PMC10818850 DOI: 10.3390/nano14020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Characterization of zein aqueous solutions, as a function of the ethanol content and pH, was performed, giving information on the zein aggregation state for the construction of complexes. The aggregation state and surface charge of zein was found to depend on the mixed solvent composition and pH. Nonstoichiometric complex nanoparticles (NPECs) were prepared by electrostatically self-assembling zein, as the polycation, and sodium alginate or chondroitin sulfate, as the polyanions, at a pH of 4. A wide range of parameters were investigated: the alcohol-water content in the zein solutions, the charge molar ratios, the solution addition order and the addition rate. The resulting nanoparticles were characterized by dynamic and electrophoretic light scattering, circular dichroism and scanning electron microscopy. The smallest size for the NPECs (100 nm) was obtained when the polysaccharides acted as the titrate with an addition rate of 0.03 mL·min-1. The NPECs with the best characteristics were selected for loading with ciprofloxacin and then deposited on a cellulosic material in order to evaluate their antibacterial activity. Substantial drug encapsulation with desired drug release profiles were found together with notable antibacterial efficiency, showing the tunability of the properties for both the zein and its complexes with polysaccharides, together with their application potential in the biomedical field.
Collapse
Affiliation(s)
- Elena-Daniela Lotos
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (E.-D.L.); (A.-L.V.); (I.R.); (B.C.S.)
| | - Marcela Mihai
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (E.-D.L.); (A.-L.V.); (I.R.); (B.C.S.)
| | - Ana-Lavinia Vasiliu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (E.-D.L.); (A.-L.V.); (I.R.); (B.C.S.)
| | - Irina Rosca
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (E.-D.L.); (A.-L.V.); (I.R.); (B.C.S.)
| | - Alice Mija
- Institut de Chimie de Nice, Université Côte d’Azur, UMR CNRS 7272, 28 Av. Valrose, 06108 Nice, France;
| | - Bogdan C. Simionescu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (E.-D.L.); (A.-L.V.); (I.R.); (B.C.S.)
| | - Stergios Pispas
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (E.-D.L.); (A.-L.V.); (I.R.); (B.C.S.)
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
10
|
Yu H, Huang X, Zhou L, Wang Y. Incorporation of cinnamaldehyde, carvacrol, and eugenol into zein films for active food packaging: enhanced mechanical properties, antimicrobial activity, and controlled release. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2846-2857. [PMID: 37711567 PMCID: PMC10497491 DOI: 10.1007/s13197-023-05802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 09/16/2023]
Abstract
Active packaging with antimicrobial functions to improve the quality and extend the shelf life of food products has gained great interest. Because commercial plastic packaging materials are not biodegradable and cause great environmental problems, plant-derived natural materials have been widely studied for the application of biodegradable packaging materials. Herein, we reported a study of essential oils (EOs)-loaded zein film. Cinnamaldehyde (CIN), carvacrol, and eugenol were added to equip the films with antimicrobial effects, while polyethylene glycol (PEG) and oleic acid (OA) were selected for the improvements of mechanical properties. The results showed that PEG efficiently improves the tensile strength and elongation (%E) of zein films compared to OA, although PEG induced weaker water barrier properties of the films than OA. FTIR spectra confirmed the formation of the hydrogen bonds between zein and PEG/OA. The EO-embedded zein film showed better antimicrobial effects than EO themselves. CIN-embedded films showed the highest antimicrobial effect among the three EOs. The sizes of the inhibition zones against Staphylococcus aureus of PEG-added zein films with 1%, 3%, and 5% CIN were 5.67, 12.67, and 16.67 mm, which were larger than that of pure CIN, with the sizes of 0.00, 3.00, and 4.67 mm, respectively. The developed films demonstrate a gradual release of EOs and show antimicrobial effects up to 96 h, indicating their high potential for the applications as active food packaging.
