1
|
Xu R, Lou Y, Gao Y, Shang S, Song Z, Huang K, Li L, Chen L, Li J. Integrating morphology, physiology, and computer simulation to reveal the toxicity mechanism of eco-friendly rosin-based pesticides. CHEMOSPHERE 2024; 369:143855. [PMID: 39615856 DOI: 10.1016/j.chemosphere.2024.143855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
To mitigate the impact of traditional chemical pesticides on environment, and achieve sustainable crop protection, 24 eco-friendly rosin-based sulfonamide derivatives were synthesized and developed. The in vitro activity assessment showed that compound 4X (Co. 4X) exhibited excellent fungicidal activity against V. mali (EC50 = 1.106 μg/mL), marginally surpassing the positive control carbendazim (EC50 = 1.353 μg/mL). In vivo investigations suggested that Co. 4X exhibited moderate efficacy in mitigating V. mali infection in both apple trees and apples. Physiological assessments revealed that Co. 4X induced severe ultrastructural damage to the mycelium, heightened cell membrane permeability, and inhibited SDH protein activity. Subsequent biosafety evaluations affirmed the environment-friendly of Co. 4X on Zebrafish (LC50(96h) = 25.176 μg/mL). Toxicological research revealed that Co. 4X caused damage to the cells of Zebrafish gills, liver, and intestines, resulting in impaired respiratory, detoxification, digestion, and absorption functions of Zebrafish. In summary, the findings of this study contribute to a deeper understanding of the toxicity mechanisms of novel pesticides, decreasing environmental risks caused by traditional chemical pesticides, and improving the effective management of novel pesticide applications.
Collapse
Affiliation(s)
- Renle Xu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Kerang Huang
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Luqi Li
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
2
|
Xu R, Kong Y, Lou Y, Wu J, Gao Y, Shang S, Song Z, Song J, Li J. Design, synthesis and biological activity evaluation of eco-friendly rosin-based fungicides for sustainable crop protection. PEST MANAGEMENT SCIENCE 2024; 80:5898-5908. [PMID: 39032014 DOI: 10.1002/ps.8323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Utilizing fungicides to protect crops from diseases is an effective method, and novel eco-friendly plant-derived fungicides with high efficiency and low toxicity are urgent requirements for sustainable crop protection. RESULT Two series of rosin-based fungicides (totally 35) were designed and synthesized. In vitro fungicidal activity revealed that Compound 6a (Co. 6a) effectively inhibited the growth of Valsa mali [median effective concentration (EC50) = 0.627 μg mL-1], and in vivo fungicidal activity suggested a significant protective efficacy of Co. 6a in protecting both apple branches (35.12% to 75.20%) and apples (75.86% to 90.82%). Quantum chemical calculations (via density functional theory) results indicated that the primary active site of Co. 6a lies in its amide structure. Mycelial morphology and physiology were investigated to elucidate the mode-of-action of Co. 6a, and suggested that Co. 6a produced significant cell membrane damage, accelerated electrolyte leakage, decreased succinate dehydrogenase (SDH) protein activity, and impaired physiological and biochemical functions, culminating in mycelial mortality. Molecular docking analysis revealed a robust binding energy (ΔE = -7.29 kcal mol-1) between Co. 6a and SDH. Subsequently, biosafety evaluations confirmed the environmentally-friendly nature of Co. 6a via the zebrafish model, yet toxicological results indicated that Co. 6a at median lethal concentration [LC50(96)] damaged the gills, liver and intestines of zebrafish. CONCLUSION The above research offers a theoretical foundation for exploiting eco-friendly rosin-based fungicidal candidates in sustainable crop protection. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Renle Xu
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| | - Yue Kong
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| | - Yuhang Lou
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| | - Jiaying Wu
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan, 48502, USA
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
3
|
Yu N, Fu Y, Fan Q, Lin L, Ning Z, Leng D, Hu M, She T. Antitumor properties of griseofulvin and its toxicity. Front Pharmacol 2024; 15:1459539. [PMID: 39314753 PMCID: PMC11417533 DOI: 10.3389/fphar.2024.1459539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Griseofulvin (GF), which is mainly extracted from Penicillium griseofulvum, is a heat-resistant, chlorine-containing non-polyene antifungal antibiotic. Previous research shows that GF has a variety of pharmacological effects, such as anti-inflammatory, antifungal, antiviral, and antitumor effects. In recent years, GF has received extensive attention for its antitumor effects as a natural compound, offering a low price, a wide range of uses, and other beneficial characteristics. However, no comprehensive review of GF pharmacological activity in tumors has been published so far. In order to fully elucidate the antitumor activities of GF, this review focuses on the antitumor potential and toxicity of GF and its derivatives, based on a literature search using PubMed, Web of Science, and other databases, to lay a good foundation for further research of GF and the development of new drugs for antitumor activities.
