1
|
Zhang J, Yang Y, Fan Y, Yu W, Qian L, Duan M, Zhao W, Chen X, Song W, Li X, Wang C. Sex Difference in Histopathological and Steroidogenesis Metabolism of Zebrafish After Exposure to Spiromesifen. ENVIRONMENTAL TOXICOLOGY 2025; 40:598-607. [PMID: 39588948 DOI: 10.1002/tox.24438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/18/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
Spiromesifen (SPM) is widely used for orchard mites and white fly control. The ecotoxicological data suggested that SPM is highly toxic to fish, but the information about its toxic effect on zebrafish is still obscure. In this study, adult zebrafish were exposed to SPM for 21 days. The plasma sex steroid hormone levels reflected the ratio of 17β-estradiol (E2) to testosterone (T) (E2/T) was significantly increased at 0.50 μg/L of SPM in male fish (2.4-fold, p = 0.049). Following 21 days' post exposure, distinct pathological changes were noted in gonad, males were more sensitive than female, which showed the interstitial connective tissue hyperplasia and widener in testis at 15 μg/L of SPM. In male fish, the relative percentage of spermatozoa was 13% decreased at 30 μg/L of SPM (p = 0.041). Which suggest SPM potential role in disrupting male gonad development. qRT-PCR results suggest that expression of follicle stimulating hormone receptor (fshr) was significantly down regulated in female zebrafish (0.29 fold of control, p = 0.010). Variable importance of projection (VIP) scores indicate the most important features separate in female and male. The different response of steroid level towards SPM between male and female zebrafish may due to the distinct regulation of key genes related in steroidogenesis and metabolism. This study for the first time connects the biochemical and histological to reveal the adverse effects of SPM on adult zebrafish in a sex dependent manner.
Collapse
Affiliation(s)
- Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, People's Republic of China
| | - Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, People's Republic of China
| | - Wang Yu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, People's Republic of China
| | - Le Qian
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Henan, China
| | - Manman Duan
- Institute of Rural Revitalization, Dezhou University, Dezhou, Shandong, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Xiangguang Chen
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Wanhui Song
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xuefeng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Dong B. Recent advances in the toxicological effects of difenoconazole: A focus on toxic mechanisms in fish and mammals. CHEMOSPHERE 2024; 368:143751. [PMID: 39547292 DOI: 10.1016/j.chemosphere.2024.143751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
The toxicological study of pesticides at sub-lethal and environment-relevant concentrations has become increasingly crucial for human and environmental health. Toxic mechanisms of agrochemicals contribute to discovering green pesticides, assessing the hazards of pesticides comprehensively, and supporting legitimate regulatory decisions. However, the toxicological effects of difenoconazole are not yet fully understood despite being frequently detected in fruits, vegetables, waters, and soils and posing hazards to humans and the environment. This lack of knowledge could lead to flawed risk assessment and administrative oversight. Thus, the review aimed to provide some investigation perspectives for clarifying the toxicological effects of difenoconazole by synthesizing the toxic data of difenoconazole on various organisms, such as bees, Daphnia magna, fish, earthworms, mammals, and plants and summarizing the toxicological mechanisms of difenoconazole, especially in fish and mammals from peer-reviewed publications. Evidence revealed that difenoconazole caused multiple toxicological effects, including developmental toxicity, reproductive toxicity, endocrine disruption effects, neurotoxicity, and transgenerational toxicity. The toxic mechanisms involved in metabolic disturbance, oxidative stress, inflammation, apoptosis, and autophagy by activating reactive oxygen species-mediated signaling pathways and mitochondrial apoptosis routes, disturbing amino acids, lipid, and nucleotide metabolism, and regulating gene transcription and expression in mammals and fish. Based on the review, further studies better focus on the toxic differences of difenoconazole stereoisomers, the toxicological effects of transformation products of difenoconazole, and the mechanism of action of difenoconazole on sex-specific endocrine disruption effects, intestinal damage, and gut dysbacteriosis for its hazard assessment and management synthetically.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, China.
