1
|
Li Y, Fan Z, Zhang S, Jiang J, Yang F, Ren M, Li Q, Li H, Yang Y, Hua L. Rapid measurement of ethyl carbamate in Chinese liquor by fast gas chromatography photoionization-induced chemical ionization mass spectrometry. Talanta 2025; 282:126965. [PMID: 39341055 DOI: 10.1016/j.talanta.2024.126965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
As a common by-product during the production of alcoholic beverages, such as Chinese liquor, ethyl carbamate (EC) poses potential genotoxicity and is associated with the risk of various cancers. Hence, rapidly and accurately measuring the content of EC in liquor is critical to assess the product quality and risks of mass samples during the production process. In this study, a feasible method based on fast gas chromatography photoionization-induced chemical ionization mass spectrometry (FastGC-PICI-TOFMS) was developed for the analysis of EC in Chinese liquor. The rapid separation of EC in Chinese liquor was conducted using FastGC based on a thermostatic column set at 150 °C to eliminate the interferences of matrix effects. The PICI-TOFMS could realize accurate quantification of EC without any sample pre-treatment due to the efficient ionization of EC by the PICI source. As a result, the total analysis time for EC in Chinese liquor was less than 4 min. The limit of detection (LOD) for EC was 4.4 μg L-1. And the intra-day and inter-day precision were 3.2%-3.7 % and 1.6 %, respectively. Finally, the ability of the proposed method was preliminarily proved by high-throughput and accurate measurement of EC in four different flavors of Chinese liquors.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Zhigang Fan
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Siyu Zhang
- Kweichow Moutai Co., Ltd., Renhuai, 564500, PR China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, 564500, PR China
| | - Jichun Jiang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Fan Yang
- Kweichow Moutai Co., Ltd., Renhuai, 564500, PR China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, 564500, PR China
| | - Meihui Ren
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Qingyun Li
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Haiyang Li
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Yubo Yang
- Kweichow Moutai Co., Ltd., Renhuai, 564500, PR China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, 564500, PR China.
| | - Lei Hua
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China.
| |
Collapse
|
2
|
Li M, Jia W. Formation and hazard of ethyl carbamate and construction of genetically engineered Saccharomyces cerevisiae strains in Huangjiu (Chinese grain wine). Compr Rev Food Sci Food Saf 2024; 23:e13321. [PMID: 38517033 DOI: 10.1111/1541-4337.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Huangjiu, a well-known conventional fermented Chinese grain wine, is widely consumed in Asia for its distinct flavor. Trace amounts of ethyl carbamate (EC) may be generated during the fermentation or storage process. The International Agency for Research on Cancer elevated EC to a Class 2A carcinogen, so it is necessary to regulate EC content in Huangjiu. The risk of intake of dietary EC is mainly assessed through the margin of exposure (MOE) recommended by the European Food Safety Authority, with a smaller MOE indicating a higher risk. Interventions are necessary to reduce EC formation. As urea, one of the main precursors of EC formation in Huangjiu, is primarily produced by Saccharomyces cerevisiae through the catabolism of arginine, the construction of dominant engineered fermentation strains is a favorable trend for the future production and application of Huangjiu. This review summarized the formation and carcinogenic mechanism of EC from the perspectives of precursor substances, metabolic pathways after ingestion, and risk assessment. The methods of constructing dominant S. cerevisiae strains in Huangjiu by genetic engineering technology were reviewed, which provided an important theoretical basis for reducing EC content and strengthening practical control of Huangjiu safety, and the future research direction was prospected.
