1
|
Zhao Y, Meng J, Wang Y, Zhao Q, Wang J, Gao W. Research progress of β-xylosidase in green synthesis. Int J Biol Macromol 2025; 306:141404. [PMID: 40010478 DOI: 10.1016/j.ijbiomac.2025.141404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
β-Xylosidase, an important hydrolase, catalyzes the degradation of xylan and xylosides, demonstrating significant potential for applications in biomass conversion and green synthesis. In recent years, with the rise of green chemistry, research on β-xylosidase in sustainable chemical synthesis has garnered increasing attention. Lignocellulosic biomass, a readily available and sustainable natural resource, requires the involvement of β-xylosidase for the production of biofuels. This enzyme not only efficiently degrades the xylan components of plant cell walls to produce biofuels but also synthesizes high-value glycosides through transglycosylation reactions, providing an eco-friendly catalytic tool for green chemical synthesis. This review summarizes the structural characteristics and catalytic mechanisms of β-xylosidase, along with related techniques to enhance its catalytic performance, such as enzyme immobilization, enzyme fusion technology, genetic engineering, and enzyme synergy. It focuses on recent advancements in its green applications, including the production of active compounds, waste degradation, bioenergy development, pulp bleaching, and deinking of waste paper (as shown in Fig. 1). Additionally, in light of current research trends, this review offers insights into the future prospects and challenges of β-xylosidase in green synthesis, aiming to provide valuable references for related fields.
Collapse
Affiliation(s)
- Yue Zhao
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Yike Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Qi Zhao
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| | - Wenyuan Gao
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| |
Collapse
|
2
|
Yu Milman P, Gilvanova EA, Aktuganov GE. The improved purification technique for isolation of the novel CGTase from the alkaliphilc strain Caldalkalibacillus mannanilyticus IB-OR17-B1. Prep Biochem Biotechnol 2025; 55:223-229. [PMID: 39106060 DOI: 10.1080/10826068.2024.2386558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Cyclodextrin-glucanotransferase (CGTase, EC 2.4.1.19) is a multifunctional enzyme that catalyzes many enzymatic reactions including cyclization, binding, disproportionation and hydrolysis reactions, playing an important role in the enzymatic synthesis of compounds that are widely used in agriculture, pharmaceuticals, food, chemical and biotechnology industries. The present research is aimed to optimize the purification protocol for the extracellular CGTase of alkaliphilc bacterial strain Caldalkalibacillus mannanilyticus IB-OR17-B1 guaranteeing the enzyme homogeneity and its high yield. The improved combination of ultrafiltration and corn-starch (5% w/v) affinity sorption techniques resulted to mild and rapid isolation of electrophoritically homogenic enzyme at 18 × increase of its specific activity and yield 56%. The developed two-step procedure instead the practiced tree-step one using commonly ion-exchange chromatography as final purification technique highly contributes in advance of cost-effectiveness for industrial production and isolation of valuable CGTases.
Collapse
Affiliation(s)
- P Yu Milman
- Ufa Institute of Biology of Ufa Federal Research Center of Russian Academy of Sciences, Russia, Ufa
| | - E A Gilvanova
- Ufa Institute of Biology of Ufa Federal Research Center of Russian Academy of Sciences, Russia, Ufa
| | - G E Aktuganov
- Ufa Institute of Biology of Ufa Federal Research Center of Russian Academy of Sciences, Russia, Ufa
| |
Collapse
|
3
|
Černáková L, Haluz P, Mastihuba V, Košťálová Z, Karnišová Potocká E, Mastihubová M. Enzymatic β-Mannosylation of Phenylethanoid Alcohols. Molecules 2025; 30:414. [PMID: 39860283 PMCID: PMC11767590 DOI: 10.3390/molecules30020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Phenylethanoid glycosides (PhGs) are widely occurring secondary metabolites of medicinal plants with interesting biological activities such as antioxidant, anti-inflammatory, neuroprotective, antiviral, hepatoprotective, immunomodulatory, etc. They are characterized by a structural core formed by a phenethyl alcohol, usually tyrosol or hydroxytyrosol, attached to β-D-glucopyranose via a glycosidic bond. This core is usually further decorated by attached phenolic acids or another saccharide. Several studies suggest an important role of the saccharidic fragment in the biological activities of PhGs, provoking demand for new glycovariants of natural PhGs. This study presents the preparation of β-mannosylated analogs of tyrosol β-D-glucopyranoside (salidroside) and hydroxytyrosol β-D-glucopyranoside (hydroxysalidroside). While the chemical synthesis of β-D-mannopyranosides is rather challenging, they can be prepared by enzymatic catalysis. We found that Novozym 188, an industrial β-glucosidase, also contains β-mannosidase and used this enzyme in the preparation of tyrosol β-D-mannopyranoside and hydroxytyrosol β-D-mannopyranoside in 12 and 16% chemical yields, respectively, by transglycosylation from β-D-mannopyranosyl-(1→4)-D-mannose. The mannosylation was chemoselective and occurred exclusively on the primary hydroxyls of tyrosol and hydroxytyrosol, and the glycosylation of phenolic moieties of the aglycons was observed.
Collapse
Affiliation(s)
| | | | | | | | | | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-845 38 Bratislava, Slovakia; (L.Č.); (P.H.); (V.M.); (Z.K.)
| |
Collapse
|
4
|
Wong Min M, Liu L, Karboune S. Investigating the Potential of Phenolic Compounds and Carbohydrates as Acceptor Substrates for Levansucrase-Catalyzed Transfructosylation Reaction. Chembiochem 2024; 25:e202400107. [PMID: 38536122 DOI: 10.1002/cbic.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Indexed: 05/03/2024]
Abstract
This study characterizes the acceptor specificity of levansucrases (LSs) from Gluconobacter oxydans (LS1), Vibrio natriegens (LS2), Novosphingobium aromaticivorans (LS3), and Paraburkholderia graminis (LS4) using sucrose as fructosyl donor and selected phenolic compounds and carbohydrates as acceptors. Overall, V. natriegens LS2 proved to be the best biocatalyst for the transfructosylation of phenolic compounds. More than one fructosyl unit could be attached to fructosylated phenolic compounds. The transfructosylation of epicatechin by P. graminis LS4 resulted in the most diversified products, with up to five fructosyl units transferred. In addition to the LS source, the acceptor specificity of LS towards phenolic compounds and their transfructosylation products were found to greatly depend on their chemical structure: the number of phenolic rings, the reactivity of hydroxyl groups and the presence of aliphatic chains or methoxy groups. Similarly, for carbohydrates, the transfructosylation yield was dependent on both the LS source and the acceptor type. The highest yield of fructosylated-trisaccharides was Erlose from the transfructosylation of maltose catalyzed by LS2, with production reaching 200 g/L. LS2 was more selective towards the transfructosylation of phenolic compounds and carbohydrates, while reactions catalyzed by LS1, LS3 and LS4 also produced fructooligosaccharides. This study shows the high potential for the application of LSs in the glycosylation of phenolic compounds and carbohydrates.