| |
Collapse
|
3
|
Ma C, Zhang Q, Lv DZ, Song J, Fan Q, Tian H, Wang MY. Study of Factors Influencing the Oral Bioaccessibility of Commonly Used and Detected Pesticides in Bananas and Mangoes Based on in vitro Methods. Foods 2024; 13:2019. [PMID: 38998525 PMCID: PMC11241204 DOI: 10.3390/foods13132019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Estimating the impact of pesticide residue bioaccessibility in fruits on dietary exposure is a complex task in human health risk assessment. This research investigated the bioaccessibility of ten commonly used and detected pesticides in bananas and mangoes, as well as the factors influencing it, using an in vitro model. The highest bioaccessibility was observed at pH levels of 2.5 and 6.5 in the gastric and intestinal stages, respectively. Bioaccessibility decreased significantly with increasing solid/liquid ratios for most pesticides. The consumption of protein and four dietary components (carbohydrates, protein, lipids, and dietary fiber) could significantly reduce pesticide bioaccessibility by 9.89-48.32% (p < 0.05). Bioaccessibility in oral and gastric stages among four populations followed the order of adults/the elderly > children > infants, due to decreasing concentrations of α-amylase and pepsin. Pesticides in bananas generally exhibited a higher bioaccessibility (18.65-82.97%) compared to that in mangoes (11.68-87.57%). Bioaccessibility showed a negative correlation with the Log P values of the target pesticide, while no clear relationship was found between bioaccessibility and initial pesticide concentrations. Incorporating bioaccessible pesticide concentrations into risk assessments could lower dietary risk estimates by 11.85-79.57%. Assessing human exposure to pesticides based on bioaccessibility would greatly improve the accuracy of the risk assessment.
Collapse
Affiliation(s)
- Chen Ma
- Analysis and Testing Center, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, China
| | - Qun Zhang
- Analysis and Testing Center, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, China
| | - Dai-Zhu Lv
- Analysis and Testing Center, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, China
| | - Jia Song
- Analysis and Testing Center, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, China
| | - Qiong Fan
- Analysis and Testing Center, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, China
| | - Hai Tian
- Analysis and Testing Center, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China
| | - Ming-Yue Wang
- Analysis and Testing Center, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
| |
Collapse
|
4
|
Xiao J, Li M, Zhang M, Dai K, Ju X, Liu Y, Liu Z, Cao H, Shi Y. Transport and interaction mechanism of four pesticide residues from Chaenomeles speciosa across Caco-2 cells. Food Chem 2024; 431:137156. [PMID: 37591142 DOI: 10.1016/j.foodchem.2023.137156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The presence of multiple pesticide residues in agricultural production highlights the need for studying mixture interaction during transepithelial transport. This study applied the Caco-2 cell model to investigate the interaction of four pesticide residues (carbendazim, epoxiconazole, phoxim, and chlorpyrifos) in Chaenomeles speciosa during transepithelial transport. Results demonstrated that co-treatment with pesticide mixtures generally increased the cumulative transport amount of carbendazim and epoxiconazole by 0.32-1.60 times and 0.32-0.98 times, respectively, compared to individual treatments. Notably, the combination of carbendazim and epoxiconazole displayed a significant synergistic effect. The use of transporter inhibitors and molecular docking analysis provided insights into the interaction mechanism, suggesting that the competitive inhibition of MRP2 and/or BCRP binding via π-bonds contributed to the inhibition of BL-to-AP efflux and a significant increase in AP-to-BL influx of carbendazim and epoxiconazole. The results are of great theoretical significance and practical value for risk assessment of multiple pesticide residues in agricultural products.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Minkun Li
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Mengya Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Kaijie Dai
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Xiaowei Ju
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Yuying Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Ziqi Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China.
