1
|
Liu J, Xu Y, Yan J, Bai L, Hua J, Luo S. Polymethoxylated flavones from the leaves of Vitex negundo have fungal-promoting and antibacterial activities during the production of broad bean koji. Front Microbiol 2024; 15:1401436. [PMID: 38751721 PMCID: PMC11094617 DOI: 10.3389/fmicb.2024.1401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Broad bean paste is a popular condiment in Asian countries. Leaves of Vitex negundo Linn. were used extensively in China during the koji-making of broad bean paste. Spreading V. negundo leaves on raw broad beans during fermentation was able to facilitate the rapid growth of fungi to form mature koji. We isolated two strains of fungi from mature koji, and four strains of bacteria from the rotten broad beans resulting from a failed attempt. According to microbial activity assays, two polymethoxylated flavones, 5-hydroxy-3,6,7,8,3',4'-hexamethoxy flavone (HJ-1) and 5,4'-dihydroxy-3,6,7,8,3'-pentamethoxy flavone (HJ-2) were isolated from V. negundo leaves, and the fungal growth promotion and inhibition of bacterial growth of these two compounds were found to improve the production of broad bean koji. This study reveals the compounds present in V. negundo leaves with bioactivity against important microbes in koji manufacture, and provides a theoretical basis for the application of V. negundo in broad bean paste production.
Collapse
Affiliation(s)
| | | | | | | | - Juan Hua
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shihong Luo
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Haroon M, Ahmad S, Fawad Zahoor A, Javed S, Nadeem Ahmad M, Gul Khan S, Al-Mutairi AA, Irfan A, Al-Hussain SA, Zaki ME. Grignard Reaction: An ‘Old-Yet-Gold’ synthetic gadget toward the synthesis of natural Products: A review. ARAB J CHEM 2024; 17:105715. [DOI: 10.1016/j.arabjc.2024.105715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
|
3
|
Du Q, Fan Z, Yang M. Total Synthesis of Principinol B. Angew Chem Int Ed Engl 2024; 63:e202400956. [PMID: 38388935 DOI: 10.1002/anie.202400956] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
We have accomplished the first and asymmetric total synthesis of principinol B, a grayanoid possessing an oxabicyclo[3.2.1] architecture. A functionalized 5/7/6/5 tetracyclic intermediate was assembled in a convergent manner by a diastereoselective intermolecular aldol reaction and subsequent carbonyl-olefin metathesis of two enantiomerically enriched fragments. The oxabicyclo[3.2.1] architecture containing a 6,10-ether bridge was constructed by the Williamson ether synthesis.
Collapse
Affiliation(s)
- Qiang Du
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Zhibo Fan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| |
Collapse
|
4
|
Abstract
The first and asymmetric total syntheses of rhodomollins A and B, two rhodomollane type grayanoids featuring a d-homograyanane carbon skeleton and an oxa-bicyclo[3.2.1] core, were accomplished via a convergent strategy. A Stille coupling and a lithium-halogen exchange/intramolecular nucleophilic addition to the aldehyde sequence were employed to assemble two enantioenriched fragments. The oxa-bicyclo[3.2.1] core was achieved through an intramolecular SN2 substitution of cyclic sulfate of 1,2-diols (Williamson ether synthesis). The A ring oxidation states were adjusted by a Payne/Meinwald rearrangement sequence and subsequent redox transformations.
Collapse
Affiliation(s)
- Weizhao Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Duo Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Yuran Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| |
Collapse
|
5
|
Liu J, Hua J, Wang Y, Guo X, Luo S. Caterpillars Detoxify Diterpenoid from Nepeta stewartiana by the Molting Hormone Gene CYP306A1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37331015 DOI: 10.1021/acs.jafc.3c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Herbivorous insects are well known for detoxifying a broad range of the defense compounds produced by the plants that they feed on, but knowledge of the mechanisms of detoxification is still very limited. Here, we describe a system in which two species of lepidopteran caterpillars metabolize an abietane diterpene from the plants of Nepeta stewartiana Diels to an oxygenated derivative that is less active biologically. We found that this transformation could be catalyzed by a cytochrome P450 enzyme in caterpillars, which are associated with molting. Most interestingly, abietane diterpene targets the molting-associated gene CYP306A1 to alter the content of molting hormones in the insect at specific developmental stages and competitively inhibit molting hormone metabolism. These findings identify the mechanism by which caterpillars are able to detoxify abietane diterpenoid through hydroxylation at the C-19 position, which may be opening up exciting research questions into the mechanisms of interaction between plants and insects.