Collapse
Affiliation(s)
- Muriel Wong Min
- Department of Food Science & Agricultural Chemistry, McGill University, 21111, Lakeshore, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Lan Liu
- Department of Food Science & Agricultural Chemistry, McGill University, 21111, Lakeshore, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Salwa Karboune
- Department of Food Science & Agricultural Chemistry, McGill University, 21111, Lakeshore, Ste-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
5
|
Zhang J, Xu X, Zhao G, You H, Wang R, Li F. Hydrogenation of Quinones to Hydroquinones under Atmospheric Pressure Catalyzed by a Metal-Ligand Bifunctional Iridium Catalyst. Org Lett 2024; 26:1857-1862. [PMID: 38407095 DOI: 10.1021/acs.orglett.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A general method for the hydrogenation of quinones to hydroquinones under atmospheric pressure has been developed. In the presence of [Cp*Ir(2,2'-bpyO)(H2O)] (0.5-1 mol %), a range of products were obtained in high yields. Furthemore, the expansion of this catalytic system to the hydrogenation of 1,4-benzoquinone diimines was also presented. Functional groups in the bpy ligand were found to be crucial for the catalytic activity of iridium complexes.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Xiangchao Xu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Guoqiang Zhao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Heng You
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Rongzhou Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Feng Li
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
6
|
Sun T, Liu Y, Wang K, Duan F, Lu L. Biotransformation of Tyrosol into a Novel Valuable α-Galactoside with Increased Solubility and Improved Anti-inflammatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37319317 DOI: 10.1021/acs.jafc.3c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, tyrosol [2-(4-hydroxyphenyl) ethanol], which is rich in olive oil and red wine, was converted to a novel bioactive galactoside by enzymic glycosylation. The gene of α-galactosidase from Geobacillus stearothermophilus 23 was cloned and expressed in Escherichia coli as catalytically active inclusion bodies. The catalytically active inclusion bodies efficiently catalyzed the galactosylation of tyrosol using either melibiose or raffinose family oligosaccharides as glycosyl donors, resulting in a glycoside with 42.2 or 14.2% yields. The glycoside product was purified and identified as p-hydroxyphenethyl α-d-galactopyranoside by mass spectrometry and NMR analyses. The inclusion bodies can be recycled and reused for at least 10 batch reactions of galactoside synthesis. Moreover, the galactoside showed 11-fold increased water solubility and reduced cytotoxicity as compared to tyrosol. Also, it exhibited higher antioxidative and anti-inflammatory activities than tyrosol based on lipopolysaccharide-induced activated BV2 cells. These results provided important insights into the application of tyrosol derivatives in functional foods.
Collapse
Affiliation(s)
- Tong Sun
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yan Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| |
Collapse
|
7
|
Li N, Xia H, Jiang Y, Xiong J, Lou W. Co-immobilization of β-xylosidase and endoxylanase on zirconium based metal-organic frameworks for improving xylosidase activity at high temperature and in acetone. BIORESOURCE TECHNOLOGY 2023:129240. [PMID: 37247794 DOI: 10.1016/j.biortech.2023.129240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Improving the activity of β-xylosidase at high temperature and organic solvents is important for the conversion of xylan, phytochemicals and some hydroxyl-containing substances to produce xylose and bioactive substances. In this study, a β-xylosidase R333H and an endoxylanase were simultaneously co-immobilized on the metal-organic framework UiO-66-NH2. Compared with the single R333H immobilization system, the co-immobilization enhanced the activity of R333H at high temperature and high concentration of acetone, and the relative activities at 95°C and 50% acetone solution were > 95%. The Km value of co-immobilized R333H towards p-Nitrophenyl-β-D-xylopyranoside (pNPX) shifted from 2.04 to 0.94 mM, which indicated the enhanced affinity towards pNPX. After 5 cycles, the relative activities of the co-immobilized enzymes towards pNPX and corncob xylan were 52% and 70% respectively, and the accumulated amount of reducing sugars obtained by co-immobilized enzymes degrading corncob xylan in 30% (v/v) acetone solution was 1.7 times than that with no acetone.
Collapse
Affiliation(s)
- Na Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huan Xia
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbin Jiang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Jun Xiong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenyong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Li N, Zhang R, Zhou J, Huang Z. Structures, Biochemical Characteristics, and Functions of β-Xylosidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7961-7976. [PMID: 37192316 DOI: 10.1021/acs.jafc.3c01425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The complete degradation of abundant xylan derived from plants requires the participation of β-xylosidases to produce the xylose which can be converted to xylitol, ethanol, and other valuable chemicals. Some phytochemicals can also be hydrolyzed by β-xylosidases into bioactive substances, such as ginsenosides, 10-deacetyltaxol, cycloastragenol, and anthocyanidins. On the contrary, some hydroxyl-containing substances such as alcohols, sugars, and phenols can be xylosylated by β-xylosidases into new chemicals such as alkyl xylosides, oligosaccharides, and xylosylated phenols. Thus, β-xylosidases shows great application prospects in food, brewing, and pharmaceutical industries. This review focuses on the molecular structures, biochemical properties, and bioactive substance transformation function of β-xylosidases derived from bacteria, fungi, actinomycetes, and metagenomes. The molecular mechanisms of β-xylosidases related to the properties and functions are also discussed. This review will serve as a reference for the engineering and application of β-xylosidases in food, brewing, and pharmaceutical industries.