Collapse
Affiliation(s)
- Mi Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Wei Jia
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
3
|
Liao H, Asif H, Huang X, Luo Y, Xia X. Mitigation of microbial nitrogen-derived metabolic hazards as a driver for safer alcoholic beverage choices: An evidence-based review and future perspectives. Compr Rev Food Sci Food Saf 2023; 22:5020-5062. [PMID: 37823801 DOI: 10.1111/1541-4337.13253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Alcoholic beverages have been enjoyed worldwide as hedonistic commodities for thousands of years. The unique quality and flavor are attributed to the rich microbiota and nutritional materials involved in fermentation. However, the metabolism of these microbiota can also introduce toxic compounds into foods. Nitrogen-derived metabolic hazards (NMH) are toxic metabolic hazards produced by microorganisms metabolizing nitrogen sources that can contaminate alcoholic beverages during fermentation and processing. NMH contamination poses a risk to dietary safety and human health without effective preventive strategies. Existing literature has primarily focused on investigating the causes of NMH formation, detection methods, and abatement techniques for NMH in fermentation end-products. Devising effective process regulation strategies represents a major challenge for the alcoholic beverage industry considering our current lack of understanding regarding the processes whereby NMH are generated, real-time and online detection, and the high degradation rate after NMH formation. This review summarizes the types and mechanisms of nitrogenous hazard contamination, the potential risk points, and the analytical techniques to detect NMH contamination. We discussed the changing patterns of NMH contamination and effective strategies to prevent contamination at different stages in the production of alcoholic beverages. Moreover, we also discussed the advanced technologies and methods to control NMH contamination in alcoholic beverages based on intelligent monitoring, synthetic ecology, and computational assistance. Overall, this review highlights the risks of NMH contamination during alcoholic beverage production and proposes promising strategies that could be adopted to eliminate the risk of NMH contamination.
Collapse
Affiliation(s)
- Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Hussain Asif
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Yi Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
4
|
Shalamitskiy MY, Tanashchuk TN, Cherviak SN, Vasyagin EA, Ravin NV, Mardanov AV. Ethyl Carbamate in Fermented Food Products: Sources of Appearance, Hazards and Methods for Reducing Its Content. Foods 2023; 12:3816. [PMID: 37893709 PMCID: PMC10606259 DOI: 10.3390/foods12203816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Ethyl carbamate, the ethyl ester of carbamic acid, has been identified in fermented foods and alcoholic beverages. Since ethyl carbamate is a probable human carcinogen, reduction of its content is important for food safety and human health. In alcoholic beverages, ethyl carbamate is mostly formed from the reaction of ethanol with urea, citrulline and carbamyl phosphate during fermentation and storage. These precursors are generated from arginine metabolism by wine yeasts and lactic acid bacteria. This review summarizes the mechanisms of ethyl carbamate formation, its impact on human health and methods used in winemaking to minimize its content. These approaches include genetic modification of Saccharomyces cerevisiae wine strains targeting pathways of arginine transport and metabolism, the use of lactic acid bacteria to consume arginine, direct degradation of ethyl carbamate by enzymes and microorganisms, and different technological methods of grape cultivation, alcoholic fermentation, wine aging, temperature and duration of storage and transportation.
Collapse
Affiliation(s)
- Maksim Yu. Shalamitskiy
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, 298600 Yalta, Russia; (M.Y.S.); (T.N.T.); (S.N.C.)
| | - Tatiana N. Tanashchuk
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, 298600 Yalta, Russia; (M.Y.S.); (T.N.T.); (S.N.C.)
| | - Sofia N. Cherviak
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, 298600 Yalta, Russia; (M.Y.S.); (T.N.T.); (S.N.C.)
| | - Egor A. Vasyagin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.A.V.); (N.V.R.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.A.V.); (N.V.R.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.A.V.); (N.V.R.)
| |
Collapse
|
5
|
Fan J, Qu G, Wang D, Chen J, Du G, Fang F. Synergistic Fermentation with Functional Microorganisms Improves Safety and Quality of Traditional Chinese Fermented Foods. Foods 2023; 12:2892. [PMID: 37569161 PMCID: PMC10418588 DOI: 10.3390/foods12152892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Traditional fermented foods are favored by people around the world for their positive health and taste advantages. Many of the fermented foods, including Chinese traditional fermented foods, are produced through mixed-culture fermentation. Apart from reducing the formation of harmful compounds such as ethyl carbamate (EC) and biogenic amines (BAs) during food fermentation, it is also difficult to precisely control and regulate the fermentation process based on the control of environmental conditions alone, due to the complex microbiota and an unclarified fermentation mechanism. In this review, key microorganisms involved in Chinese fermented foods such as baijiu, soy sauce, and vinegar production are elaborated, and relations between microbial composition and the aroma or quality of food are discussed. This review focuses on the interpretation of functions and roles of beneficial (functional) microorganisms that participate in food fermentation and the discussion of the possibilities of the synergistic use of functional microorganisms to improve the safety and quality of Chinese fermented foods. Conducting work toward the isolation of beneficial microorganisms is a challenge for modern food fermentation technology. Thus, methods for the isolation and mutagenesis of functional microbial strains for synergistic food fermentation are summarized. Finally, the limitations and future prospects of the use of functional microorganisms in traditional Chinese fermented foods are reviewed. This review provides an overview of the applications of synergistic fermentation with functional microorganisms in the improvement of the safety or sensory qualities of fermented foods.