Collapse
Affiliation(s)
- Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - Xueying Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - Liping Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| |
Collapse
|
11
|
Sahraeian S, Rashidinejad A, Niakousari M. Enhanced properties of non-starch polysaccharide and protein hydrocolloids through plasma treatment: A review. Int J Biol Macromol 2023; 249:126098. [PMID: 37543265 DOI: 10.1016/j.ijbiomac.2023.126098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Hydrocolloids are important ingredients in food formulations and their modification can lead to novel ingredients with unique functionalities beyond their nutritional value. Cold plasma is a promising technology for the modification of food biopolymers due to its non-toxic and eco-friendly nature. This review discusses the recent published studies on the effects of cold plasma treatment on non-starch hydrocolloids and their derivatives. It covers the common phenomena that occur during plasma treatment, including ionization, etching effect, surface modification, and ashing effect, and how they contribute to various changes in food biopolymers. The effects of plasma treatment on important properties such as color, crystallinity, chemical structure, rheological behavior, and thermal properties of non-starch hydrocolloids and their derivatives are also discussed. In addition, this review highlights the potential of cold plasma treatment to enhance the functionality of food biopolymers and improve the quality of food products. The mechanisms underlying the effects of plasma treatment on food biopolymers, which can be useful for future research in this area, are also discussed. Overall, this review paper presents a comprehensive overview of the current knowledge in the field of cold plasma treatment of non-starch hydrocolloids and their derivatives and highlights the areas that require further investigation.
Collapse
Affiliation(s)
- Shahriyar Sahraeian
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Mehrdad Niakousari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
12
|
Wang J, Lu Q, Gong J, Gao F, Xu X, Wang H. Magnetic field-assisted cascade effects of improving the quality of gels-based meat products: A mechanism from myofibrillar protein gelation. Food Res Int 2023; 169:112907. [PMID: 37254342 DOI: 10.1016/j.foodres.2023.112907] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Physics-assisted processing technologies have huge potential in the meat processing industry. By modeling two essential procedures (pickling and preheating) of gels-based meat products, this work investigated the cascade effects of a new physical technology (magnetic field) on the conformational structures and gel properties of myofibrillar proteins (MPs). Samples were subjected with four magnetic field (MF)-assisted treatments (group A, both processes without MF; group B, pickling without MF combining with preheating with 4.5 mT MF; group C, pickling with 3.0 mT MF combining with preheating without MF; group D, pickling with 3.0 mT MF combining with preheating with 4.5 mT MF). The result showed that MF-assisted treatments significantly improved water holding capacity (WHC) of MP gels compared with group A (46.9%), reaching the maximum value of 52.1% in group D.According to the low-field nuclear magnetic results, group D decreased the percentages of P22 (6.97%) and increased the percentages of P21 (93%), which showed that water molecules were more tightly bound to each other. Meanwhile, the unfolding of α-helix and the formation of random coil of MF-assisted treatments resulted in more exposure of internal groups, leading to the formation of a dense network. These findings would provide new insights to improve the quality of gels-based meat products via the MF.
Collapse
Affiliation(s)
- Jingwen Wang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qiyuan Lu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junming Gong
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fei Gao
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huhu Wang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
13
|
Eazhumalai G, Kalaivendan RGT, Annapure US. Effect of atmospheric pin-to-plate cold plasma on oat protein: Structural, chemical, and foaming characteristics. Int J Biol Macromol 2023; 242:125103. [PMID: 37257535 DOI: 10.1016/j.ijbiomac.2023.125103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
The impact of novel pin-to-plate atmospheric cold plasma was investigated with input voltage (170 V, 230 V) and exposure time (15 & 30 min) on oat protein by studying structural (FTIR, circular dichroism (CD), UV-vis, Fluorescence), morphological (particle size analysis, SEM, turbidity), chemical (pH, redox potential (ORP), ζ potential, carbonyl, sulfhydryl, surface hydrophobicity), and foaming characteristics. The plasma treatment reduced the pH while increasing the ORP of the dispersions. These ionic environment changes affected the ζ potential and particle size leading to the formation of larger aggregates (170-15; 230-15) and distorted smaller ones (170-30; 230-30) as confirmed by SEM. The FTIR spectra showed reduced intensity at specific amide bands (1600-1700 cm-1) and also an increase in carbonyl stretching (1743 cm-1) representing oxidative carbonylation (increase in carbonyl content). Thus, the partial exposure of hydrophobic amino acids increases surface hydrophobicity. The altered secondary structure (rise in α-helix, decrement in β-sheets and turns), and tertiary structures were observed in circular dichroism (CD) and UV absorbance and fluorescence characteristics of proteins respectively. Furthermore, the increase in free sulfhydryl content and disulfide content was highly affected by the plasma treatments due to observed protein unfolding and aggregations. Besides, the increased solubility and reduced surface tension contributed to the improved foaming characteristics. Thus, plasma processing influences protein structure affecting their characteristics and other functionalities.