Collapse
Affiliation(s)
- Na Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| |
Collapse
|
9
|
Synthesis and Characterization of a Novel Resveratrol Xylobioside Obtained Using a Mutagenic Variant of a GH10 Endoxylanase. Antioxidants (Basel) 2022; 12:antiox12010085. [PMID: 36670947 PMCID: PMC9855058 DOI: 10.3390/antiox12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Resveratrol is a natural polyphenol with antioxidant activity and numerous health benefits. However, in vivo application of this compound is still a challenge due to its poor aqueous solubility and rapid metabolism, which leads to an extremely low bioavailability in the target tissues. In this work, rXynSOS-E236G glycosynthase, designed from a GH10 endoxylanase of the fungus Talaromyces amestolkiae, was used to glycosylate resveratrol by using xylobiosyl-fluoride as a sugar donor. The major product from this reaction was identified by NMR as 3-O-ꞵ-d-xylobiosyl resveratrol, together with other glycosides produced in a lower amount as 4'-O-ꞵ-d-xylobiosyl resveratrol and 3-O-ꞵ-d-xylotetraosyl resveratrol. The application of response surface methodology made it possible to optimize the reaction, producing 35% of 3-O-ꞵ-d-xylobiosyl resveratrol. Since other minor glycosides are obtained in addition to this compound, the transformation of the phenolic substrate amounted to 70%. Xylobiosylation decreased the antioxidant capacity of resveratrol by 2.21-fold, but, in return, produced a staggering 4,866-fold improvement in solubility, facilitating the delivery of large amounts of the molecule and its transit to the colon. A preliminary study has also shown that the colonic microbiota is capable of releasing resveratrol from 3-O-ꞵ-d-xylobiosyl resveratrol. These results support the potential of mutagenic variants of glycosyl hydrolases to synthesize highly soluble resveratrol glycosides, which could, in turn, improve the bioavailability and bioactive properties of this polyphenol.
Collapse
|
10
|
Zhang Z, Zhang Z, Yu Z, Chen S, Zhang M, Zhang T, Luo X, Zhao J, Li Z. Simultaneous Improvement of Final Product-Tolerance and Thermostability of GH39 Xylosidase for Prebiotic Production by Directed Evolution. Foods 2022; 11:foods11193039. [PMID: 36230114 PMCID: PMC9563585 DOI: 10.3390/foods11193039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Xylosidases are widely used for the production of prebiotics and the transformation of natural active substances in the food industry. However, xylosidases with excellent thermostability and product tolerance are required for industrial applications. In this study, the thermostability and final-product tolerance of the previously reported robust xylosidase Xyl21 were further improved via directed evolution. The triple mutant variant Xyl21-A16 (K16R, L94I, and K262N) showed significantly enhanced xylose tolerance, ethanol tolerance, and thermostability with no apparent changes in the specific activity, optimum pH, and temperature compared with the wild type. Single site mutations suggested that variant Xyl21-A16 is the cumulative result of three mutated sites, which indicated that K16 and L94 play important roles in enzyme characteristics. Moreover, a comparison of the predicted protein structures of Xyl21 and its variant indicated that additional molecular interactions formed by K16R and K262N might directly improve the rigidity of the protein structure, therefore contributing to the increased thermostability and product tolerance. The variant Xyl21-A16 developed in this study has great application potential in the production of prebiotics, and also provides a useful reference for the future engineering of other xylosidases.
Collapse
Affiliation(s)
- Zirui Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengjie Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhao Yu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shiheng Chen
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengwei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tongcun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuegang Luo
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junqi Zhao
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan 250200, China
- Correspondence: (J.Z.); (Z.L.)
| | - Zhongyuan Li
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: (J.Z.); (Z.L.)
| |
Collapse
|
11
|
A Fungal Versatile GH10 Endoxylanase and Its Glycosynthase Variant: Synthesis of Xylooligosaccharides and Glycosides of Bioactive Phenolic Compounds. Int J Mol Sci 2022; 23:ijms23031383. [PMID: 35163307 PMCID: PMC8836076 DOI: 10.3390/ijms23031383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
The study of endoxylanases as catalysts to valorize hemicellulosic residues and to obtain glycosides with improved properties is a topic of great industrial interest. In this work, a GH10 β-1,4-endoxylanase (XynSOS), from the ascomycetous fungus Talaromyces amestolkiae, has been heterologously produced in Pichia pastoris, purified, and characterized. rXynSOS is a highly glycosylated monomeric enzyme of 53 kDa that contains a functional CBM1 domain and shows its optimal activity on azurine cross-linked (AZCL)-beechwood xylan at 70 °C and pH 5. Substrate specificity and kinetic studies confirmed its versatility and high affinity for beechwood xylan and wheat arabinoxylan. Moreover, rXynSOS was capable of transglycosylating phenolic compounds, although with low efficiencies. For expanding its synthetic capacity, a glycosynthase variant of rXynSOS was developed by directed mutagenesis, replacing its nucleophile catalytic residue E236 by a glycine (rXynSOS-E236G). This novel glycosynthase was able to synthesize β-1,4-xylooligosaccharides (XOS) of different lengths (four, six, eight, and ten xylose units), which are known to be emerging prebiotics. rXynSOS-E236G was also much more active than the native enzyme in the glycosylation of a broad range of phenolic compounds with antioxidant properties. The interesting capabilities of rXynSOS and its glycosynthase variant make them promising tools for biotechnological applications.
Collapse
|
12
|
González-Alfonso JL, Poveda A, Arribas M, Hirose Y, Fernández-Lobato M, Olmo Ballesteros A, Jiménez-Barbero J, Plou FJ. Polyglucosylation of Rutin Catalyzed by Cyclodextrin Glucanotransferase from Geobacillus sp.: Optimization and Chemical Characterization of Products. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Ana Poveda
- Center for Cooperative Research in Biosciences, CIC bioGUNE, Basque Research & Technology Alliance, BRTA, 48160 Derio, Biscay, Spain
| | - Miguel Arribas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences, CIC bioGUNE, Basque Research & Technology Alliance, BRTA, 48160 Derio, Biscay, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Francisco J. Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie, 2, 28049 Madrid, Spain
| |
Collapse
|
13
|
Synthesis of Tyrosol and Hydroxytyrosol Glycofuranosides and Their Biochemical and Biological Activities in Cell-Free and Cellular Assays. Molecules 2021; 26:molecules26247607. [PMID: 34946703 PMCID: PMC8709365 DOI: 10.3390/molecules26247607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Tyrosol (T) and hydroxytyrosol (HOT) and their glycosides are promising candidates for applications in functional food products or in complementary therapy. A series of phenylethanoid glycofuranosides (PEGFs) were synthesized to compare some of their biochemical and biological activities with T and HOT. The optimization of glycosylation promoted by environmentally benign basic zinc carbonate was performed to prepare HOT α-L-arabino-, β-D-apio-, and β-D-ribofuranosides. T and HOT β-D-fructofuranosides, prepared by enzymatic transfructosylation of T and HOT, were also included in the comparative study. The antioxidant capacity and DNA-protective potential of T, HOT, and PEGFs on plasmid DNA were determined using cell-free assays. The DNA-damaging potential of the studied compounds for human hepatoma HepG2 cells and their DNA-protective potential on HepG2 cells against hydrogen peroxide were evaluated using the comet assay. Experiments revealed a spectrum of different activities of the studied compounds. HOT and HOT β-D-fructofuranoside appear to be the best-performing scavengers and protectants of plasmid DNA and HepG2 cells. T and T β-D-fructofuranoside display almost zero or low scavenging/antioxidant activity and protective effects on plasmid DNA or HepG2 cells. The results imply that especially HOT β-D-fructofuranoside and β-D-apiofuranoside could be considered as prospective molecules for the subsequent design of supplements with potential in food and health protection.