| |
Collapse
|
5
|
Niu D, Xiao Y, Chen S, Du X, Qiu Y, Zhu Z, Yin D. Evaluation of the oral bioaccessibility of legacy and emerging brominated flame retardants in indoor dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99735-99747. [PMID: 37620695 DOI: 10.1007/s11356-023-29304-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Indoor dust is the main source of human exposure to brominated flame retardants (BFRs). In this study, in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax as a sorptive sink was applied to evaluate the oral bioaccessibility of twenty-two polybrominated diphenyl ethers (PBDEs) and seven novel BFRs (NBFRs) via indoor dust ingestion. The mean bioaccessibilities of two NBFRs pentabromotoluene (PBT) and 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE) were first proposed, reaching 36.0% and 26.7%, respectively. In order to maintain homeostasis of the gastrointestinal tract, 0.4 g Tenax was added in CE-PEBT, which increased BFRs bioaccessibility by up to a factor of 1.4-1.9. The highest bioaccessibility of legacy PBDEs was tri-BDEs (73.3%), while 2-ethylhexyl-tetrabromo-benzoate (EHTBB), one of penta-BDE alternatives, showed the highest (62.2%) among NBFRs. The influence of food nutrients, liquid to solid (L/S) ratio, and octanol-water partition coefficient (Kow) on bioaccessibility was assessed. The oral bioaccessibility of BFRs increased with existence of protein or carbohydrate while lipid did the opposite. The bioaccessibilities of PBDEs and NBFRs were relatively higher with 200:1 L/S ratio. PBDEs bioaccessibility generally decreased with increasing LogKow. No significant correlation was observed between NBFRs bioaccessibility and LogKow. This study comprehensively evaluated the bioaccessibilities of legacy and emerging BFRs via dust ingestion using Tenax-assisted CE-PBET, and highlighted the significance to fully consider potential influencing factors on BFRs bioaccessibility in further human exposure estimation.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yao Xiao
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shiyan Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201206, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
6
|
Dong Z, Cui K, Liang J, Guan S, Fang L, Ding R, Wang J, Li T, Zhao S, Wang Z. The widespread presence of triazole fungicides in greenhouse soils in Shandong Province, China: A systematic study on human health and ecological risk assessments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121637. [PMID: 37059173 DOI: 10.1016/j.envpol.2023.121637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Triazole fungicides (TFs) are extensively used on greenhouse vegetables and are ubiquitously detected in the environment. However, the human health and ecological risks associated with the presence of TFs in the soil are unclear. In this study, ten widely used TFs were measured in 283 soil samples from vegetable greenhouses across Shandong Province, China, and their potential human health and ecological risks were assessed. Among all soil samples, difenoconazole, myclobutanil, triadimenol, and tebuconazole were the top detected TFs, with detection rates of 85.2-100%; these TFs had higher residues, with average concentrations of 5.47-23.8 μg/kg. Although most of the detectable TFs were present in low amounts, 99.3% of the samples were contaminated with 2-10 TFs. Human health risk assessment based on hazard quotient (HQ) and hazard index (HI) values indicated that TFs posed negligible non-cancer risks for both adults and children (HQ range, 5.33 × 10-10 to 2.38 × 10-5; HI range, 1.95 × 10-9 to 3.05 × 10-5, <1). Ecological risk assessment based on the toxicity exposure ratio (TER) and risk quotient (RQ) values indicated that difenoconazole was a potential risk factor for soil organisms (TERmax = 1 for Eisenia foetida, <5; RQmean = 1.19 and RQmax = 9.04, >1). Moreover, 84 of the 283 sites showed a high risk (RQsite range, 1.09-9.08, >1), and difenoconazole was the primary contributor to the overall risk. Considering their ubiquity and potential hazards, TFs should be continuously assessed and prioritized for pesticide risk management.
Collapse
Affiliation(s)
- Zhan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, China; Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Shengying Zhao
- Shandong Shibang Agrochemical Co., Ltd., Heze, Shandong, 274300, China
| | - Zhongni Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
7
|
Zheng X, Wei Y, Chen J, Wang X, Li D, Yu C, Hong Y, Shen L, Long C, Wei G, Wu S. Difenoconazole Exposure Induces Retinoic Acid Signaling Dysregulation and Testicular Injury in Mice Testes. TOXICS 2023; 11:328. [PMID: 37112555 PMCID: PMC10142862 DOI: 10.3390/toxics11040328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole (DFZ) is a broad-spectrum triazole fungicide that is widely utilized in agriculture. Although DFZ has been demonstrated to induce reproductive toxicity in aquatic species, its toxic effects on the mammalian reproductive system have yet to be fully elucidated. In vivo, male mice were administered 0, 20 or 40 mg/kg/d of DFZ via oral gavage for 35 days. Consequently, DFZ significantly decreased testicular organ coefficient, sperm count and testosterone levels, augmented sperm malformation rates, and elicited histopathological alterations in testes. TUNEL assay showed increased apoptosis in testis. Western blotting results suggested abnormally high expression of the sperm meiosis-associated proteins STRA8 and SCP3. The concentrations of retinoic acid (RA), retinaldehyde (RE), and retinol (ROL) were increased in the testicular tissues of DFZ-treated groups. The mRNA expression level of genes implicated in RA synthesis significantly increased while genes involved in RA catabolism significantly decreased. In vitro, DFZ reduced cell viability and increased RA, RE, and ROL levels in GC-2 cells. Transcriptome analysis revealed a significant enrichment of numerous terms associated with the RA pathway and apoptosis. The qPCR experiment verified the transcriptome results. In conclusion, our results indicate that DFZ exposure can disrupt RA signaling pathway homeostasis, and induce testicular injury in mice testes.