Collapse
Affiliation(s)
- Jiayi Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Yangyang Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Xuanyue Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| |
Collapse
|
6
|
Kong L, Yu H, Deng M, Wu F, Chen SC, Luo T. Enantioselective Total Syntheses of Grayanane Diterpenoids and (+)-Kalmanol: Evolution of the Bridgehead Carbocation-Based Cyclization and Late-Stage Functional Group Manipulation Strategies. J Org Chem 2023; 88:6017-6038. [PMID: 37094797 DOI: 10.1021/acs.joc.3c00365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Grayanane diterpenoids contain over 300 highly oxidized and structurally complex members, many of which possess important biological activities. Full details are provided for the development of the concise, enantioselective and divergent total syntheses of grayanane diterpenoids and (+)-kalmanol. The unique 7-endo-trig cyclization based on a bridgehead carbocation was designed and implemented to construct the 5/7/6/5 tetracyclic skeleton, demonstrating the practical value of the bridgehead carbocation-based cyclization strategy. Extensive studies of late-stage functional group manipulation were performed to forge the C1 stereogenic center, during which a photoexcited intramolecular hydrogen atom transfer reaction was discovered and the mechanism was further studied through density functional theory (DFT) calculations. The biomimetic 1,2-rearrangement from the grayanoid skeleton provided a 5/8/5/5 tetracyclic framework and resulted in the first total synthesis of (+)-kalmanol.
Collapse
Affiliation(s)
- Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengping Deng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanrui Wu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
7
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Dusemund B, Hart A, Mulder P, Viviani B, Anastassiadou M, Cascio C, Riolo F, Wallace H. Risks for human health related to the presence of grayanotoxins in certain honey. EFSA J 2023; 21:e07866. [PMID: 36875862 PMCID: PMC9978999 DOI: 10.2903/j.efsa.2023.7866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for human health of the presence of grayanotoxins (GTXs) in 'certain honey' from Ericaceae plants. The risk assessment included all structurally related grayananes occurring with GTXs in 'certain' honey. Oral exposure is associated with acute intoxication in humans. Acute symptoms affect the muscles, nervous and cardiovascular systems. These may lead to complete atrioventricular block, convulsions, mental confusion, agitation, syncope and respiratory depression. For acute effects, the CONTAM Panel derived a reference point (RP) of 15.3 μg/kg body weight for the sum of GTX I and III based on a BMDL10 for reduced heart rate in rats. A similar relative potency was considered for GTX I. Without chronic toxicity studies, an RP for long-term effects could not be derived. There is evidence for genotoxicity in mice exposed to GTX III or honey containing GTX I and III, showing increased levels of chromosomal damage. The mechanism of genotoxicity is unknown. Without representative occurrence data for the sum of GTX I and III and consumption data from Ericaceae honey, acute dietary exposure was estimated based on selected concentrations for GTX I and III reflecting concentrations measured in 'certain' honeys. Applying a margin of exposure (MOE) approach, the estimated MOEs raised health concerns for acute toxicity. The Panel calculated the highest concentrations for GTX I and III below which no acute effects would be expected following 'certain honey' consumption. The Panel is 75% or more certain that the calculated highest concentration of 0.05 mg for the sum of GTX I and III per kg honey is protective for all age groups regarding acute intoxications. This value does not consider other grayananes in 'certain honey' and does not cover the identified genotoxicity.
Collapse
|
8
|
Abstract
Mollanol A is the first isolated member of the mollane-type grayanoids which possesses an unprecedented C-nor-D-homograyanane carbon skeleton and an 5,8-epoxide. Due to its transcriptional activation effects on the Xbp1 upstream promoters in different cell types, it has a potential therapeutic effect on inflammatory bowel disease. Here we report the first total synthesis of mollanol A, which constitutes a 15-step synthesis from commercially available materials via a convergent strategy. The synthesis involves an InCl3-catalyzed Conia-ene cyclization reaction to construct the bicyclo[3.2.1]octane moiety and a vinylogous aldol reaction/intramolecular oxa-Michael addition sequence to rapidly assemble the oxa-bicyclo[3.2.1] core.