Collapse
|
14
|
Hollá V, Karkeszová K, Antošová M, Polakovič M. Transglycosylation properties of a Kluyveromyces lactis enzyme preparation: Production of tyrosol β-fructoside using free and immobilized enzyme. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Inzunza-Soto M, Thai S, Sinrod AJG, Olson DA, Avena-Bustillos RJ, Li X, Rolston MR, Wang SC, Teran-Cabanillas E, Yokoyama W, McHugh TH. Health benefits of first and second extraction drum-dried pitted olive pomace. J Food Sci 2021; 86:4865-4876. [PMID: 34642970 DOI: 10.1111/1750-3841.15925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Olive pomace (OP) is the main by-product of olive oil extraction. After pit and skin removal, OP pulp has high concentrations of dietary fiber and phenolics with high antioxidant capacity. This study evaluated mice health benefits of drum-dried pitted OP pulp obtained after first and second oil extraction. Fresh OP was steam blanched, then pits and skins separated in a pulper/finisher, and pulp drum-dried and milled. OP was characterized by proximate analysis, total soluble phenolics (TSP), individual phenolics, and dietary fiber. Drum-dried pitted OP from first and second extraction was formulated at 10% and 20% in a high fat mice diet. Low fat (5%) and high fat (18%) control diets were also used for comparison. First extraction OP had higher TSP than OP from second extraction. Hydroxytyrosol was the main phenolic in OP. Mice weight gain was lower for the four OP diets compared to high and low-fat control diets. Fecal protein was high for all OP diets, indicating poor protein retention in mice, possibly by phenolics binding of protein and enzymes. Liver weight and adipose tissue were lower in mice consuming the four high fat OP diets compared to high fat control diet. Also, there was no effect on blood glucose by OP in diets. Mice gut microbiota analysis indicated that Actinobacteria decreased in the OP diets compared to the two control diets while Bacteroidetes increased, indicating a positive correlation with reduced body fat and weight. Drum-dried pitted OP is a novel agricultural by-product with its bioactive compounds having the potential to be incorporated in feeds and foods providing health benefits. PRACTICAL APPLICATION: Drum-dried pitted olive pomace can be produced from first or second olive oil extraction byproducts to be used as a shelf-stable healthy food or feed supplement.
Collapse
Affiliation(s)
- Marce Inzunza-Soto
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Sandy Thai
- Western Regional Research Center, Healthy Processed Foods Research, Albany, California, USA
| | - Amanda J G Sinrod
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Donald A Olson
- Western Regional Research Center, Healthy Processed Foods Research, Albany, California, USA
| | | | - Xueqi Li
- Olive Center, University of California, Davis, California, USA
| | - Matthew R Rolston
- Host Microbe Systems Biology Core, University of California, Davis, California, USA
| | - Selina C Wang
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Eli Teran-Cabanillas
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Wallace Yokoyama
- Western Regional Research Center, Healthy Processed Foods Research, Albany, California, USA
| | - Tara H McHugh
- Western Regional Research Center, Healthy Processed Foods Research, Albany, California, USA
| |
Collapse
|
16
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|
17
|
Prieto A, de Eugenio L, Méndez-Líter JA, Nieto-Domínguez M, Murgiondo C, Barriuso J, Bejarano-Muñoz L, Martínez MJ. Fungal glycosyl hydrolases for sustainable plant biomass valorization: Talaromyces amestolkiae as a model fungus. Int Microbiol 2021; 24:545-558. [PMID: 34417929 DOI: 10.1007/s10123-021-00202-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/26/2022]
Abstract
As the main decomposers and recyclers in nature, fungi secrete complex mixtures of extracellular enzymes for degradation of plant biomass, which is essential for mobilization of the organic carbon fixed by the photosynthesis in vegetal cells. Biotechnology can emulate the closed natural biological cycles, using lignocellulosic biomass as a renewable resource and lignocellulolytic fungal enzymes as catalysts to sustainably produce consumer goods. Cellulose and hemicellulose are the major polysaccharides on Earth, and the main enzymes involved in their hydrolytic depolymerization are cellulases (endoglucanases, cellobiohydrolases, and β-glucosidases) and hemicellulases (mainly endoxylanases and β-xylosidases). This work will focus on the enzymes secreted by the filamentous ascomycete Talaromyces amestolkiae and on some of their biotechnological applications. Their excellent hydrolytic activity was demonstrated by the partial degradation of xylans to prebiotic oligosaccharides by the endoxylanase XynN, or by the saccharification of lignocellulosic wastes to monosaccharides (fermentable to ethanol) either by the whole secretomes or by isolated enzymes used as supplements of commercial cocktails. However, apart from their expected hydrolytic activity, some of the β-glycosidases produced by this strain catalyze the transfer of a sugar molecule to specific aglycons by transglycosylation. As the synthesis of customized glycoconjugates is a major goal for biocatalysis, mutant variants of the β-xyloxidase BxTW1 and the ß-glucosidases BGL-1 and BGL-2 were obtained by directed mutagenesis, substantially improving the regioselective production yields of bioactive glycosides since they showed reduced or null hydrolytic activity.
Collapse
Affiliation(s)
- Alicia Prieto
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain.
| | - Laura de Eugenio
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Juan A Méndez-Líter
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Manuel Nieto-Domínguez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Carlos Murgiondo
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Lara Bejarano-Muñoz
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain.
| |
Collapse
|
18
|
Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review. BIORESOURCE TECHNOLOGY 2021; 324:124623. [PMID: 33434871 DOI: 10.1016/j.biortech.2020.124623] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/26/2023]
Abstract
The term hemicellulose groups different polysaccharides with heterogeneous structures, mannans, xyloglucans, mixed-linkage β-glucans and xylans, which differ in their backbone and branches, and in the type and distribution of glycosidic linkages. The enzymatic degradation of these complex polymers requires the concerted action of multiple hemicellulases and auxiliary enzymes. Most commercial enzymes are produced by Trichoderma and Aspergillus species, but recent studies have disclosed Penicillium and Talaromyces as promising sources of hemicellulases. In this review, we summarize the current knowledge on the hemicellulolytic system of these genera, and the role of hemicellulases in the disruption and synthesis of glycosidic bonds. In both cases, the enzymes from Penicillium and Talaromyces represent an interesting alternative for valorization of lignocellulosic biomass in the current framework of circular economy.