Collapse
Affiliation(s)
- Nanqiong Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yixiao Fu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qingkui Fan
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhifeng Ning
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Dongze Leng
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Tonghui She
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
4
|
Lin S, Zeng H, Wang C, Chai Z, Zhang X, Yang B, Chi J, Zhang Y, Hu Z. Discovery of novel natural cardiomyocyte protectants from a toxigenic fungus Stachybotrys chartarum. Bioorg Chem 2024; 148:107461. [PMID: 38788363 DOI: 10.1016/j.bioorg.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Stachybatranones A-F (1a/1b and 2-6) and three known analogues, namely methylatranones A and B (7 and 8) and atranone B (9), were isolated and identified from a toxigenic fungus Stachybotrys chartarum. Their structures and absolute configurations were elucidated via the extensive spectroscopic data, comparison of the experimental electronic circular dichroism (ECD) data, and single-crystal X-ray diffraction analyses. Structurally, compounds 2-6 belonged to a rare class of C-alkylated dolabellanes, featuring a unique five-membered hemiketal ring and a γ-butyrolactone moiety both fused to an 11-membered carbocyclic system, while compound 1 (1a/1b) represented the first example of a 5-11-6-fused atranone possessing a 2,3-butanediol moiety. The cardiomyocyte protective activity assay revealed that compounds 1-9 ameliorated cold ischemic injury at 24 h post cold ischemia (CI), with compounds 1 and 4 acting in a dose-dependent manner. Moreover, compound 1 prevented cold ischemia induced dephosphorylation of PI3K and AKT acting in a dose-dependent manner. In this study, a new class of natural products were found to protect cardiomyocytes against cold ischemic injury, providing a potential option for the development of novel cardioprotectants in heart transplant medicine.
Collapse
Affiliation(s)
- Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Hanxiao Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chenyang Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zixue Chai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xueke Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jiangyang Chi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
5
|
Xu R, Han X, Lou Y, Chang M, Kong Y, Gu S, Gao Y, Shang S, Song Z, Song J, Li J. Discovery of Potential Rosin-Based Triazole Antifungal Candidates to Control Valsa mali for Sustainable Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4630-4638. [PMID: 38407939 DOI: 10.1021/acs.jafc.3c07628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
To investigate the potential application value of dehydroabietic acid, 27 novel dehydroabietyl-1,2,4-triazole-5-thioether-based derivatives were designed and characterized by IR, 1H NMR, 13C NMR, and LC-MS. Their antifungal activities were evaluated against five plant fungi, namely, Valsa mali, Colletotrichum orbiculare, Fusarium graminearum, Sclerotinia sclerotiorum, and Gaeumannomyces graminis; the results showed that compound 5h-1 (Co. 5h-1) exhibited a considerable inhibitory effect against V. mali. Moreover, in vivo experiments indicated that Co. 5h-1 had a certain protective effect on apple branches. The preliminary structure-activity relationship analysis suggested that the electron-withdrawing group on the benzyl group was significantly better than that of other substituent derivatives. Through electron microscopy analysis, it was found that Co. 5h-1 hindered the growth of mycelia, damaged their cell structure, and caused the large accumulation of reactive oxygen species (ROS). Preliminary research on the mode of action indicated that Co. 5h-1 could affect the activity of CAT by increasing the α-helix (0.790%), decreasing the β-sheet (0.170%), which led to the accumulation of ROS. In addition, Co. 5h-1 also affected the activity of CYP51, hindered the biosynthesis of ergosterol, and increased cell membrane permeability. Overall, this above research proposed that Co. 5h-1 can be a novel leading structure for development of a fungicide agent.