Collapse
|
8
|
Ferrone V, Bruni P, Catalano T, Selvaggi F, Cotellese R, Carlucci G, Aceto GM. Development of a SPE-HPLC-PDA Method for the Quantification of Phthalates in Bottled Water and Their Gene Expression Modulation in a Human Intestinal Cell Model. Processes (Basel) 2022; 11:45. [DOI: 10.3390/pr11010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Phthalates are ubiquitous pollutants that are currently classified as endocrine disruptor chemicals causing serious health problems. As contaminants of food and beverages, they come into contact with the epithelium of the intestinal tract. In this work, a SPE-HPLC-PDA method for the determination of phthalates in water from plastic bottles was developed and validated according to the food and drug administration (FDA) guidelines. A chromatographic separation was achieved using a mobile phase consisting of ammonium acetate buffer 10 mM pH 5 (line A) and a mixture of methanol and iso-propanol (50:50 v/v, line B) using gradient elution. Several SPE cartridges and different pH values were investigated for this study, evaluating their performance as a function of recovery. Among these parameters, pH 5 combined with the SPE sep pack C18 cartridge showed the best performance. Finally, the proposed method was applied to the analysis of real samples, which confirmed the presence of phthalates. A colonic epithelial cell model was used to evaluate the effects of these phthalates at the concentrations found in water from plastic bottles. In cells exposed to phthalates, the increased expression of factors, which control the signaling pathways necessary for intestinal epithelium homeostasis, inflammatory response, and stress was detected. The proposed method falls fully within the limits imposed by the guidelines with precision (RSD%) below 7.1% and accuracy (BIAS%) within −4.2 and +6.1.
Collapse
Affiliation(s)
- Vincenzo Ferrone
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Pantaleone Bruni
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Federico Selvaggi
- SS. Annunziata Hospital, ASL2 Lanciano-Vasto-Chieti, Unit of Surgery, 66100 Chieti, Italy
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy
| | - Giuseppe Carlucci
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
9
|
Bioaccessibility and Intestinal Transport of Tebuconazole in Table Grape by Using In Vitro Digestion Models. Foods 2022; 11:foods11233926. [PMID: 36496737 PMCID: PMC9740649 DOI: 10.3390/foods11233926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, the effects of various digestive models, influencing factors and dietary supplements on the bioaccessibility of tebuconazole in table grapes were compared. The Caco-2 cell model was employed to reveal the transfer behavior of tebuconazole. The results indicated that digestion time is the main factor affecting bioaccessibility. With an increase in time, the tebuconazole in grapes was almost completely dissolved, with bioaccessibility reaching 98.5%, whereas dietary fiber reduced bioaccessibility. Tebuconazole undergoes carrier-free passive transport in permeable cells in the Caco-2 cell model. These findings have practical application value for correctly evaluating the harmful level of pollutants in the matrix to human body.
Collapse
|
10
|
Wang J, Gao X, Liu F, Dong J, Zhao P. Difenoconazole causes cardiotoxicity in common carp (Cyprinus carpio): Involvement of oxidative stress, inflammation, apoptosis and autophagy. CHEMOSPHERE 2022; 306:135562. [PMID: 35792209 DOI: 10.1016/j.chemosphere.2022.135562] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Difenoconazole, a commonly used broad-spectrum triazole fungicide, is widely applied to fish culture in paddy fields. Due to its high chemical stability, low biodegradability, and easy transfer, difenoconazole persists in aquatic systems, raising public awareness of environmental threats. Difenoconazole causes cardiotoxicity in carp, however, the potential mechanisms of difenoconazole-induced cardiotoxicity remain unclear. Here, common carp were exposed to difenoconazole, and cardiotoxicity was evaluated by measuring the creatine kinase (CK) and the lactate dehydrogenase (LDH) in the serum. Cardiac pathological injury was determined by HE staining. The content and expression of oxidative stress indicators were detected using biochemical kits and qPCR analysis. Changes in inflammation-related cytokines were examined by qPCR. Apoptosis levels were assessed by TUNEL assay and qPCR. The occurrence of autophagy was measured by western blotting detection of autophagy flux LC3II/LC3I, and autophagy regulatory pathways were detected using qPCR. The results showed that difenoconazole exposure induced cardiotoxicity accompanied by obviously elevated LDH and CK levels and caused myocardial fibers to swell and inflammatory cells to increase. Elevated peroxide MDA and reduced transcriptional and activity levels of the antioxidant enzymes CAT, SOD and GSH-Px were dependent on the Nrf2/Keap-1 pathway. Moreover, the proinflammatory cytokines IL-1β, IL-6, and TNF-α were upregulated, iNOS activity was enhanced, whereas the anti-inflammatory cytokines TGF-β1 and IL-10 were downregulated after exposure to difenoconazole. Moreover, apoptosis was observed in the TUNEL assay and mediated through the p53/Bcl-2/Bax-Caspase-9 mitochondrial pathway. Furthermore, difenoconazole increased the autophagy markers LC3II, ATG5 and p62 and regulated them through the PI3K/AKT/mTOR pathway. Altogether, this study demonstrated that difenoconazole exposure caused common carp cardiotoxicity, which is regulated by oxidative stress, inflammation, apoptosis and autophagy, providing central data for toxicological risk assessment of difenoconazole in the ecological environment.