Collapse
Affiliation(s)
- Juan A Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
19
|
Lim CH, Rasti B, Sulistyo J, Hamid MA. Comprehensive study on transglycosylation of CGTase from various sources. Heliyon 2021; 7:e06305. [PMID: 33665455 PMCID: PMC7907775 DOI: 10.1016/j.heliyon.2021.e06305] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Transglycosylation is the in-vivo or in-vitro process of transferring glycosyl groups from a donor to an acceptor, which is usually performed by enzymatic reactions because of their simplicity, low steric hindrance, high region-specificity, low production cost, and mild processing conditions. One of the enzymes commonly used in the transglycosylation reaction is cyclodextrin glucanotransferase (CGTase). The transglycosylated products, catalyzed by CGTase, are widely used in food additives, supplements, and personal care and cosmetic products. This is due to improvements in the solubility, stability, bioactivity and length of the synthesized products. This paper's focus is on the importance of enzymes used in the transglycosylation reaction, their characteristics and mechanism of action, sources and production yield, and donor and acceptor specificities. Moreover, the influence of intrinsic and extrinsic factors on the enzymatic reaction, catalysis of glycosidic linkages, and advantages of CGTase transglycosylation reactions are discussed in detail.
Collapse
Affiliation(s)
- Chin Hui Lim
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Babak Rasti
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Joko Sulistyo
- Faculty of Biotechnology, University of Surabaya, Jalan Ngagel Jaya Selatan, Surabaya, 60294, Indonesia
| | - Mansoor Abdul Hamid
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
20
|
Murguiondo C, Mestre A, Méndez-Líter JA, Nieto-Domínguez M, de Eugenio LI, Molina-Gutiérrez M, Martínez MJ, Prieto A. Enzymatic glycosylation of bioactive acceptors catalyzed by an immobilized fungal β-xylosidase and its multi-glycoligase variant. Int J Biol Macromol 2020; 167:245-254. [PMID: 33217466 DOI: 10.1016/j.ijbiomac.2020.11.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
A recombinant β-xylosidase (rBxTW1) from the ascomycete Talaromyces amestolkiae and a mutant derived from it, with mostly synthetic activity, have been immobilized as magnetic cross-linked enzyme aggregates (mCLEAs). The mCLEAs of rBxTW1 kept the excellent hydrolytic and O-transxylosylating activities of the free enzyme and had improved thermal and pH stability. The mCLEAs of the mutant also maintained or improved the catalytic properties of the soluble enzyme, synthetizing the O-xylosides of vanillin and (-)-epigallocatechin gallate, and the N- and S-xyloside of 3,5-dibromo-1,2,4-triazole and thiophenol, respectively. The mCLEAs were recyclable across 4 cycles of synthesis of the O-xylosides through a green and highly selective process. The magnetic properties of the scaffold used for immobilization may allow the easy recovery and reuse of the biocatalyst even from reactions containing insoluble lignocellulosic biomass.
Collapse
Affiliation(s)
- Carlos Murguiondo
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Anna Mestre
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Juan A Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - María Molina-Gutiérrez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
21
|
Hollá V, Hill R, Antošová M, Polakovič M. Design of immobilized biocatalyst and optimal conditions for tyrosol β-galactoside production. Bioprocess Biosyst Eng 2020; 44:93-101. [PMID: 32816074 DOI: 10.1007/s00449-020-02425-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Tyrosol β-galactoside (TG) is a phenylethanoid glycoside with proven neuroprotective properties. This work deals with its biocatalytic production from tyrosol and lactose using Aspergillus oryzae β-galactosidase in immobilized form. Six commercial carriers were examined to find the optimal biocatalyst. Besides standard biocatalyst performance characteristics, adsorption of the hydrophobic substrate on immobilization carrier matrices was also investigated. The adsorption of tyrosol was significant, but it did not have adverse effects on TG production. On the contrary, TG yield was improved for some biocatalysts. A biocatalyst prepared by covalent binding of β-galactosidase on an epoxy-activated carrier was used for detailed investigation of the effect of reaction conditions on glycoside production. Temperature had a surprisingly weak effect on the overall process rate. A lactose concentration of 0.83 M was found to be optimal to enhance TG formation. The impact of tyrosol concentration was rather complex. This substrate caused inhibition of all reactions. Its concentration had a strong effect on the hydrolysis of lactose and all products. Higher tyrosol concentrations, 30-40 g/L, were favorable as pseudo-equilibrium concentrations of TG and galactooligosaccharide were reached. Repeated batch results revealed excellent operational stability of the biocatalyst.
Collapse
Affiliation(s)
- Veronika Hollá
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Rhiannon Hill
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Monika Antošová
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Milan Polakovič
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| |
Collapse
|
22
|
Karnišová Potocká E, Mastihubová M, Mastihuba V. Transrutinosylation of tyrosol by flower buds of Sophora japonica. Food Chem 2020; 336:127674. [PMID: 32781353 DOI: 10.1016/j.foodchem.2020.127674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022]
Abstract
Dried flower buds of Japanese sophora (Sophora japonica) comprising rutinosidase activity were tested in rutinosylation of tyrosol via transglycosylation process from rutin. Optimal conditions for transrutinosylation of tyrosol were 49 mM rutin and 290 mM tyrosol, giving maximum conversion up to 66.4% and 24% yield of isolated and purified rutinoside. The rutinosylation proceeded exclusively on the primary hydroxyl of tyrosol, thus forming rhamnosylated derivative of salidroside. This strict regioselectivity differentiates the sophora biocatalyst from microbial rutinosidases.