Collapse
Affiliation(s)
- Gunaseelan Eazhumalai
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai 400019, India
| | | | - Uday S Annapure
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai 400019, India; Institute of Chemical Technology, Marathwada Campus, Jalna 431213, India.
| |
Collapse
|
14
|
Liu M, Shan S, Gao X, Shi Y, Lu W. The effect of sweet tea polysaccharide on the physicochemical and structural properties of whey protein isolate gels. Int J Biol Macromol 2023; 240:124344. [PMID: 37028627 DOI: 10.1016/j.ijbiomac.2023.124344] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
In this study, we investigated the effect of sweet tea polysaccharide (STP) on the physicochemical and structural properties of heat-induced whey protein isolate (WPI) gels, and explored the potential mechanism. The results indicated that STP promoted the unfolding and cross-linking of WPI to form a stable three-dimensional network structure, and significantly improved the strength, water-holding capacity and viscoelasticity of WPI gels. However, the addition of STP was limited to 2 %, too much STP would loosen the gel network and affect the gel properties. The results of FTIR and fluorescence spectroscopy suggested that STP affected the secondary and tertiary structures of WPI, promoted the movement of aromatic amino acids to the protein surface and the conversion of α-helix to β-sheet. In addition, STP reduced the surface hydrophobicity of the gel, increased the free sulfhydryl content, and enhanced the hydrogen bonding, disulfide bonding, and hydrophobic interactions between protein molecules. These findings can provide a reference for the application of STP as a gel modifier in the food industry.
Collapse
Affiliation(s)
- Mengyao Liu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Shan Shan
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Xin Gao
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Yudong Shi
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China; Inner Mongolia Mengniu Dairy Co., Ltd., Inner Mongolia, China
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
15
|
Dhiman A, Thakur K, Parmar V, Sharma S, Sharma R, Kaur G, Singh B, Suhag R. New insights into tailoring physicochemical and techno-functional properties of plant proteins using conventional and emerging technologies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Gong W, Guo XL, Wang SJ, Huang HB, Zhu XM. Construction of high internal phase Pickering emulsions using cold plasma modified soy protein isolate-proanthocyanidin complex. Food Res Int 2023; 167:112664. [PMID: 37087249 DOI: 10.1016/j.foodres.2023.112664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Protein-based high internal phase Pickering emulsions (HIPPEs) feature numerous multi-functionalities and widespread applications. However, the direct use of native proteins for the constructions of HIPPEs is limited since it is fragile under various conditions. Here, cold plasma was used to modify soy protein isolates (SPI) to improve their surficial properties. Meanwhile, proanthocyanidins (PA) were applied to interact with cold plasma-treated SPI to form complex. Furthermore, the well-prepared SPI-PA complex was used to construct novel HIPPEs. Results showed cold plasma treatment significantly improved the functionalities of SPI, which were confirmed by surface hydrophobicity (H0 < 500), sulfhydryl (SH) groups and spectral analysis. Further, the emulsification and oxidation resistance of cold plasma treated SPI were enhanced after forming complex with PA. Soybean oils can be stabilized by SPI-PA complexes to form HIPPEs with a lipid oxidation inhibition rate of > 65%, creaming index (CI) > 80%, excellent rheological properties and better stability compared with conventional emulsion systems. Overall, this SPI-PA complexes provides a unique approach to improve the emulsification and oxidation resistance to engineer HIPPEs with versatile applications.