Collapse
Affiliation(s)
- Renle Xu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xu Han
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Meiyue Chang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yue Kong
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shihao Gu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
6
|
Gim J, Rubio PYM, Mohandoss S, Lee YR. Lewis Acid-Catalyzed Benzannulation of Vinyloxiranes with 3-Formylchromones or 1,4-Quinones for Diversely Functionalized 2-Hydroxybenzophenones, 1,4-Naphthoquinones, and Anthraquinones. J Org Chem 2024; 89:2538-2549. [PMID: 38302117 DOI: 10.1021/acs.joc.3c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A facile and convenient protocol for the regioselective construction of functionalized 2-hydroxybenzophenones is described. This protocol involves the Sc(OTf)3/BF3·OEt2-catalyzed benzannulation of 2-vinyloxirans with 3-formylchromone, which involves cascade in situ diene formation, [4 + 2] cycloaddition, elimination, and ring-opening strategies. Moreover, it provides an expedited synthetic pathway to access biologically intriguing 1,4-naphthoquinones and anthraquinones including vitamin K3 and tectoquinone. The synthesized compounds also hold potential for use as UV filters and show promise as chemosensors for Cu2+ and Mg2+ ions.
Collapse
Affiliation(s)
- Jihwan Gim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Peter Yuosef M Rubio
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
7
|
Xu R, Chen K, Han X, Lou Y, Gu S, Gao Y, Shang S, Song Z, Song J, Li J. Design and Synthesis of Antifungal Candidates Containing Triazole Scaffold from Natural Rosin against Valsa mali for Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37318049 DOI: 10.1021/acs.jafc.3c02002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two series of dehydroabietyl-1,2,4-triazole-4-Schiff-based derivatives were synthesized from rosin to control plant fungal diseases. In vitro evaluation and screening of the antifungal activity were performed using Valsa mali, Colletotrichum orbiculare, Fusarium graminearum, Sclerotinia sclerotiorum, and Gaeumannomyces graminis. Compound 3f showed excellent fungicidal activity against V. mali (EC50 = 0.537 μg/mL), which was significantly more effective than the positive control fluconazole (EC50 = 4.707 μg/mL). Compound 3f also had a considerable protective effect against V. mali (61.57%-92.16%), which was slightly lower than that of fluconazole (85.17-100%) at 25-100 μg/mL. Through physiological and biochemical analyses, the preliminary mode of action of compound 3f against V. mali was explored. Ultrastructural observation of mycelia showed that compound 3f hindered the growth of the mycelium and destroyed the ultrastructure of V. mali seriously. Conductivity analysis and laser scanning confocal microscope staining showed that compound 3f changed cell-membrane permeability and caused accumulation of reactive oxygen species. The enzyme activity results showed that compound 3f significantly inhibited the activity of CYP51 (59.70%), SOD (76.9%), and CAT (67.86%). Molecular docking identified strong interaction energy between compound 3f and crystal structures of CYP51 (-11.18 kcal/mol), SOD (-9.25 kcal/mol), and CAT (-8.79 kcal/mol). These results provide guidance for the discovery of natural product-based antifungal pesticide candidates.
Collapse
Affiliation(s)
- Renle Xu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Kun Chen
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xu Han
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shihao Gu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jian Li
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
8
|
In Silico Exploration of Microtubule Agent Griseofulvin and Its Derivatives Interactions with Different Human β-Tubulin Isotypes. Molecules 2023; 28:molecules28052384. [PMID: 36903629 PMCID: PMC10005519 DOI: 10.3390/molecules28052384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Tubulin isotypes are known to regulate microtubule stability and dynamics, as well as to play a role in the development of resistance to microtubule-targeted cancer drugs. Griseofulvin is known to disrupt cell microtubule dynamics and cause cell death in cancer cells through binding to tubulin protein at the taxol site. However, the detailed binding mode involved molecular interactions, and binding affinities with different human β-tubulin isotypes are not well understood. Here, the binding affinities of human β-tubulin isotypes with griseofulvin and its derivatives were investigated using molecular docking, molecular dynamics simulation, and binding energy calculations. Multiple sequence analysis shows that the amino acid sequences are different in the griseofulvin binding pocket of βI isotypes. However, no differences were observed at the griseofulvin binding pocket of other β-tubulin isotypes. Our molecular docking results show the favorable interaction and significant affinity of griseofulvin and its derivatives toward human β-tubulin isotypes. Further, molecular dynamics simulation results show the structural stability of most β-tubulin isotypes upon binding to the G1 derivative. Taxol is an effective drug in breast cancer, but resistance to it is known. Modern anticancer treatments use a combination of multiple drugs to alleviate the problem of cancer cells resistance to chemotherapy. Our study provides a significant understanding of the involved molecular interactions of griseofulvin and its derivatives with β-tubulin isotypes, which may help to design potent griseofulvin analogues for specific tubulin isotypes in multidrug-resistance cancer cells in future.