Collapse
Affiliation(s)
- Jingya Fan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guanyi Qu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Datao Wang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fang Fang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Deng H, Ji L, Han X, Wu T, Han B, Li C, Zhan J, Huang W, You Y. Research progress on the application of different controlling strategies to minimizing ethyl carbamate in grape wine. Compr Rev Food Sci Food Saf 2023; 22:1495-1516. [PMID: 36856535 DOI: 10.1111/1541-4337.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023]
Abstract
Ethyl carbamate (EC) is a probable carcinogenic compound commonly found in fermented foods and alcoholic beverages and has been classified as a category 2A carcinogen by the International Agency for Research on Cancer (IARC). Alcoholic beverages are one of the main sources of EC intake by humans. Therefore, many countries have introduced a standard EC limit in alcoholic beverages. Wine is the second largest alcoholic beverage in the world after beer and is loved by consumers for its rich taste. However, different survey results showed that the detection rate of EC in wine was almost 100%, while the maximum content was as high as 100 μg/L, necessitating EC content regulation in wine. The existing methods for controlling the EC level in wine mainly include optimizing raw fermentation materials and processes, using genetically engineered strains, and enzymatic methods (urease or urethanase). This review focused on introducing and comparing the advantages, disadvantages, and applicability of methods for controlling EC, and proposes two possible new techniques, that is, changing the fermentation strain and exogenously adding phenolic compounds. In the future, it is hoped that the feasibility of this prospect will be verified by pilot-scale or large-scale application to provide new insight into the regulation of EC during wine production. The formation mechanism and influencing factors of EC in wine were also introduced and the analytical methods of EC were summarized.
Collapse
Affiliation(s)
- Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Tianyang Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Bing Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Chenyu Li
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China.,School of Advanced Agricultural Sciences, Peking University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Cao Y, Yang F, Xie Y, Liu S, Hua L, Zhang S, Chen P, Wen Y, Li H, Wang L. Rapid Determination of Ethyl Carbamate in Chinese Liquor via a Direct Injection Mass Spectrometry with Time-Resolved Flash-Thermal-Vaporization and Acetone-Assisted High-Pressure Photoionization Strategy. Anal Chem 2023; 95:4235-4242. [PMID: 36795494 DOI: 10.1021/acs.analchem.2c05752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Ethyl carbamate (EC), a carcinogenic compound, is naturally produced in fermented foods and alcoholic beverages. Rapid and accurate measurement of EC is necessary and important for quality control and safety evaluation of Chinese liquor, a traditionally distilled spirit with the highest consumption in China, but it remains a great challenge. In this work, a direct injection mass spectrometry (DIMS) with time-resolved flash-thermal-vaporization (TRFTV) and acetone-assisted high-pressure photoionization (HPPI) strategy has been developed. EC was rapidly separated from the main matrix components, ethyl acetate (EA) and ethanol, by the TRFTV sampling strategy due to the retention time difference of these three compounds with large boiling point differences on the inner wall of a poly(tetrafluoroethylene) (PTFE) tube. Therefore, the matrix effect of EA and ethanol was effectively eliminated. The acetone-assisted HPPI source was developed for efficient ionization of EC through a photoionization-induced proton transfer reaction between EC molecules and protonated acetone ions. The accurate quantitative analysis of EC in liquor was achieved by introducing an internal standard method (ISM) using deuterated EC (d5-EC). As a result, the limit of detection (LOD) for EC was 8.88 μg/L with the analysis time of only 2 min, and the recoveries ranged from 92.3 to 113.1%. Finally, the prominent capability of the developed system was demonstrated by rapid determination of trace EC in Chinese liquors with different flavor types, exhibiting wide potential applications in online quality control and safety evaluation of not only Chinese liquors but also other liquor and alcoholic beverages.