Collapse
|
17
|
Changes in structure and emulsifying properties of coconut globulin after the atmospheric pressure cold plasma treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Spray drying co-encapsulation of lactic acid bacteria and lipids: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Yang Q, Zheng Q, Jin M, Chen Y, Guo L, Lin J, Zou Y. Fabrication of gel-like emulsions with γ-zein particles using microfluidization: Structure formation and rheological properties. Food Res Int 2022; 158:111514. [DOI: 10.1016/j.foodres.2022.111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/04/2022]
|
20
|
Sun C, Xiong Z, Chang Y, Li S, Zhang Y, Fang Y. Zein molecules in aqueous acetic acid solution: Self-assembling behaviors and formation mechanism of gluten-free doughs. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Li Z, Deng S, Chen J. Surface Modification via Dielectric Barrier Discharge Atmospheric Cold Plasma (DBD-ACP): Improved Functional Properties of Soy Protein Film. Foods 2022; 11:foods11091196. [PMID: 35563919 PMCID: PMC9099683 DOI: 10.3390/foods11091196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Atmospheric cold plasma (ACP), a novel technology, has been widely adopted as an efficient approach in surface modification of the film. The effect of ACP treatment on the physicochemical and structural properties of soy protein film were investigated. As a result, the optimal conditions for the preparation of the film were determined for soy protein (10%), glycerol (2.8%), ACP treatment at 30 kV for 3 min, on the basis of elongation at the break, and water vapor permeability. Under the optimal conditions, the ACP–treated films exhibited enhanced polarity according to the increased values of solubility, swelling index, and moisture content, compared with the untreated counterpart. An increase in the hydrophilicity is also confirmed by the water contact angle analysis, which decreased from 87.9° to 77.2° after ACP pretreatment. Thermostability was also improved by ACP exposure in terms of DSC analysis. SEM images confirmed the tiny pores and cracks on the surface of film could be lessened by ACP pretreatment. Variations in the Fourier transform infrared spectroscopy indicated that some hydrophilic groups were formed by ACP pretreatment. Atomic force microscopy data revealed that the roughness of soy protein film which was pretreated by ACP was lower than that of the control group, with an Rmax value of 88.4 nm and 162.7 nm for the ACP- treated and untreated samples, respectively. The soy protein film was characterized structurally by FT–IR and DSC, and morphological characterization was done by SEM and AFM. The soy protein film modified by ACP was more stable than the control group. Hence, the great potential in improving the properties of the film enables ACP treatment to be a feasible and promising alternative to other modification methods.
Collapse
Affiliation(s)
- Zhibing Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Z.L.); (S.D.)
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Z.L.); (S.D.)
| | - Jing Chen
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Z.L.); (S.D.)
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China
- Correspondence:
| |
Collapse
|
22
|
Pre-treatment by combining atmospheric cold plasma and pH-shifting to prepare pea protein concentrate powders with improved gelling properties. Food Res Int 2022; 154:111028. [DOI: 10.1016/j.foodres.2022.111028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/19/2022]
|
23
|
Zhu Y, Elliot M, Zheng Y, Chen J, Chen D, Deng S. Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenol oxidase subjected to atmospheric cold plasma treatment. Food Chem 2022; 386:132707. [PMID: 35339091 DOI: 10.1016/j.foodchem.2022.132707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/25/2022]
Abstract
Atmospheric cold plasma (ACP) is a novel nonthermal technology with potential applications in maintaining and improving food quality. The effect of ACP on the activity and structure of mushroom (Agaricus bisporus) polyphenol oxidase (PPO) was evaluated. Results demonstrated that the dielectric barrier discharge (DBD) based plasma technology could inactivate PPO (up to 69%) at 50 kV with the increased concentrations of H2O2 and NOx. An obvious enhancement of surface hydrophobicity was observed, whereas a gradual reduction of total sulfhydryl content was recorded with the increasing exposure time. Data from circular dichroism, atomic force microscopy, particle size distribution and fluorescence spectra displayed the rearrangement of secondary structure and disruption of the tertiary structure. Red shifts of fluorescence spectra showed positive correlations with the inactivation rate of PPO. Therefore, ACP treatment could be served as an alternative approach to inactivate undesirable enzymes to minimize the loss of food nutrition and quality.