Collapse
Affiliation(s)
- Jinxin Wang
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xuzhu Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City, Lianyungang, 222000, China
| | - Feixue Liu
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Panpan Zhao
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China.
| |
Collapse
|
11
|
Rahman S, Ghiboub M, Donkers JM, van de Steeg E, van Tol EAF, Hakvoort TBM, de Jonge WJ. The Progress of Intestinal Epithelial Models from Cell Lines to Gut-On-Chip. Int J Mol Sci 2021; 22:ijms222413472. [PMID: 34948271 PMCID: PMC8709104 DOI: 10.3390/ijms222413472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past years, several preclinical in vitro and ex vivo models have been developed that helped to understand some of the critical aspects of intestinal functions in health and disease such as inflammatory bowel disease (IBD). However, the translation to the human in vivo situation remains problematic. The main reason for this is that these approaches fail to fully reflect the multifactorial and complex in vivo environment (e.g., including microbiota, nutrition, and immune response) in the gut system. Although conventional models such as cell lines, Ussing chamber, and the everted sac are still used, increasingly more sophisticated intestinal models have been developed over the past years including organoids, InTESTine™ and microfluidic gut-on-chip. In this review, we gathered the most recent insights on the setup, advantages, limitations, and future perspectives of most frequently used in vitro and ex vivo models to study intestinal physiology and functions in health and disease.
Collapse
Affiliation(s)
- Shafaque Rahman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (M.G.); (T.B.M.H.)
| | - Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (M.G.); (T.B.M.H.)
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands
| | - Joanne M. Donkers
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (J.M.D.); (E.v.d.S.); (E.A.F.v.T.)
| | - Evita van de Steeg
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (J.M.D.); (E.v.d.S.); (E.A.F.v.T.)
| | - Eric A. F. van Tol
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (J.M.D.); (E.v.d.S.); (E.A.F.v.T.)
| | - Theodorus B. M. Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (M.G.); (T.B.M.H.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (M.G.); (T.B.M.H.)
- Department of Surgery, University of Bonn, 53113 Bonn, Germany
- Correspondence:
| |
Collapse
|
12
|
Kalyabina VP, Esimbekova EN, Kopylova KV, Kratasyuk VA. Pesticides: formulants, distribution pathways and effects on human health - a review. Toxicol Rep 2021; 8:1179-1192. [PMID: 34150527 PMCID: PMC8193068 DOI: 10.1016/j.toxrep.2021.06.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a review of the latest literature data on the effects and consequences of contamination of agricultural crops by pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The effects of pesticides are considered in the context of the Adverse Outcome Pathway concept.
Collapse
Affiliation(s)
- Valeriya P. Kalyabina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Elena N. Esimbekova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Kseniya V. Kopylova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Valentina A. Kratasyuk
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
13
|
Lu M, Li G, Yang Y, Yu Y. A review on in-vitro oral bioaccessibility of organic pollutants and its application in human exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142001. [PMID: 32892057 DOI: 10.1016/j.scitotenv.2020.142001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Generally, human oral exposure assessments of contaminants have not considered the absorption factor in the human gastrointestinal tract, thus overestimating human exposure and associated health risk. Currently, more researchers are adding the absorption factor into human exposure assessment, and bioaccessibility measured by in-vitro methods is generally replacing bioavailability for estimation because of the cheap and rapid determination. However, no single unified in-vitro method is used for bioaccessibility measurement of organic pollutants, although several methods have been developed for these pollutants and have shown good in vitro-in vivo correlation between bioaccessibility and bioavailability. The present review has focused on the development of in-vitro methods, validation of these methods through in-vivo assays, determination of factors influencing bioaccessibility, application of bioaccessibility in human exposure assessment, and the challenges faced. Overall, most in-vitro methods were validated using bioavailability, and better in vitro-in vivo correlations were obtained when absorption sinks were added to the digestion solution to mimic dynamic absorption of organic chemicals by small intestine. Incorporating bioaccessibility into the estimation of human exposure by oral ingestion significantly decreases the estimated exposure dose. However, more investigations on bioaccessibility of hydrophobic organic compounds are urgently needed because many challenges for in-vitro methods remain to be overcome.