Collapse
|
9
|
Wang JP, Shu Y, Zhang SQ, Yao LL, Li BX, Zhu L, Zhang X, Xiao H, Cai L, Ding ZT. Polyketides with antimicrobial activities from Penicillium canescens DJJ-1. PHYTOCHEMISTRY 2023; 206:113554. [PMID: 36496005 DOI: 10.1016/j.phytochem.2022.113554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Two undescribed polyketides canecines A-B, one unreported cyclopentenone canecine C, together with 12 known compounds were isolated from an extract of the fungus Penicillium canescens DJJ-1. Their structures were elucidated by detailed analysis of spectroscopic data, NMR calculations with dJ-DP4 or DP4+, and their absolute configurations were further determined by quantum chemical calculations of ECD spectra or X-crystallography. Canecine A was a grisan polyketide featuring a dimethyltetrahydro-4H-furo[2,3-b]pyran. Canecine A exhibited significant inhibitory activity against Candida albicans with an MIC value of 1 μg/mL and showed inhibitory effect on nitric oxide production in LPS-activated RAW264.7 macrophages. These results enrich the structural diversities of polyketides from endophytic fungi.
Collapse
Affiliation(s)
- Jia-Peng Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Yan Shu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Sheng-Qi Zhang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Lin-Lin Yao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Bing-Xian Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Li Zhu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Xiao Zhang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China.
| |
Collapse
|
10
|
Aris P, Wei Y, Mohamadzadeh M, Xia X. Griseofulvin: An Updated Overview of Old and Current Knowledge. Molecules 2022; 27:7034. [PMID: 36296627 PMCID: PMC9610072 DOI: 10.3390/molecules27207034] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Griseofulvin is an antifungal polyketide metabolite produced mainly by ascomycetes. Since it was commercially introduced in 1959, griseofulvin has been used in treating dermatophyte infections. This fungistatic has gained increasing interest for multifunctional applications in the last decades due to its potential to disrupt mitosis and cell division in human cancer cells and arrest hepatitis C virus replication. In addition to these inhibitory effects, we and others found griseofulvin may enhance ACE2 function, contribute to vascular vasodilation, and improve capillary blood flow. Furthermore, molecular docking analysis revealed that griseofulvin and its derivatives have good binding potential with SARS-CoV-2 main protease, RNA-dependent RNA polymerase (RdRp), and spike protein receptor-binding domain (RBD), suggesting its inhibitory effects on SARS-CoV-2 entry and viral replication. These findings imply the repurposing potentials of the FDA-approved drug griseofulvin in designing and developing novel therapeutic interventions. In this review, we have summarized the available information from its discovery to recent progress in this growing field. Additionally, explored is the possible mechanism leading to rare hepatitis induced by griseofulvin. We found that griseofulvin and its metabolites, including 6-desmethylgriseofulvin (6-DMG) and 4- desmethylgriseofulvin (4-DMG), have favorable interactions with cytokeratin intermediate filament proteins (K8 and K18), ranging from -3.34 to -5.61 kcal mol-1. Therefore, they could be responsible for liver injury and Mallory body (MB) formation in hepatocytes of human, mouse, and rat treated with griseofulvin. Moreover, the stronger binding of griseofulvin to K18 in rodents than in human may explain the observed difference in the severity of hepatitis between rodents and human.
Collapse
Affiliation(s)
- Parisa Aris
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, ON K1N 6N5, Canada
| | - Yulong Wei
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Masoud Mohamadzadeh
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 71961, Iran
| | - Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, ON K1N 6N5, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
11
|
Zhu GY, Shi XC, Wang SY, Wang B, Laborda P. Antifungal Mechanism and Efficacy of Kojic Acid for the Control of Sclerotinia sclerotiorum in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:845698. [PMID: 35360341 PMCID: PMC8963468 DOI: 10.3389/fpls.2022.845698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Sclerotinia stem rot, which is caused by the fungal pathogen Sclerotinia sclerotiorum, is a soybean disease that results in enormous economic losses worldwide. The control of S. sclerotiorum is a difficult task due to the pathogen's wide host range and its persistent structures, called sclerotia. In addition, there is lack of soybean cultivars with medium to high levels of resistance to S. sclerotiorum. In this work, kojic acid (KA), a natural bioactive compound commonly used in cosmetic industry, was evaluated for the management of Sclerotinia stem rot. Interestingly, KA showed strong antifungal activity against S. sclerotiorum by inhibiting chitin and melanin syntheses and, subsequently, sclerotia formation. The antifungal activity of KA was not obviously affected by pH, but was reduced in the presence of metal ions. Treatment with KA reduced the content of virulence factor oxalic acid in S. sclerotiorum secretions. Preventive applications of 50 mM KA (7.1 mg/ml) completely inhibited S. sclerotiorum symptoms in soybean; whereas, in curative applications, the combination of KA with prochloraz and carbendazim improved the efficacy of these commercial fungicides. Taken together, the antifungal activity of KA against S. sclerotiorum was studied for the first time, revealing new insights on the potential application of KA for the control of Sclerotinia stem rot in soybean.