Collapse
Affiliation(s)
- Yifan Zhu
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mubango Elliot
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhong Zheng
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Chen
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China.
| | - Dongzhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shanggui Deng
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China
| |
Collapse
|
24
|
Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Sharafodin H, Soltanizadeh N. Potential application of DBD Plasma Technique for modifying structural and physicochemical properties of Soy Protein Isolate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Hou Y, Liu Q, Mian SM, Luo Y, Mu G, Jiang S, Zhou M, Wu X. Effects of treatment of dielectric barrier discharge cold plasma (DBD‐CP) on mechanical, barrier and functional characteristics of casein‐based films. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yaqi Hou
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Qi Liu
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Safian Murad Mian
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Yanghe Luo
- Institute of Food Research Hezhou University Guangxi 542800 China
| | - Guangqing Mu
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Shujuan Jiang
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Mingyi Zhou
- College of Food Science and Engineering Jinzhou Medical University Liaoning 121001 China
| | - Xiaomeng Wu
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| |
Collapse
|
27
|
Badgujar HF, Kumar U. Green Approach Towards Morphology-Controlled Synthesis of Zein-Functionalized TiO 2 Nanoparticles for Cosmeceutical Application. Eur J Pharm Sci 2021; 167:106010. [PMID: 34537374 DOI: 10.1016/j.ejps.2021.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Biomolecular approaches for synthesis of inorganic nanoparticle are very popular among researchers and exhibit significant shape-directing morphologies in classified condition. The proteins are the most abundant macromolecules and employed for the hybrid synthesis as well as shape-directing agent. The present study is designed to investigate the potential role of a plant protein 'zein' to synthesize hybrid TiO2 nanoparticles. This versatile amphiphilic protein paves a unique path towards shape directing synthesis and act as template in the biomineralization process. The structural changes occurred in protein structure is thoroughly characterized using the circular dichroism (CD) and FTIR spectroscopy. UV, XPS and HRTEM analysis confirms the presence of zein on the nanoparticle surface. The proposed approach provides finely engineered nano-cuboidal (22.75±5.07 nm) geometry with homogenous dispersion, curved edged cuboids (403.51±0.05 nm) and spherical (97.85±0.62 nm) shaped from different modification, as evidenced by TEM. We also discussed in-vitro method for the detection of antimicrobial activity of nanocuboids against acne causing microorganisms such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Streptococcus agalactiae. Our results demonstrate that hybrid nanocuboids could be an efficient green material and provide cognitive antimicrobial evidence that could be deployed for cosmeceutical application.
Collapse
Affiliation(s)
- Hina F Badgujar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
28
|
Chen G, Jiao H, Chen Y, Zhang Z. Incorporation of antibacterial zein/thymol nanoparticles dispersed using nanobubble technology improves the functional performance of gelatin films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106789] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Shi G, Zhou M, Wang L, Xiao Z, Shi L, Jiao C, Wu W, Li X, Wang J, Qiao Y, Liao L, Ding A, Xiong G. The effect of gamma and electron beam irradiation on the structural and physicochemical properties of myofibrillar protein and myosin from grass carp. J Food Biochem 2021; 45:e13828. [PMID: 34180068 DOI: 10.1111/jfbc.13828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
Myofibrillar protein (MPS) and myosin (MS) from grass carp was irradiated by γ-ray and electron beam (EB) irradiation with different dose (2, 4, 6, 8, and 10 kGy). The changes in the physicochemical properties (solubility, Ca2+ -ATPase activity, total and reactive sulfhydryl content, surface hydrophobicity [S0 -ANS]), and structure of MPS and MS were investigated in the present work. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that there were degradation and aggregation of MPS and MS caused by irradiation, and the disappearance of myosin heavy chains (MHC) irradiated by EB was earlier than that of irradiated by γ-ray. As compared with MPS, the extracted MS was more easily destroyed. With the increase of irradiation dose, the particle size, solubility, Ca2+ -ATPase activity, and SH content of MPS and MS decreased (p < .05), while the S0 -ANS first increased and then decreased. Two-way analysis of variance results suggested that the degree of protein denaturation depends on the irradiation mode and dose. Compared with γ-ray irradiation, the EB irradiation had a greater impact on the physicochemical properties of MPS and MS.