Collapse
Affiliation(s)
- Elena Karnišová Potocká
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Vladimír Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia.
| |
Collapse
|
23
|
Deciphering the molecular specificity of phenolic compounds as inhibitors or glycosyl acceptors of β-fructofuranosidase from Xanthophyllomyces dendrorhous. Sci Rep 2019; 9:17441. [PMID: 31767902 PMCID: PMC6877581 DOI: 10.1038/s41598-019-53948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023] Open
Abstract
Enzymatic glycosylation of polyphenols is a tool to improve their physicochemical properties and bioavailability. On the other hand, glycosidic enzymes can be inhibited by phenolic compounds. In this work, we studied the specificity of various phenolics (hydroquinone, hydroxytyrosol, epigallocatechin gallate, catechol and p-nitrophenol) as fructosyl acceptors or inhibitors of the β-fructofuranosidase from Xanthophyllomyces dendrorhous (pXd-INV). Only hydroquinone and hydroxytyrosol gave rise to the formation of glycosylated products. For the rest, an inhibitory effect on both the hydrolytic (H) and transglycosylation (T) activity of pXd-INV, as well as an increase in the H/T ratio, was observed. To disclose the binding mode of each compound and elucidate the molecular features determining its acceptor or inhibitor behaviour, ternary complexes of the inactive mutant pXd-INV-D80A with fructose and the different polyphenols were analyzed by X-ray crystallography. All the compounds bind by stacking against Trp105 and locate one of their phenolic hydroxyls making a polar linkage to the fructose O2 at 3.6–3.8 Å from the C2, which could enable the ulterior nucleophilic attack leading to transfructosylation. Binding of hydroquinone was further investigated by soaking in absence of fructose, showing a flexible site that likely allows productive motion of the intermediates. Therefore, the acceptor capacity of the different polyphenols seems mediated by their ability to make flexible polar links with the protein, this flexibility being essential for the transfructosylation reaction to proceed. Finally, the binding affinity of the phenolic compounds was explained based on the two sites previously reported for pXd-INV.
Collapse
|
24
|
Horvathova E, Mastihubova M, Karnisova Potocka E, Kis P, Galova E, Sevcovicova A, Klapakova M, Hunakova L, Mastihuba V. Comparative study of relationship between structure of phenylethanoid glycopyranosides and their activities using cell-free assays and human cells cultured in vitro. Toxicol In Vitro 2019; 61:104646. [PMID: 31518671 DOI: 10.1016/j.tiv.2019.104646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 01/19/2023]
Abstract
The study focused on protective potential of phytochemicals applicable in prevention and health protection is of great importance. Various structures of these compounds and a wide range of their biological activities have inspired organic chemists to sythesize their effective analogues in order to further increase their efficacy. The aims of our study were (i) to synthesize phenylethanoid glycopyranosides: salidroside (SALI - tyrosol β-d-glucopyranoside), tyrosol β-d-galactopyranoside (TYBGAL), tyrosol α-d-galactopyranoside (TYAGAL), tyrosol α-d-mannopyranoside (TYAMAN), hydroxytyrosol α-d-mannopyranoside (HOTAMA), homosyringyl β-d-glucopyranoside (HSYGLU), hydroxytyrosol β-d-xylopyranoside (HOTXYL) and hydroxysalidroside (HOSALI); (ii) to determine their antioxidant capacities (cell-free approaches); (iii) to evaluate their cytotoxicity (MTT test), protectivity against hydrogen peroxide (H2O2; comet assay) and effect on the intracellular glutathione level (iGSH; flow cytometry) in experimental system utilizing human hepatoma HepG2 cells. HOSALI, HOTAMA, HOTXYL and HSYGLU manifested the highest antioxidant capacity in cell-free assays and they were most active in protection of HepG2 cells against H2O2. On the other hand, pre-treatment of HepG2 cells with SALI had protective effects even though SALI displayed almost no activity in cell-free assays. Differences in the efficacy of the analogues revealed that structures of their molecules in terms of aglycone combined with sugar moiety affect their activities.
Collapse
Affiliation(s)
- Eva Horvathova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic.
| | - Maria Mastihubova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Elena Karnisova Potocka
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Peter Kis
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Eliska Galova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Martina Klapakova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Luba Hunakova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic
| | - Vladimir Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| |
Collapse
|
25
|
Méndez-Líter JA, Tundidor I, Nieto-Domínguez M, de Toro BF, González Santana A, de Eugenio LI, Prieto A, Asensio JL, Cañada FJ, Sánchez C, Martínez MJ. Transglycosylation products generated by Talaromyces amestolkiae GH3 β-glucosidases: effect of hydroxytyrosol, vanillin and its glucosides on breast cancer cells. Microb Cell Fact 2019; 18:97. [PMID: 31151435 PMCID: PMC6544938 DOI: 10.1186/s12934-019-1147-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
Background Transglycosylation represents one of the most promising approaches for obtaining novel glycosides, and plant phenols and polyphenols are emerging as one of the best targets for creating new molecules with enhanced capacities. These compounds can be found in diet and exhibit a wide range of bioactivities, such as antioxidant, antihypertensive, antitumor, neuroprotective and anti-inflammatory, and the eco-friendly synthesis of glycosides from these molecules can be a suitable alternative for increasing their health benefits. Results Transglycosylation experiments were carried out using different GH3 β-glucosidases from the fungus Talaromyces amestolkiae. After a first screening with a wide variety of potential transglycosylation acceptors, mono-glucosylated derivatives of hydroxytyrosol, vanillin alcohol, 4-hydroxybenzyl alcohol, and hydroquinone were detected. The reaction products were analyzed by thin-layer chromatography, high-pressure liquid chromatography, and mass spectrometry. Hydroxytyrosol and vanillyl alcohol were selected as the best options for transglycosylation optimization, with a final conversion yield of 13.8 and 19% of hydroxytyrosol and vanillin glucosides, respectively. NMR analysis confirmed the structures of these compounds. The evaluation of the biological effect of these glucosides using models of breast cancer cells, showed an enhancement in the anti-proliferative capacity of the vanillin derivative, and an improved safety profile of both glucosides. Conclusions GH3 β-glucosidases from T. amestolkiae expressed in P. pastoris were able to transglycosylate a wide variety of acceptors. Between them, phenolic molecules like hydroxytyrosol, vanillin alcohol, 4-hydroxybenzyl alcohol, and hydroquinone were the most suitable for its interesting biological properties. The glycosides of hydroxytyrosol and vanillin were tested, and they improved the biological activities of the original aglycons on breast cancer cells. Electronic supplementary material The online version of this article (10.1186/s12934-019-1147-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Antonio Méndez-Líter
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Isabel Tundidor
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Manuel Nieto-Domínguez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Fernández de Toro
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Andrés González Santana
- Glycochemistry and Molecular Recognition Group, Instituto de Química Orgánica General (IQOG-CSIC), Calle Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Laura Isabel de Eugenio
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alicia Prieto
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Luis Asensio
- Glycochemistry and Molecular Recognition Group, Instituto de Química Orgánica General (IQOG-CSIC), Calle Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Francisco Javier Cañada
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - María Jesús Martínez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
26
|
Gonzalez-Alfonso JL, Peñalver P, Ballesteros AO, Morales JC, Plou FJ. Effect of α-Glucosylation on the Stability, Antioxidant Properties, Toxicity, and Neuroprotective Activity of (-)-Epigallocatechin Gallate. Front Nutr 2019; 6:30. [PMID: 30968027 PMCID: PMC6438877 DOI: 10.3389/fnut.2019.00030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
(–)-Epigallocatechin gallate (EGCG), the predominant catechin (≥50%) in green tea (Camellia sinensis), displays several bioactive properties but its stability and bioavailability are low. In this work, the properties of two α-glucosyl derivatives of EGCG (3′- and 7-O-α-D-glucopyranoside), obtained by enzymatic synthesis, were assessed. The α-glucosylation enhanced the pH and thermal stability of EGCG. The analysis of scavenging activity toward ABTS·+ radicals showed that the α-glucosylation at C-7 of A-ring caused a higher loss of antioxidant activity compared with the sugar conjugation at C-3′ of B-ring. The 3′-glucoside also showed higher potential to alleviate intracellular reactive oxygen species (ROS) levels and to boost REDOX activity. The toxicity of EGCG and its monoglucosides was tested in human SH-S5Y5 neurons, RAW 264.7 macrophages, MRC5 fibroblasts, and HT-29 colon cancer cells. Interestingly, the 3′-O-α-D-glucoside increased the viability of neural cells in vitro (2.75-fold at 100 μM) in the presence of H2O2, whilst EGCG gave rise only to a 1.7-fold enhancement. In conclusion, the α-glucoside of EGCG at C-3′ has a great potential for nutraceutical, cosmetic and biomedical applications.