Collapse
Affiliation(s)
- Gui-Yang Zhu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Bo Wang
- Xuzhou Institute of Agricultural Sciences in Xuhuai District, Sweet Potato Research Institute, Xuzhou, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
12
|
Gómez-Lama Cabanás C, Wentzien NM, Zorrilla-Fontanesi Y, Valverde-Corredor A, Fernández-González AJ, Fernández-López M, Mercado-Blanco J. Impacts of the Biocontrol Strain Pseudomonas simiae PICF7 on the Banana Holobiont: Alteration of Root Microbial Co-occurrence Networks and Effect on Host Defense Responses. Front Microbiol 2022; 13:809126. [PMID: 35242117 PMCID: PMC8885582 DOI: 10.3389/fmicb.2022.809126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
The impact of the versatile biocontrol and plant-growth-promoting rhizobacteria Pseudomonas simiae PICF7 on the banana holobiont under controlled conditions was investigated. We examine the fate of this biological control agent (BCA) upon introduction in the soil, the effect on the banana root microbiota, and the influence on specific host genetic defense responses. While the presence of strain PICF7 significantly altered neither the composition nor the structure of the root microbiota, a significant shift in microbial community interactions through co-occurrence network analysis was observed. Despite the fact that PICF7 did not constitute a keystone, the topology of this network was significantly modified-the BCA being identified as a constituent of one of the main network modules in bacterized plants. Gene expression analysis showed the early suppression of several systemic acquired resistance and induced systemic resistance (ISR) markers. This outcome occurred at the time in which the highest relative abundance of PICF7 was detected. The absence of major and permanent changes on the banana holobiont upon PICF7 introduction poses advantages regarding the use of this beneficial rhizobacteria under field conditions. Indeed a BCA able to control the target pathogen while altering as little as possible the natural host-associated microbiome should be a requisite when developing effective bio-inoculants.
Collapse
Affiliation(s)
- Carmen Gómez-Lama Cabanás
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - Nuria M. Wentzien
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | - Antonio Valverde-Corredor
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - Antonio J. Fernández-González
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Manuel Fernández-López
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
13
|
Aris P, Yan L, Wei Y, Chang Y, Shi B, Xia X. Conservation of griseofulvin genes in the gsf gene cluster among fungal genomes. G3 (BETHESDA, MD.) 2022; 12:jkab399. [PMID: 34792561 PMCID: PMC9210304 DOI: 10.1093/g3journal/jkab399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022]
Abstract
The polyketide griseofulvin is a natural antifungal compound and research in griseofulvin has been key in establishing our current understanding of polyketide biosynthesis. Nevertheless, the griseofulvin gsf biosynthetic gene cluster (BGC) remains poorly understood in most fungal species, including Penicillium griseofulvum where griseofulvin was first isolated. To elucidate essential genes involved in griseofulvin biosynthesis, we performed third-generation sequencing to obtain the genome of P. griseofulvum strain D-756. Furthermore, we gathered publicly available genome of 11 other fungal species in which gsf gene cluster was identified. In a comparative genome analysis, we annotated and compared the gsf BGC of all 12 fungal genomes. Our findings show no gene rearrangements at the gsf BGC. Furthermore, seven gsf genes are conserved by most genomes surveyed whereas the remaining six were poorly conserved. This study provides new insights into differences between gsf BGC and suggests that seven gsf genes are essential in griseofulvin production.