Collapse
Affiliation(s)
- Meijuan Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
14
|
Kong H, Yu L, Gu Z, Li C, Cheng L, Hong Y, Li Z. An Innovative Short-Clustered Maltodextrin as Starch Substitute for Ameliorating Postprandial Glucose Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:354-367. [PMID: 33350823 DOI: 10.1021/acs.jafc.0c02828] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dietary starch is usually associated with elevated postprandial glycemic response. This is a potential risk factor of type 2 diabetes. Here, a 1,4-α-glucan branching enzyme (GBE) was employed to reassemble α-1,4 and α-1,6 glycosidic bonds in starch molecules. Structural characterization showed that GBE-catalyzed molecular reassembly created an innovative short-clustered maltodextrin (SCMD), which showed a dense internal framework along with shortened external chains. Such short-clustered molecules obstructed digestive enzymes attack and displayed dramatically reduced digestibility. Therefore, SCMD was served as a dietary starch substitute to improve postprandial glucose homeostasis. A 22.3% decrease in glycemic peak was therefore detected in ICR mice following SCMD intake (10.7 mmol/L), compared with that in the control (13.8 mmol/L). Moreover, an attenuated insulin response (40.5% lower than that in control) to SCMD intake was regarded suitable for diabetes management. These novel discoveries demonstrate that enzymatically rebuilding starch molecules may be a meaningful strategy for diabetes management.
Collapse
Affiliation(s)
- Haocun Kong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luxi Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Shi YH, Xiao JJ, Liu YY, Deng YJ, Feng WZ, Wei D, Liao M, Cao HQ. Gut microbiota influence on oral bioaccessibility and intestinal transport of pesticides in Chaenomeles speciosa. Food Chem 2020; 339:127985. [PMID: 32920305 DOI: 10.1016/j.foodchem.2020.127985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
There is limited research focusing on the effects of human gut microbiota on the oral bioaccessibility and intestinal absorption of pesticide residues in food. In the present study, we use a modified setup of the Simulator of the Human Intestinal Microbial Ecosystem for the determination of pesticide residue bioaccessibility in Chaenomeles speciosa, and a Caco-2 cell model of human intestinal absorption. Results showed that gut microbiota played a dual role based their effects on contaminant release and metabolism in the bioaccessibility assay, and Lactobacillus plantarum was one of key bacterial species in the gut microbiota that influenced pesticide stability significantly. The addition of L. plantarum to the system reduced the relative amounts (by 11.40-86.51%) of six pesticides. The interaction between the food matrix and human gut microbiota led to different absorption rates, and the barrier effects increased with an increase in incubation time.
Collapse
Affiliation(s)
- Yan-Hong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jin-Jing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Yu-Ying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ya-Jing Deng
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Wen-Zhe Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Dong Wei
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China.
| |
Collapse
|
16
|
Behrouzi A, Ashrafian F, Mazaheri H, Lari A, Nouri M, Riazi Rad F, Hoseini Tavassol Z, Siadat SD. The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microb Pathog 2020; 144:104200. [PMID: 32289465 DOI: 10.1016/j.micpath.2020.104200] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. Microbiota disruption affects the immune function, metabolism, and causes several diseases. Therefore, understanding how the microbiome is adjusted, and identifying methods for manipulating it is critical. Studies have found that there is an inverse association between MicroRNAs (miRNAs) abundance and microbe abundance. miRNAs are known to be engaged in post-transcription regulation of cell-autonomous gene expression. Recently, they have gained great attention for their proposed roles in cell-to-cell communication, and as biomarkers for human disease. Here, we review recent studies on the role of miRNAs as a component of outer membrane vesicles (OMVs) in the composition of gut microbiota and their significance in the human situation of health and diseases and discuss their effect on inflammatory responses and dysbiosis. Further, we explain how probiotics exert influence on the expression of miRNAs.