Collapse
Affiliation(s)
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | | | - Juan C Morales
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | | |
Collapse
|
27
|
González-Alfonso JL, Míguez N, Padilla JD, Leemans L, Poveda A, Jimnez-Barbero J, Ballesteros AO, Sandoval G, Plou FJ. Optimization of Regioselective α-Glucosylation of Hesperetin Catalyzed by Cyclodextrin Glucanotransferase. Molecules 2018; 23:molecules23112885. [PMID: 30400664 PMCID: PMC6278433 DOI: 10.3390/molecules23112885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022] Open
Abstract
The regioselective α-glucosylation of hesperetin was achieved by a transglycosylation reaction catalyzed by cyclodextrin glucanotransferase (CGTase) from Thermoanaerobacter sp. using soluble starch as glucosyl donor. By combining mass spectrometry (ESI-TOF) and 2D-NMR analysis, the main monoglucosylated derivative was fully characterized (hesperetin 7-O-α-d-glucopyranoside). In order to increase the yield of monoglucoside, several reaction parameters were optimized: Nature and percentage of cosolvent, composition of the aqueous phase, glucosyl donor, temperature, and the concentrations of hesperetin and soluble starch. Under the optimal conditions, which included the presence of 30% of bis(2-methoxyethyl) ether as cosolvent, the maximum concentration of monoglucoside was approximately 2 mM, obtained after 24 h of reaction. To our knowledge, this is the first report of direct glucosylation of hesperetin employing free enzymes instead of whole cells.
Collapse
Affiliation(s)
| | - Noa Míguez
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain.
| | - J Daniel Padilla
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico.
| | - Laura Leemans
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain.
| | - Ana Poveda
- Center for Cooperative Research in Biosciences, Parque Científico Tecnológico de Bizkaia, 48160 Derio, Biscay, Spain.
| | - Jesús Jimnez-Barbero
- Center for Cooperative Research in Biosciences, Parque Científico Tecnológico de Bizkaia, 48160 Derio, Biscay, Spain.
| | | | - Georgina Sandoval
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain.
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico.
| | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain.
| |
Collapse
|
28
|
Míguez N, Ramírez‐Escudero M, Gimeno‐Pérez M, Poveda A, Jiménez‐Barbero J, Ballesteros AO, Fernández‐Lobato M, Sanz‐Aparicio J, Plou FJ. Fructosylation of Hydroxytyrosol by the β‐Fructofuranosidase from
Xanthophyllomyces dendrorhous
: Insights into the Molecular Basis of the Enzyme Specificity. ChemCatChem 2018. [DOI: 10.1002/cctc.201801171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Noa Míguez
- Biocatalysis DepartmentInstitute of Catalysis and Petrochemistry (CSIC) Madrid 28049 Spain
| | - Mercedes Ramírez‐Escudero
- Macromolecular Crystallography and Structural Biology Department Institute of Physical-Chemistry Rocasolano (CSIC) Madrid 28006 Spain
| | - María Gimeno‐Pérez
- Molecular Biology Department Centre of Molecular Biology Severo Ochoa (CSIC-UAM)Autonomous University of Madrid Madrid 28049 Spain
| | - Ana Poveda
- CIC bioGUNE: Center for Cooperative Research in Biosciences Basque Network of Science Technology and InnovationBiscay Science and Technology Park Derio 48160 Spain
| | - Jesús Jiménez‐Barbero
- CIC bioGUNE: Center for Cooperative Research in Biosciences Basque Network of Science Technology and InnovationBiscay Science and Technology Park Derio 48160 Spain
| | - Antonio O. Ballesteros
- Biocatalysis DepartmentInstitute of Catalysis and Petrochemistry (CSIC) Madrid 28049 Spain
| | - María Fernández‐Lobato
- Molecular Biology Department Centre of Molecular Biology Severo Ochoa (CSIC-UAM)Autonomous University of Madrid Madrid 28049 Spain
| | - Julia Sanz‐Aparicio
- Macromolecular Crystallography and Structural Biology Department Institute of Physical-Chemistry Rocasolano (CSIC) Madrid 28006 Spain
| | - Francisco J. Plou
- Biocatalysis DepartmentInstitute of Catalysis and Petrochemistry (CSIC) Madrid 28049 Spain
| |
Collapse
|
29
|
Li N, Han X, Xu S, Li C, Wei X, Liu Y, Zhang R, Tang X, Zhou J, Huang Z. Glycoside Hydrolase Family 39 β-Xylosidase of Sphingomonas Showing Salt/Ethanol/Trypsin Tolerance, Low-pH/Low-Temperature Activity, and Transxylosylation Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9465-9472. [PMID: 30132665 DOI: 10.1021/acs.jafc.8b03327] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mining for novel enzymes from new microorganisms is a way to obtain β-xylosidases with promising applications. A Sphingomonas β-xylosidase was expressed in Escherichia coli. The purified recombinant enzyme (rJB13GH39) was most active at pH 4.5 and 50 °C, retaining 10%-50% of its maximum activity at 0-20 °C. Most salts and chemical reagents including 3.0%-20.0% (w/v) NaCl showed little or no effect on the enzymatic activity. rJB13GH39 exhibited 71.9% and 55.2% activity in 10.0% and 15.0% (v/v) ethanol, respectively. rJB13GH39 was stable below 60 °C in 3.0%-30.0% (w/v) NaCl, 3.0%-20.0% (v/v) ethanol, and 2.2-87.0 mg/mL trypsin. The enzyme transferred one xylosyl moiety to certain sugars and alcohols. The salt/ethanol tolerance and low-temperature activity of the enzyme may be attributed to its high structural flexibility caused by high proportions of small amino acids ACDGNSTV and random coils.