Collapse
Affiliation(s)
- Parisa Aris
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Lihong Yan
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yulong Wei
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Ying Chang
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Bihong Shi
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
14
|
Valente S, Cometto A, Piombo E, Meloni GR, Ballester AR, González-Candelas L, Spadaro D. Elaborated regulation of griseofulvin biosynthesis in Penicillium griseofulvum and its role on conidiation and virulence. Int J Food Microbiol 2020; 328:108687. [PMID: 32474227 DOI: 10.1016/j.ijfoodmicro.2020.108687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/14/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Penicilium griseofulvum, the causal agent of apple blue mold, is able to produce in vitro and on apple a broad spectrum of secondary metabolites (SM), including patulin, roquefortine C and griseofulvin. Among them, griseofulvin is known for its antifungal and antiproliferative activity, and has received interest in many sectors, from medicine to agriculture. The biosynthesis of SM is finely regulated by filamentous fungi and can involve global regulators and pathway specific regulators, which are usually encoded by genes present in the same gene cluster as the backbone gene and tailoring enzymes. In the griseofulvin gene cluster, two putative transcription factors were previously identified, encoded by genes gsfR1 and gsfR2, and their role has been investigated in the present work. Analysis of P. griseofulvum knockout mutants lacking either gene suggest that gsfR2 forms part of a different pathway and gsfR1 exhibits many spectra of action, acting as regulator of griseofulvin and patulin biosynthesis and influencing conidia production and virulence on apple. The analysis of gsfR1 promoter revealed that the regulation of griseofulvin biosynthesis is also controlled by global regulators in response to many environmental stimuli, such as carbon and nitrogen. The influence of carbon and nitrogen on griseofulvin production was further investigated and verified, revealing a complex network of response and confirming the central role of gsfR1 in many processes in P. griseofulvum.
Collapse
Affiliation(s)
- Silvia Valente
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Agnese Cometto
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Edoardo Piombo
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Giovanna Roberta Meloni
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Ana-Rosa Ballester
- IATA-CSIC - Instituto de Agroquímica y Tecnología de Alimentos, Calle Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Luis González-Candelas
- IATA-CSIC - Instituto de Agroquímica y Tecnología de Alimentos, Calle Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Davide Spadaro
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| |
Collapse
|
15
|
Li Y, Guo Q, Wei X, Xue Q, Lai H. Biocontrol effects of Penicillium griseofulvum against monkshood (Aconitum carmichaelii Debx.) root diseases caused by Sclerotium rolfsiii and Fusarium spp. J Appl Microbiol 2019; 127:1532-1545. [PMID: 31304623 DOI: 10.1111/jam.14382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022]
Abstract
AIMS The aims of this study were to investigate the biocontrol effects of Penicillium griseofulvum strain CF3 and its mechanisms against soil-borne root pathogens (Fusarium oxysporum and Sclerotium rolfsii) of the medical plant Aconitum carmichaelii Debx. METHODS AND RESULTS The effects of P. griseofulvum strain CF3 were evaluated with regard to the hyphal growth of S. rolfsii and F. oxysporum, the sclerotial formation and germination of S. rolfsii and its expression of sclerotia-formation-related genes. A field experiment was conducted to explore how strain CF3 controls the severity of soil-borne diseases, promotes the growth of A. carmichaelii plants and mediates shifts in the culturable rhizosphere microbial populations. The results showed that treatment with a cell-free culture filtrate of strain CF3 considerably inhibited the hyphal growth of both S. rolfsii and F. oxysporum, in addition to limiting the sclerotial formation and germination of S. rolfsii. Three genes related to sclerotial formation (ArsclR, ArnsdD1 and ArnsdD2) were predicted in S. rolfsii and their expression was found suppressed by the CF3 treatment. Field application of the CF3 biocontrol agent in a powder form (1·9 × 1010 conidia per gram of substrate) reduced soil-borne disease severity by 15·0%. The shoot and root growth of A. carmichaelii plants was promoted by 61·6 and 83·1% respectively, as the biocontrol strain massively colonized the rhizosphere soil. The CF3 treatment also markedly reduced the density of some known species harmful to plants while increasing the density of some beneficial species in the rhizosphere soil. SIGNIFICANCE AND IMPACT OF THE STUDY Genes related to sclerotia formation of S. rolfsii are predicted for the first time and their expression patterns in the presence of P. griseofulvum strain CF3 are evaluated. This comprehensive study provides a candidate fungal biocontrol strain and reveals its potential mechanisms against S. rolfsii and F. oxysporum in A. carmichaelii plants.
Collapse
Affiliation(s)
- Y Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Q Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - X Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Q Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - H Lai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| |
Collapse
|