Collapse
Affiliation(s)
- Yixue Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, China
| | - Fan Yang
- Kweichow Moutai Co., Ltd., Renhuai 564500, China.,Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai 564500, China
| | - Yuanyuan Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, China
| | - Song Liu
- Kweichow Moutai Co., Ltd., Renhuai 564500, China.,Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai 564500, China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, China
| | - Siyu Zhang
- Kweichow Moutai Co., Ltd., Renhuai 564500, China.,Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai 564500, China
| | - Ping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, China
| | - Yuxuan Wen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, China
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, China
| | - Li Wang
- Kweichow Moutai Co., Ltd., Renhuai 564500, China.,Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai 564500, China
| |
Collapse
|
8
|
Biocontrol of Geosmin Production by Inoculation of Native Microbiota during the Daqu-Making Process. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Geosmin produced by Streptomyces can cause an earthy off-flavor at trace levels, seriously deteriorating the quality of Chinese liquor. Geosmin was detected during the Daqu (Chinese liquor fermentation starter)-making process, which is a multi-species fermentation process in an open system. Here, biocontrol, using the native microbiota present in Daqu making, was used to control the geosmin contamination. Six native strains were obtained according to their inhibitory effects on Streptomyces and then were inoculated into the Daqu fermentation. After inoculation, the content of geosmin decreased by 34.40% (from 7.18 ± 0.13 μg/kg to 4.71 ± 0.30 μg/kg) in the early stage and by 55.20% (from 8.86 ± 1.54 μg/kg to 3.97 ± 0.78 μg/kg) in the late stage. High-throughput sequencing combined with an interaction network revealed that the fungal community played an important role in the early stage and the correlation between Pichia and Streptomyces changed from the original indirect promotion to direct inhibition after inoculation. This study provides an effective strategy for controlling geosmin contamination in Daqu via precisely regulating microbial communities, as well as highlights the potential of biocontrol for controlling off-flavor chemicals at trace levels in complex fermentation systems.
Collapse
|
9
|
Gao L, Zhou J, He G. Effect of microbial interaction on flavor quality in Chinese baijiu fermentation. Front Nutr 2022; 9:960712. [PMID: 35990321 PMCID: PMC9381987 DOI: 10.3389/fnut.2022.960712] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Chinese baijiu brewing is an open, complex, and synergetic functional microbiota fermentation process. Microbial interaction is pivotal for the regulation of microbial structure and function in the brewing microecosystem, consequently affecting the flavor and quality of baijiu. This article mainly summarizes the effect of microbial interactions among functional microbiota on the growth performance, flavor formation, and safe quality of baijiu fermentation process. In addition, the review specifically emphasizes on the microbial interactions for the regulation of “Ethyl Caproate-Increasing and Ethyl Lactate-Decreasing” in Chinese strong-flavor baijiu. Furthermore, the construction of synthetic microbiota by metabolic characteristics of the functional microbes and their interactions for regulating and controlling flavor quality of Chinese baijiu is also reviewed and prospected.
Collapse
Affiliation(s)
- Lei Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jian Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, China
| | - Guiqiang He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
10
|
|
11
|
Wang L. Research trends in Jiang-flavor baijiu fermentation: From fermentation microecology to environmental ecology. J Food Sci 2022; 87:1362-1374. [PMID: 35275413 DOI: 10.1111/1750-3841.16092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/15/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
Abstract
Chinese baijiu is one of the six major distilled spirits worldwide and is widely enjoyed because of its unique flavor. Among typical baijiu, Jiang-flavor baijiu is gaining popularity. However, the fermentation mechanisms of baijiu remain unclear due to its open inoculation environment and complex brewing process. In recent years, advances in high-throughput sequencing and multi-omics technologies have yielded meaningful information regarding fermentation microbiome. Therefore, this paper reviews recent developments in the investigation of the diversity, stability, and metabolism of the Jiang-flavor baijiu microbial community. Furthermore, the importance of protecting the ecology of the production environment is proposed based on the putative contribution of environmental factors to the fermentation microbiome and baijiu characteristics. Finally, this paper discusses current research challenges that need to be addressed, including the limitations of sequencing technologies and difficulties unveiling the mechanisms of microbial interaction between the fermentation microbiome and the environmental ecology. The findings of this review will promote further understanding of the Jiang-flavor baijiu fermentation process and provide valuable information for the research and development of traditional baijiu and other naturally fermented foods. PRACTICAL APPLICATION: Baijiu, a transparent strong alcoholic drink, is the world's largest consumed and the most valuable spirit in the market. However, the fermentation mechanisms of baijiu remain unclear due to its open inoculation environment and complex brewing process. Therefore, if we can summarizes the current advances and research challenges of microbial fermentation in baijiu, it will deepen the reader's understanding of the complex fermentation process and fermentation mechanism in baijiu. Furthermore, based on the putative contribution of environmental factors to the fermentation process, the importance of protecting the ecology of the production environment is proposed in future research trends, which will provide valuable information for the research and development of other traditional naturally fermented foods. This will not only achieve breakthroughs in academic value, but also bring higher practical value to fermented foods.