Collapse
Affiliation(s)
- Yuran Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Rong Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| |
Collapse
|
9
|
Kong L, Yu H, Deng M, Wu F, Jiang Z, Luo T. Enantioselective Total Syntheses of Grayanane Diterpenoids: (-)-Grayanotoxin III, (+)-Principinol E, and (-)-Rhodomollein XX. J Am Chem Soc 2022; 144:5268-5273. [PMID: 35297610 DOI: 10.1021/jacs.2c01692] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enantioselective total syntheses of (-)-grayanotoxin III, (+)-principinol E, and (-)-rhodomollein XX were accomplished based on a convergent strategy. The left- and right-wing fragments were assembled via the diastereoselective Mukaiyama aldol reaction catalyzed by a chiral hydrogen bond donor. The unique 7-endo-trig cyclization based on a bridgehead carbocation forged the 5/7/6/5 tetracyclic skeleton that underwent redox manipulations and 1,2-migration to access different grayanane diterpenoids.
Collapse
Affiliation(s)
- Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengping Deng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanrui Wu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Jiang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
10
|
Oikawa M. In Memory of the Late Professor Toshiyuki Kan, His Days at High School and at Hokkaido University. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Zheng G, Jin P, Huang L, Sun N, Zhang H, Zhang H, Yue M, Meng L, Yao G. Grayanane diterpenoid glucosides as potent analgesics from Pieris japonica. PHYTOCHEMISTRY 2020; 171:112234. [PMID: 31901735 DOI: 10.1016/j.phytochem.2019.112234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/14/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
A total of fifteen grayanane diterpenoid glucosides including eight undescribed ones, pierisjaponosides A-H, were isolated from the leaves of Pieris japonica (Thunb.) D. Don ex G. Don (Ericaceae). Their structures were established by extensive spectros copic techniques including HRESIMS and NMR, as well as chemical methods. The absolute configurations of pierisjaponosides A, B, and D were finally established by single-crystal X-ray diffraction with Cu Kα radiation. This is the first time to report the crystal structure of a 5,9-epoxygrayanane diterpenoid glucoside. Pierisjaponoside E represents the first example of a 9β-hydroxygrayan-1(10)-ene diterpenoid. All the isolated grayanane diterpenoid glucosides were evaluated for their analgesic activities in the acetic acid-induced writhing models in mice, and showed significant analgesic effects. Pierisjaponosides A and C-H, micranthanoside A, pieroside A, and craiobiosides A and B displayed significant analgesic effects with the writhe inhibition rates over 50% at a dose of 5.0 mg/kg. Pierisjaponoside E exhibited significant analgesic activities with the percentage inhibitions of 81.7%, 70.4%, and 52.1% at the doses of 5.0, 1.0, and 0.2 mg/kg, respectively. The preliminary structure-activity relationships of grayanane diterpenoid glucosides as potent analgesics were discussed, giving some clues to design novel analgesics.
