1
|
Salvitti C, de Petris G, Troiani A, Managò M, Villani C, Ciogli A, Sorato A, Ricci A, Pepi F. Accelerated d-Fructose Acid-Catalyzed Reactions in Thin Films Formed by Charged Microdroplets Deposition. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:565-572. [PMID: 35112862 DOI: 10.1021/jasms.1c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thin films derived by the deposition of charged microdroplets generated in the ESI source of a mass spectrometer act as highly concentrated reaction vessels in which the final products of an ion-molecule reaction can be isolated by their precipitation onto a solid surface under ambient conditions. In this study, the ESI Z-spray source supplied to a Q-TOF Ultima mass spectrometer was used to investigate the d-fructose acid-catalyzed reactions by microdroplets deposition onto a stainless-steel target surface. High conversion ratios of d-fructose into 5-hydroxymethylfuraldehyde (5-HMF), 5-methoxymethylfuraldehyde (5-MMF), and difructrose anhydrides (DFAs) were obtained with HCl and KHSO4 as metal-free catalysts by using synthetic conditions under which the same products in bulk are not formed. Furthermore, the reaction outcome was found to be highly sensitive to the catalyst and the solvent employed as well as to the ESI source parameters influencing the thin film formation from microdroplets deposition onto the solid surface.
Collapse
Affiliation(s)
- Chiara Salvitti
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giulia de Petris
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Troiani
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marta Managò
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Claudio Villani
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Alessia Ciogli
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Sorato
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andreina Ricci
- Department of Mathematics and Physics, University of Campania L. Vanvitelli, Viale Lincoln 5, 81100 Caserta, Italy
| | - Federico Pepi
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Buttersack C, Hofmann J, Gläser R. Hydrolysis of Sucrose over Sulfonic Acid Resins. ChemCatChem 2021. [DOI: 10.1002/cctc.202100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christoph Buttersack
- Institut für Nichtklassische Chemie e.V. Permoserstr. 15 04318 Leipzig Germany
- Institute of Chemical Technology Universität Leipzig Linnéstr. 3 04103 Leipzig Germany
| | - Jörg Hofmann
- Institut für Nichtklassische Chemie e.V. Permoserstr. 15 04318 Leipzig Germany
| | - Roger Gläser
- Institute of Chemical Technology Universität Leipzig Linnéstr. 3 04103 Leipzig Germany
| |
Collapse
|
3
|
Cheng M, Wu H, Zhang W, Mu W. Difructose anhydride III: a 50-year perspective on its production and physiological functions. Crit Rev Food Sci Nutr 2021; 62:6714-6725. [PMID: 33775189 DOI: 10.1080/10408398.2021.1904823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Production and applications of difructose anhydride III (DFA-III) have attracted considerable attention because of its versatile physiological functions. Recently, large-scale production of DFA-III has been continuously explored, which opens a horizon for applications in the food and pharmaceutical industries. This review updates recent advances involving DFA-III, including: biosynthetic strategies, purification, and large-scale production of DFA-III; physiological functions of DFA-III and related mechanisms; DFA-III safety evaluations; present applications in food systems, existing problems, and further research prospects. Currently, enzymatic synthesis of DFA-III has been conducted both industrially and in academic research. Two biosynthetic strategies for DFA-III production are summarized: single- and double enzyme-mediated. DFA-III purification is achieved via yeast fermentation. Enzyme membrane bioreactors have been applied to meet the large-scale production demands for DFA-III. In addition, the primary physiological functions of DFA-III and their underlying mechanisms have been proposed. However, current applications of DFA-III are limited. Further research regarding DFA-III should focus on commercial production and purification, comprehensive study of physiological properties, extensive investigation of large-scale human experiments, and expansion of industrial applications. It is worthy to dig deep into potential application and commercial value of DFA-III.
Collapse
Affiliation(s)
- Mei Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Fu X, Hu Y, Zhang Y, Zhang Y, Tang D, Zhu L, Hu C. Solvent Effects on Degradative Condensation Side Reactions of Fructose in Its Initial Conversion to 5-Hydroxymethylfurfural. CHEMSUSCHEM 2020; 13:501-512. [PMID: 31557412 DOI: 10.1002/cssc.201902309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The degradative condensation of hexose, which originates from the C-C cleavage of hexose and condensation of degraded hexose fragment, is one of the possible reaction pathways for the formation of humins in hexose dehydration to 5-hydroxymethylfurfural (HMF). Herein, the impacts of several polar aprotic solvents on the degradative condensation of fructose to small-molecule carboxylic acids and oligomers (possible precursors of humins) are reported. In particular, a close relationship between the tautomeric distribution of fructose in solvents and the mechanism of degradative condensation is demonstrated. Typically, α-fructofuranose in 1,4-dioxane and acyclic open-chain fructose in THF favor the conversion of fructose to formic acid and oligomers; α-fructopyranose in γ-valerolactone or N-methylpyrrolidone favors levulinic acid and oligomers, whereas β-fructopyranose in 4-methyl-2-pentanone favors acetic acid and corresponding oligomers. This close correlation highlights a general understanding of the solvent-controlled formation of oligomers, which represents an important step toward the rational design of effective solvent systems for HMF production.
Collapse
Affiliation(s)
- Xing Fu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| | - Yexin Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| | - Yanru Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| | - Yucheng Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| | - Dianyong Tang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, 402160, P.R. China
| | - Liangfang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| |
Collapse
|
5
|
Neva T, Ortiz Mellet C, Fernández JMG, Benito JM. Multiply–linked cyclodextrin–aromatic hybrids: Caps, hinges and clips. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1609020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Tania Neva
- Instituto de Investigaciones Químicas (IIQ), CSIC–University of Seville, Seville, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | | | - Juan M. Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC–University of Seville, Seville, Spain
| |
Collapse
|