Collapse
Affiliation(s)
- Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Ashrafian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hoora Mazaheri
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Arezou Lari
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Matineh Nouri
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Hoseini Tavassol
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Xiao JJ, Fu YY, Ye Z, Liu YY, Shi YH, Liao M, Cao HQ. Analysis of the pesticide behavior in Chaenomelis speciosa and the role of digestive enzyme in vitro oral bioaccessibility. CHEMOSPHERE 2019; 231:538-545. [PMID: 31151014 DOI: 10.1016/j.chemosphere.2019.05.172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Problems with pesticide residues in medicinal and edible plant have received great attention. The dietary exposure risk induced by presence of pesticide residues depends on its release from the food matrix, i.e., its bioaccessibility. The bioaccessibility of pesticide residues in human food is poorly understood and thus, we used in vitro digestive method to measure the bioaccessibility of six pesticides in Chaenomelis speciosa. Results showed that the lower and upper boundary bioaccessibility values of the six pesticides in C. speciosa was 4.26 and 86.52%, and the bioaccessibility varied for the pesticide types and digestion phase. The α-amylase and pancreatin play an important role in vitro bioaccessibility. Our findings suggest that risk assessment studies should be taken into account the pesticide metabolism, and that previous studies may have underestimated pesticide bioaccessibility.
Collapse
Affiliation(s)
- Jin-Jing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province, China
| | - Yun-Yao Fu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Zhuang Ye
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Yu-Ying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province, China
| | - Yan-Hong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province, China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province, China.
| |
Collapse
|
18
|
Zhang J, Qian L, Teng M, Mu X, Qi S, Chen X, Zhou Y, Cheng Y, Pang S, Li X, Wang C. The lipid metabolism alteration of three spirocyclic tetramic acids on zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:715-725. [PMID: 30849589 DOI: 10.1016/j.envpol.2019.02.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Spirocyclic tetramic acids are widely used in controlling phytophagous mite species throughout the world. the data set is incomplete and provides insufficient evidence for drawing the same conclusion for fish. To fill the gap whether these acaricides alter lipid metabolism on vertebrates, zebrafish embryos exposed to a series concentration of pesticides, the developmental effects, enzyme activities and levels of gene expression were assessed, battery of biomarker utilized by the integrated biomarker response (IBRv2) model. The 96 h-LC50 of spirodiclofen, spiromesifen and spirotetramat were 0.14, 0.12 and 5.94 mg/L, respectively. Yolk sac deformity, pericardial edema, spinal curvature and tail malformation were observed. Three spirocyclic acids were unfavouring the lipid accumulation of by inhibited the acetyl-CoA carboxylase (ACC), fatty acid synthesis (FAS), fatty acid binding proteins (FABP2) and lipoprotein lipase (LPL) activity. The total cholesterol (TCHO) level significantly decreased in the 0.072 mg/L spirodiclofen group and 0.015 and 0.030 mg/L in the spiromesifen groups. No expected change in spirotetramat group on the TCHO and triglycerides (TGs) levels for any of the treatments. The mRNA levels of the genes related to lipid metabolism also significantly altered. In both spirodiclofen and spiromesifen, ACC achieved the highest scores among a battery of biomarkers using integrated biomarker response (IBRv2). The results suggest that spiromesifen was the most toxic for embryos development and spirodiclofen was the most toxic for lipid metabolism in embryos. The 0.07 mg/L of spirodiclofen, 0.05 mg/L of spiromesifen and 2.00 mg/L would cause malformation on zebrafish embryos. This study will provide new insight that fatty acid metabolism may be a suitable biomarker for the spirocyclic tetramic acids in fish species.
Collapse
Affiliation(s)
- Jie Zhang
- College of Sciences, China Agricultural University, Beijing, China
| | - Le Qian
- College of Sciences, China Agricultural University, Beijing, China
| | - Miaomiao Teng
- College of Sciences, China Agricultural University, Beijing, China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Suzhen Qi
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Xiangguang Chen
- College of Sciences, China Agricultural University, Beijing, China
| | - Yimeng Zhou
- College of Sciences, China Agricultural University, Beijing, China
| | - Yi Cheng
- College of Sciences, China Agricultural University, Beijing, China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing, China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, Beijing, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
19
|
Shi YH, Xiao JJ, Liu YY, Fu YY, Ye Z, Liao M, Cao HQ. Interactions of food matrix and dietary components on neonicotinoid bioaccessibility in raw fruit and vegetables. Food Funct 2019; 10:289-295. [PMID: 30566153 DOI: 10.1039/c8fo02142b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Humans are frequently exposed to the residues of various neonicotinoids, highlighting the need to understand human exposure through oral ingestion of contaminated foods. In this study, the effects of different food matrices (tomato, cucumber, and carrot) and their interaction with dietary component additives, including proteins and dietary fiber, was investigated. The results showed that the presence of a food matrix had a significant effect on the bioaccessibility of neonicotinoids (imidacloprid, thiamethoxam, acetamiprid, and thiacloprid) in both the gastric and intestinal environments. Neonicotinoids in tomato presented relatively low bioaccessibility, indicating that the daily intake of the tomato can be regarded as being relatively safer. Moreover, the addition of protein or dietary fiber to fruit and vegetables had a marked influence on neonicotinoid bioaccessibility and the effects varied between the different matrices. In particular, the addition of 2.0% dietary fiber significantly reduced the bioaccessibility (18.38-67.91%). Therefore, we recommend that consuming an increased intake of dietary fiber could improve the safety of fruit and vegetables in daily life. The present results can support the identification of suitable food intake conditions for the significant reduction of pesticide residue levels.