Collapse
Affiliation(s)
- Na Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Xiaowei Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Shujing Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Chunyan Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Xin Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| | - Yu Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| |
Collapse
|
30
|
Gonzalez-Alfonso JL, Leemans L, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ. Efficient α-Glucosylation of Epigallocatechin Gallate Catalyzed by Cyclodextrin Glucanotransferase from Thermoanaerobacter Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7402-7408. [PMID: 29939740 DOI: 10.1021/acs.jafc.8b02143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The glycosylation of plant polyphenols may modulate their solubility and bioavailability and protect these molecules from oxygen, light degradation, and during gastrointestinal transit. In this work, the synthesis of various α-glucosyl derivatives of (-)-epigallocatechin gallate, the predominant catechin in green tea, was performed in water at 50 °C by a transglycosylation reaction catalyzed by cyclodextrin glycosyltransferase from Thermoanaerobacter sp. The molecular weight of reaction products was determined by high-performance liquid chromatography coupled to mass spectrometry. Using hydrolyzed potato starch as a glucosyl donor, two main monoglucosides were obtained with conversion yields of 58 and 13%, respectively. The products were isolated and chemically characterized by combining two-dimensional nuclear magnetic resonance methods. The major derivative was epigallocatechin gallate 3'- O-α-d-glucopyranoside (1), and the minor derivative was epigallocatechin gallate 7- O-α-d-glucopyranoside (2).
Collapse
Affiliation(s)
- Jose L Gonzalez-Alfonso
- Instituto de Catálisis y Petroleoquímica , Consejo Superior de Investigaciones Científicas (CSIC) , 28049 Madrid , Spain
| | - Laura Leemans
- Instituto de Catálisis y Petroleoquímica , Consejo Superior de Investigaciones Científicas (CSIC) , 28049 Madrid , Spain
| | - Ana Poveda
- Center for Cooperative Research in Biosciences , Parque Científico Tecnológico de Bizkaia , 48160 Derio , Biscay , Spain
| | - Jesús Jimenez-Barbero
- Center for Cooperative Research in Biosciences , Parque Científico Tecnológico de Bizkaia , 48160 Derio , Biscay , Spain
- Ikerbasque , Basque Foundation for Science , Maria Diaz de Haro 13 , 48009 Bilbao , Spain
| | - Antonio O Ballesteros
- Instituto de Catálisis y Petroleoquímica , Consejo Superior de Investigaciones Científicas (CSIC) , 28049 Madrid , Spain
| | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica , Consejo Superior de Investigaciones Científicas (CSIC) , 28049 Madrid , Spain
| |
Collapse
|
31
|
González-Alfonso JL, Rodrigo-Frutos D, Belmonte-Reche E, Peñalver P, Poveda A, Jiménez-Barbero J, Ballesteros AO, Hirose Y, Polaina J, Morales JC, Fernández-Lobato M, Plou FJ. Enzymatic Synthesis of a Novel Pterostilbene α-Glucoside by the Combination of Cyclodextrin Glucanotransferase and Amyloglucosidase. Molecules 2018; 23:E1271. [PMID: 29799509 PMCID: PMC6100302 DOI: 10.3390/molecules23061271] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/14/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022] Open
Abstract
The synthesis of a novel α-glucosylated derivative of pterostilbene was performed by a transglycosylation reaction using starch as glucosyl donor, catalyzed by cyclodextrin glucanotransferase (CGTase) from Thermoanaerobacter sp. The reaction was carried out in a buffer containing 20% (v/v) DMSO to enhance the solubility of pterostilbene. Due to the formation of several polyglucosylated products with CGTase, the yield of monoglucoside was increased by the treatment with a recombinant amyloglucosidase (STA1) from Saccharomyces cerevisiae (var. diastaticus). This enzyme was not able to hydrolyze the linkage between the glucose and pterostilbene. The monoglucoside was isolated and characterized by combining ESI-MS and 2D-NMR methods. Pterostilbene α-d-glucopyranoside is a novel compound. The α-glucosylation of pterostilbene enhanced its solubility in water to approximately 0.1 g/L. The α-glucosylation caused a slight loss of antioxidant activity towards ABTS˙⁺ radicals. Pterostilbene α-d-glucopyranoside was less toxic than pterostilbene for human SH-S5Y5 neurons, MRC5 fibroblasts and HT-29 colon cancer cells, and similar for RAW 264.7 macrophages.
Collapse
Affiliation(s)
| | - David Rodrigo-Frutos
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento Biología Molecular, UAM, 28049 Madrid, Spain.
| | - Efres Belmonte-Reche
- Instituto de Parasitología y Biomedicina "Lopez-Neyra", CSIC, PTS Granada, 18016 Armilla, Granada, Spain.
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina "Lopez-Neyra", CSIC, PTS Granada, 18016 Armilla, Granada, Spain.
| | - Ana Poveda
- Center for Cooperative Research in Biosciences, Parque Científico Tecnológico de Bizkaia, 48160 Derio, Biscay, Spain.
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences, Parque Científico Tecnológico de Bizkaia, 48160 Derio, Biscay, Spain.
| | | | | | - Julio Polaina
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, 46980 Valencia, Spain.
| | - Juan C Morales
- Instituto de Parasitología y Biomedicina "Lopez-Neyra", CSIC, PTS Granada, 18016 Armilla, Granada, Spain.
| | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento Biología Molecular, UAM, 28049 Madrid, Spain.
| | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain.
| |
Collapse
|