Collapse
Affiliation(s)
- Gangpeng Shi
- Institute for farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
- School of bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| | - Mingzhu Zhou
- Institute for farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
- School of bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| | - Lan Wang
- Institute for farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Zihao Xiao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Liu Shi
- Institute for farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Chunhai Jiao
- Institute for farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Wenjin Wu
- Institute for farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Xin Li
- Institute for farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jun Wang
- Institute for farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yu Qiao
- Institute for farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Li Liao
- Institute for farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Anzi Ding
- Institute for farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Guangquan Xiong
- Institute for farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
31
|
Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03750-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Wang Y, Ye Z, Li J, Zhang Y, Guo Y, Cheng JH. Effects of dielectric barrier discharge cold plasma on the activity, structure and conformation of horseradish peroxidase (HRP) and on the activity of litchi peroxidase (POD). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Physicochemical properties of Grass pea (Lathyrus sativus L.) protein nanoparticles fabricated by cold atmospheric-pressure plasma. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Sun F, Xie X, Zhang Y, Ma M, Wang Y, Duan J, Lu X, Yang G, He G. Wheat gliadin in ethanol solutions treated using cold air plasma at atmospheric pressure. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Chitosan Plasma Chemical Processing in Beam-Plasma Reactors as a Way of Environmentally Friendly Phytostimulants Production. Processes (Basel) 2021. [DOI: 10.3390/pr9010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel technique of phytoactive water-soluble chitooligosaccharide (COS) production in low-temperature plasma is described. Design, operation, and control of plasma chemical reactors used to produce COS from the powder of high molecular weight chitosan are presented. The electron beam plasma is strongly non-equilibrium and chemically active; plasma was excited by injecting the scanning electron beam into reaction volume filled with aerosol, containing oxygen and chitosan powder. Plasma chemical processes, responsible for the raw chitosan destruction and techniques of these processes to obtain control of products of optimal molecular weight, are considered. COS, in amounts sufficient for laboratory tests with some plants, were produced. Tests showed that the addition of COS into the liquid growing medium at 0.25 and 1 mg/mL stimulates root growth in Arabidopsis thaliana seedlings (Col-0) by up to 40%, with respect to control plants. Foliar application of these COS formulations at 0.25 mg/mL on tomato plants (cv. Micro-Tom) also resulted in increases between 11.9% and 36% in two important plant productivity indicators (flower and fruit numbers) compared to the control plants. Being environmentally friendly (and resource saving) the electron beam plasma technology of renewable natural biopolymer processing can be considered as a competitive way to produce biostimulants for commercial agriculture.