Collapse
Affiliation(s)
- Yan-Hong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Pearce SC, Coia HG, Karl JP, Pantoja-Feliciano IG, Zachos NC, Racicot K. Intestinal in vitro and ex vivo Models to Study Host-Microbiome Interactions and Acute Stressors. Front Physiol 2018; 9:1584. [PMID: 30483150 PMCID: PMC6240795 DOI: 10.3389/fphys.2018.01584] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
The gut microbiome is extremely important for maintaining homeostasis with host intestinal epithelial, neuronal, and immune cells and this host-microbe interaction is critical during times of stress or disease. Environmental, nutritional, and cognitive stress are just a few factors known to influence the gut microbiota and are thought to induce microbial dysbiosis. Research on this bidirectional relationship as it pertains to health and disease is extensive and rapidly expanding in both in vivo and in vitro/ex vivo models. However, far less work has been devoted to studying effects of host-microbe interactions on acute stressors and performance, the underlying mechanisms, and the modulatory effects of different stressors on both the host and the microbiome. Additionally, the use of in vitro/ex vivo models to study the gut microbiome and human performance has not been researched extensively nor reviewed. Therefore, this review aims to examine current evidence concerning the current status of in vitro and ex vivo host models, the impact of acute stressors on gut physiology/microbiota as well as potential impacts on human performance and how we can parlay this information for DoD relevance as well as the broader scientific community. Models reviewed include widely utilized intestinal cell models from human and animal models that have been applied in the past for stress or microbiology research as well as ex vivo organ/tissue culture models and new innovative models including organ-on-a-chip and co-culture models.
Collapse
Affiliation(s)
- Sarah C Pearce
- Performance Nutrition Team, Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Heidi G Coia
- National Research Council, The National Academies of Sciences, Engineering, and Medicine, Washington, DC, United States.,711th Human Performance Wing, Airforce Research Laboratory, Airman Systems Directorate, Human-Centered ISR Division, Molecular Mechanisms Branch, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - J P Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Ida G Pantoja-Feliciano
- Soldier Protection and Optimization Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kenneth Racicot
- Performance Nutrition Team, Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| |
Collapse
|
21
|
Liu YY, Xiao JJ, Fu YY, Liao M, Cao HQ, Shi YH. Study of Factors Influencing the Bioaccessibility of Triazolone in Cherry Tomatoes Using a Static SHIME Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050993. [PMID: 29762491 PMCID: PMC5982032 DOI: 10.3390/ijerph15050993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Estimating the influence of bioaccessibility of pesticide residues in fruits and vegetables on dietary exposure is a challenge for human health risk assessment. This study investigated the bioaccessibility of pesticide residues in cherry tomatoes and contributing factors (digestion time, pH, solid/liquid ratio, and dietary nutrition) using an in vitro test simulating the human gastrointestinal tract. pH had the largest effect on triazolone precipitation in the simulated gastric intestinal juice, which had a significant impact on the bioaccessibility. The bioaccessibility of triazolone in the intestinal stage was slightly higher than that in the stomach stage, owing to bile salts and pancreatic enzymes present in the intestinal juice. The bioaccessibility of triazolone did not change significantly with digestion time. In the gastric stage, there was a logarithmic relationship between the bioaccessibility and solid/liquid ratio (R² = 0.9941). The addition of oil significantly changed the bioaccessibility in the gastrointestinal stage. Protein and dietary fiber only affected bioaccessibility in the stomach stage. Dietary nutrition can reduce the release of pesticides from fruits and vegetables into the stomach, sharply reducing the bioaccessibility, and the dietary exposure of pesticide residues in fruits and vegetables can be properly evaluated.
Collapse
Affiliation(s)
- Yu-Ying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China.
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, China.
| | - Jin-Jing Xiao
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, China.
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Yun-Yao Fu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Min Liao
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, China.
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Hai-Qun Cao
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, China.
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Yan-Hong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China.
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|