Collapse
Affiliation(s)
- Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Pengfei Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Lang Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Na Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Hanqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Mingbo Yue
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
12
|
Quantum chemical studies, vibrational analysis, molecular dynamics and docking calculations of some ent-kaurane diterpenes from Annona vepretorum: a theoretical approach to promising anti-tumor molecules. Struct Chem 2020. [DOI: 10.1007/s11224-020-01491-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Niu C, Liu S, Li Y, Liu Y, Ma S, Liu F, Li L, Qu J, Yu S. Diterpenoids with diverse carbon skeletons from the roots of Pieris formosa and their analgesic and antifeedant activities. Bioorg Chem 2020; 95:103502. [DOI: 10.1016/j.bioorg.2019.103502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/12/2019] [Accepted: 12/08/2019] [Indexed: 01/12/2023]
|
14
|
Zheng G, Zhou J, Huang L, Zhang H, Sun N, Zhang H, Jin P, Yue M, Meng L, Yao G. Antinociceptive Grayanane Diterpenoids from the Leaves of Pieris japonica. JOURNAL OF NATURAL PRODUCTS 2019; 82:3330-3339. [PMID: 31809052 DOI: 10.1021/acs.jnatprod.9b00569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thirteen new grayanane diterpenoids (1-13) and 15 known analogues (14-28) were isolated from a leaf extract of Pieris japonica. Their structures were determined by spectrometric and spectroscopic methods, including HRESIMS, NMR, IR, and UV. The absolute configurations of 1, 3, 7-9, and 16 were defined by single-crystal X-ray diffraction analysis. 17-Hydroxygrayanotoxin XIX (1) represents the first example of a 17-hydroxygrayan-15(16)-ene diterpenoid. Diterpenoids 1-28 were evaluated for their antinociceptive activities, and 4, 9, 13, 21, and 26-28 displayed significant antinociceptive activities at a dose of 5.0 mg/kg (ip) in the HOAc-induced writhing test in mice. 17-Hydroxygrayanotoxin XIX (1) exhibited potent antinociceptive effects with writhe inhibition rates of 56.3% and 64.8% at doses of 0.04 and 0.2 mg/kg, respectively, which were almost equivalent to the positive control, morphine. Rhodomollein X (26) and rhodojaponin VI (27) showed more potent antinociceptive effects than morphine at doses of 0.04 and 0.2 mg/kg. A preliminary structure-activity relationship for the antinociceptive effects of diterpenoids 1-28 is discussed.
Collapse
Affiliation(s)
- Guijuan Zheng
- School of Pharmacy , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Junfei Zhou
- School of Pharmacy , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Lang Huang
- School of Pharmacy , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , People's Republic of China
| | - Na Sun
- School of Pharmacy , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Hanqi Zhang
- School of Pharmacy , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Pengfei Jin
- School of Pharmacy , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Mingbo Yue
- School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , People's Republic of China
| | - Lingkui Meng
- School of Pharmacy , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Guangmin Yao
- School of Pharmacy , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|
15
|
Lukowski AL, Narayan ARH. Natural Voltage-Gated Sodium Channel Ligands: Biosynthesis and Biology. Chembiochem 2019; 20:1231-1241. [PMID: 30605564 PMCID: PMC6579537 DOI: 10.1002/cbic.201800754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/18/2022]
Abstract
Natural product biosynthetic pathways are composed of enzymes that use powerful chemistry to assemble complex molecules. Small molecule neurotoxins are examples of natural products with intricate scaffolds which often have high affinities for their biological targets. The focus of this Minireview is small molecule neurotoxins targeting voltage-gated sodium channels (VGSCs) and the state of knowledge on their associated biosynthetic pathways. There are three small molecule neurotoxin receptor sites on VGSCs associated with three different classes of molecules: guanidinium toxins, alkaloid toxins, and ladder polyethers. Each of these types of toxins have unique structural features which are assembled by biosynthetic enzymes and the extent of information known about these enzymes varies among each class. The biosynthetic enzymes involved in the formation of these toxins have the potential to become useful tools in the efficient synthesis of VGSC probes.
Collapse
Affiliation(s)
- April L Lukowski
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| | - Alison R H Narayan
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
16
|
Li CH, Zhang JY, Zhang XY, Li SH, Gao JM. An overview of grayanane diterpenoids and their biological activities from the Ericaceae family in the last seven years. Eur J Med Chem 2019; 166:400-416. [DOI: 10.1016/j.ejmech.2019.01.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
|
17
|
Wang MS, Wang Z, Chen W, Yang X, Zhang H. Synthesis of Oxa-Bridged Medium-Sized Carbocyclic Rings via Prins Cyclization. Org Lett 2019; 21:1881-1884. [PMID: 30816720 DOI: 10.1021/acs.orglett.9b00491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report a new method for the synthesis of oxa-bridged carbocyclic units based on intramolecular Prins reaction of dioxinones. Our new synthetic approach is flexible and practical and has been successfully applied to the preparation of highly functionalized seven-, eight-, and nine-membered carbocycles. The potential utility of this approach has also been demonstrated in a model study toward construction of the 7,8-fused ring system presented in neoabyssomicin D.