Collapse
|
36
|
Improvement of pea protein gelation at reduced temperature by atmospheric cold plasma and the gelling mechanism study. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102567] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Qian F, Gao X, Li L, Safian Murad M, Mu G, Wu X. Influence of forming method of blending versus casting layer‐by‐layer on structural properties and packing performances of casein‐gelatin composite edible film under different appending proportion. J Appl Polym Sci 2020. [DOI: 10.1002/app.50378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fang Qian
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Xiaoxi Gao
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Li Li
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Mian Safian Murad
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Guangqing Mu
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Xiaomeng Wu
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| |
Collapse
|
38
|
Zhang Q, Cheng Z, Zhang J, Nasiru MM, Wang Y, Fu L. Atmospheric cold plasma treatment of soybean protein isolate: insights into the structural, physicochemical, and allergenic characteristics. J Food Sci 2020; 86:68-77. [PMID: 33336377 DOI: 10.1111/1750-3841.15556] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/29/2020] [Accepted: 11/15/2020] [Indexed: 12/20/2022]
Abstract
Currently, there has been a surge of interest in revealing the interactions between plasma and food matrices. In this study, we investigated the impacts of atmospheric cold plasma (ACP) treatment on the structural, physicochemical and allergenic characteristics of soybean protein isolate (SPI). SPI dispersions were subjected to ACP treatments at different frequencies (80 to 100 Hz) and durations (1 to 10 min) to investigate the effects of exposing conditions. Results showed that ACP induced reactive oxygen species-mediated oxidation of soy proteins, resulting in modifications in the secondary and ternary structures of SPI. As a consequence, functional properties of SPI, such as emulsifying (56 to 168%, compared with control) and foaming properties (60 to 194%) were influenced by varying degrees. In addition, under certain circumstance (120 Hz, 5 min), the IgE-binding level of SPI was decreased by up to 75%, when compared to the control. Moderate treatment yielded products with improved functionality and reduced allergenicity, while extensive exposure induced a loss of vendibility due to protein aggregation. PRACTICAL APPLICATION: In this study, we demonstrated for the first time, that plasma species reacted with soybean proteins, resulting in spatial structural changes which are closely related with protein functionality and allergenicity. ACP interacts with macromolecules in aqueous systems and thus can be an alternative and promising nonthermal approach in modifying soybean proteins, whereas the exact role of different processing parameters needs to be well-elaborated.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- The Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China
| | - Zhouzhou Cheng
- The Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China
| | - Jianhao Zhang
- The National Center of Meat Quality and Safety Control, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Mustapha Muhammad Nasiru
- The National Center of Meat Quality and Safety Control, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Yanbo Wang
- The Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China
| | - Linglin Fu
- The Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China
| |
Collapse
|
39
|
Moisture molecule migration and quality changes of fresh wet noodles dehydrated by cold plasma treatment. Food Chem 2020; 328:127053. [DOI: 10.1016/j.foodchem.2020.127053] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
|
40
|
Chen G, Dong S, Chen Y, Gao Y, Zhang Z, Li S, Chen Y. Complex coacervation of zein-chitosan via atmospheric cold plasma treatment: Improvement of encapsulation efficiency and dispersion stability. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105943] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Mahdavian Mehr H, Koocheki A. Effect of atmospheric cold plasma on structure, interfacial and emulsifying properties of Grass pea (Lathyrus sativus L.) protein isolate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105899] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Erickson DP, Ozturk OK, Selling G, Chen F, Campanella OH, Hamaker BR. Corn zein undergoes conformational changes to higher β-sheet content during its self-assembly in an increasingly hydrophilic solvent. Int J Biol Macromol 2020; 157:232-239. [DOI: 10.1016/j.ijbiomac.2020.04.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 02/05/2023]
|
43
|
Meng D, Chen S, Liu J, Wang Q, Wang D, Liu M, Zhou Z, Yang R. Double-Interface Binding of Two Bioactive Compounds with Cage-Like Ferritin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7779-7788. [PMID: 32545959 DOI: 10.1021/acs.jafc.0c01191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ferritin is a cage-like carrier protein with multiple interfaces, allowing for the encapsulation and delivery of biologically active molecules. In this study, hesperetin was covalently conjugated to the outer surface of ferritin to fabricate hesperetin covalently modified ferritin (HFRT) at pH 9.0. This conjugation resulted in a binding equivalent of hesperetin to ferritin of 12.33 ± 0.56 nmol/mg. After covalent binding, the free amino content of HFRT decreased and the secondary and tertiary structures of HFRT were changed relative to the structure of control ferritin. In addition, HFRT successfully retained the cage-like structure of ferritin and exhibited reversible self-assembly property regulated by pH shifts. Taking advantage of this property, quercetin was encapsulated into the inner surface of HFRT with an encapsulation ratio of 14.0 ± 1.36% (w/w). The modification with hesperetin improved the digestive stability of ferritin and enhanced the stability of encapsulated quercetin against thermal treatment compared to unmodified ferritin. This study explored the functions of the double interfaces of ferritin by covalent and non-covalent binding of two different bioactive compounds. The results can help guide the functionalization of the ferritin cage as a nanocarrier in food application.