Collapse
Affiliation(s)
- Min-Shou Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology , Yunnan University , Kunming , Yunnan 650091 , P. R. China
| | - Zheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology , Yunnan University , Kunming , Yunnan 650091 , P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology , Yunnan University , Kunming , Yunnan 650091 , P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology , Yunnan University , Kunming , Yunnan 650091 , P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology , Yunnan University , Kunming , Yunnan 650091 , P. R. China
| |
Collapse
|
18
|
Castiñeira Reis M, López CS, Nieto Faza O, Tantillo DJ. Pushing the limits of concertedness. A waltz of wandering carbocations. Chem Sci 2019; 10:2159-2170. [PMID: 30881640 PMCID: PMC6385557 DOI: 10.1039/c8sc03567a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Among the array of complex terpene-forming carbocation cyclization/rearrangement reactions, the so-called "triple shift" reactions are among the most unexpected. Such reactions involve the asynchronous combination of three 1,n-shifts into a concerted process, e.g., a 1,2-alkyl shift followed by a 1,3-hydride shift followed by a second 1,2-alkyl shift. This type of reaction so far has been proposed to occur during the biosynthesis of diterpenes and the sidechains of sterols. Here we describe efforts to push the limits of concertedness in this type of carbocation reaction by designing, and characterizing with quantum chemical computations, systems that could couple additional 1,n-shift events to a triple shift leading, in principle to quadruple, pentuple, etc. shifts. While our designs did not lead to clear-cut examples of quadruple, etc. shifts, they did lead to reactions with surprisingly flat energy surfaces where more than five chemical events connect reactants and plausible products. Ab initio molecular dynamics simulations demonstrate that the formal minima on these surfaces interchange on short timescales, both with each other and with additional unexpected structures, allowing us a glimpse into a very complex manifold that allows ready access to great structural diversity.
Collapse
Affiliation(s)
- Marta Castiñeira Reis
- Departamento de Química Orgánica , Universidade de Vigo , Lagoas-Marcosende , 36310 , Vigo , Spain
| | - Carlos Silva López
- Departamento de Química Orgánica , Universidade de Vigo , Lagoas-Marcosende , 36310 , Vigo , Spain
| | - Olalla Nieto Faza
- Departamento de Química Orgánica , Universidade de Vigo , As Lagoas , 32004 , Ourense , Spain .
| | - Dean J Tantillo
- Department of Chemistry , University of California , One Shields Ave , Davis , CA 95616 , USA .
| |
Collapse
|
19
|
Hanson JR, Nichols T, Mukhrish Y, Bagley MC. Diterpenoids of terrestrial origin. Nat Prod Rep 2019; 36:1499-1512. [DOI: 10.1039/c8np00079d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial sources from 2017.
Collapse
Affiliation(s)
- James R. Hanson
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Tyler Nichols
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Yousef Mukhrish
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Mark C. Bagley
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| |
Collapse
|
20
|
de Sousa IP, Sousa Teixeira MV, Jacometti Cardoso Furtado NA. An Overview of Biotransformation and Toxicity of Diterpenes. Molecules 2018; 23:E1387. [PMID: 29890639 PMCID: PMC6100218 DOI: 10.3390/molecules23061387] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022] Open
Abstract
Diterpenes have been identified as active compounds in several medicinal plants showing remarkable biological activities, and some isolated diterpenes are produced at commercial scale to be used as medicines, food additives, in the synthesis of fragrances, or in agriculture. There is great interest in developing methods to obtain derivatives of these compounds, and biotransformation processes are interesting tools for the structural modification of natural products with complex chemical structures. Biotransformation processes also have a crucial role in drug development and/or optimization. The understanding of the metabolic pathways for both phase I and II biotransformation of new drug candidates is mandatory for toxicity and efficacy evaluation and part of preclinical studies. This review presents an overview of biotransformation processes of diterpenes carried out by microorganisms, plant cell cultures, animal and human liver microsomes, and rats, chickens, and swine in vivo and highlights the main enzymatic reactions involved in these processes and the role of diterpenes that may be effectively exploited by other fields.
Collapse
Affiliation(s)
- Ingrid P de Sousa
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo 14040903, Brazil.
| | - Maria V Sousa Teixeira
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo 14040903, Brazil.
| | - Niege A Jacometti Cardoso Furtado
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo 14040903, Brazil.
| |
Collapse
|