Collapse
Affiliation(s)
- Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Shengnan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Qiaoe Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Desheng Wang
- Tianjin Goubuli Food Company, Limited, Tianjin 300380, People's Republic of China
| | - Mengyao Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Zhongkai Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| |
Collapse
|
44
|
Li N, Yu JJ, Jin N, Chen Y, Li SH, Chen Y. Modification of the physicochemical and structural characteristics of zein suspension by dielectric barrier discharge cold plasma treatment. J Food Sci 2020; 85:2452-2460. [PMID: 32691480 DOI: 10.1111/1750-3841.15350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/24/2022]
Abstract
Owing to the strong hydrophobicity of zein, improved solubility is required to enhance the recovery of bioactive peptides. Using a zein suspension prepared by the antisolvent precipitation method, the impact of varying the voltage during dielectric barrier discharge (DBD) treatment on the physicochemical and conformational properties of zein in water was investigated. Analysis of the particle size, specific surface area, and free sulfhydryl content indicated that the protein solubility was maximized by treatment at 70 V for 70 s. DBD treatment destroyed covalent bonds and introduced some hydrophilic groups onto the zein surface, thus enhancing the contact area with water molecules and leading to a more uniform dispersion. A decrease in the hydrodynamic radius of zein micelles indicated that intermolecular interactions were disrupted, thus improving dispersion stability. A more hydrophilic microenvironment was formed owing to the reduction in hydrophobic interactions. Additionally, evaluation of the secondary structure demonstrated that DBD treatment broke hydrogen bonds, resulting in a loose conformation with more exposed sites of action for water. These results are expected to facilitate the development of technologies for improving utilization of zein. PRACTICAL APPLICATION: Strong hydrophobicity limits the application of zein in the food industry. The study indicated that DBD treatment could promote loose structure, and improve dispersion stability and hydrophilicity of zein suspension prepared by antisolvent precipitation method. This work revealed the potential of cold plasma treatment for modifying zein and other insoluble proteins, which would expand their scope of application.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiao-Jiao Yu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Nan Jin
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yue Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shu-Hong Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ye Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
45
|
Wu X, Liu Q, Luo Y, Murad MS, Zhu L, Mu G. Improved packing performance and structure-stability of casein edible films by dielectric barrier discharges (DBD) cold plasma. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100471] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Jiang YH, Cheng JH, Sun DW. Effects of plasma chemistry on the interfacial performance of protein and polysaccharide in emulsion. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Liu Z, Manzoor MF, Tan Y, Inam‐ur‐Raheem M, Aadil RM. Effect of dielectric barrier discharge (DBD) plasma on the structure and antioxidant activity of bovine serum albumin (BSA). Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhi‐Wei Liu
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Yi‐Cheng Tan
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
48
|
Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: Effects of pulsed electric field (PEF). INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102277] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Ekezie FGC, Sun DW, Cheng JH. Altering the IgE binding capacity of king prawn (Litopenaeus Vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet. Food Chem 2019; 300:125143. [DOI: 10.1016/j.foodchem.2019.125143] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/10/2019] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
|
50
|
Liu Y, Yang R, Liu J, Meng D, Zhou Z, Zhang Y, Blanchard C. Fabrication, structure, and function evaluation of the ferritin based nano-carrier for food bioactive compounds. Food Chem 2019; 299:125097. [DOI: 10.1016/j.foodchem.2019.125097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
|