Collapse
Affiliation(s)
- Li Wang
- Kweichow Moutai Distillery Co., Ltd., Zunyi City, China
| |
Collapse
|
12
|
Tian S, Zeng W, Zhou J, Du G. Correlation between the microbial community and ethyl carbamate generated during Huzhou rice wine fermentation. Food Res Int 2022; 154:111001. [DOI: 10.1016/j.foodres.2022.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/04/2022]
|
13
|
Guan T, Tian X, Wu J, Luo J, Peng Z, Yang H, Zhao X, Zhang J. Investigation and risk assessment of ethyl carbamate in Chinese Baijiu. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Abt E, Incorvati V, Robin LP, Redan BW. Occurrence of Ethyl Carbamate in Foods and Beverages: Review of the Formation Mechanisms, Advances in Analytical Methods, and Mitigation Strategies. J Food Prot 2021; 84:2195-2212. [PMID: 34347857 PMCID: PMC9092314 DOI: 10.4315/jfp-21-219] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/02/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Ethyl carbamate (EC) is a process contaminant that can be formed as a by-product during fermentation and processing of foods and beverages. Elevated EC concentrations are primarily associated with distilled spirits, but this compound has also been found at lower concentrations in foods and beverages, including breads, soy sauce, and wine. Evidence from animal studies suggests that EC is a probable human carcinogen. Consequently, several governmental institutions have established allowable limits for EC in the food supply. This review includes EC formation mechanisms, occurrence of EC in the food supply, and EC dietary exposure assessments. Current analytical methods used to detect EC will be covered, in addition to emerging technologies, such as nanosensors and surface-enhanced Raman spectroscopy. Various mitigation methods have been used to maintain EC concentrations below allowable limits, including distillation, enzymatic treatments, and genetic engineering of yeast. More research in this field is needed to refine mitigation strategies and develop methods to rapidly detect EC in the food supply. HIGHLIGHTS
Collapse
|
15
|
Xu X, Li T, Ji Y, Jiang X, Shi X, Wang B. Origin, Succession, and Control of Biotoxin in Wine. Front Microbiol 2021; 12:703391. [PMID: 34367103 PMCID: PMC8339702 DOI: 10.3389/fmicb.2021.703391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Wine is a worldwide alcoholic beverage with antioxidant active substances and complex flavors. Moderate drinking of wine has been proven to be beneficial to health. However, wine has some negative components, such as residual pesticides, heavy metals, and biotoxins. Of these, biotoxins from microorganisms were characterized as the most important toxins in wine. Wine fermentation mainly involves alcoholic fermentation, malolactic fermentation, and aging, which endue wine with complex flavors and even produce some undesirable metabolites. These metabolites cause potential safety risks that are not thoroughly understood. This review aimed to investigate the origin, evolution, and control technology of undesirable metabolites (e.g., ochratoxin A, ethyl carbamate, and biogenic amines) in wine. It also highlighted current wine industry practices of minimizing the number of biotoxins in wine.
Collapse
Affiliation(s)
| | | | | | | | - Xuewei Shi
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Bin Wang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
16
|
Ethyl carbamate in Chinese liquor (Baijiu): presence, analysis, formation, and control. Appl Microbiol Biotechnol 2021; 105:4383-4395. [PMID: 34021810 DOI: 10.1007/s00253-021-11348-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
Ethyl carbamate (EC) is a genotoxic and carcinogenic compound that is also a by-product of fermented foods (bread, sour milk, soy cheese, etc.) and alcoholic beverages (wine, sake, distilled liquor, etc.). Studies have showed that ethyl carbamate is ingested by humans primarily through the consumption of alcoholic beverages. Many countries have thus established EC limits for alcoholic beverages. Chinese liquor (Baijiu) is a traditional and unique distilled liquor, which has a huge consumption in China due to its excellent color, flavor, and taste. Therefore, the control of EC in Chinese liquor is of great significance. This review summarized for the first time the progress in presence level, analysis method, formation mechanism, and elimination strategy of EC of Chinese liquor in recent decades. KEY POINTS: • GC-MS and HPLC are the main methods to quantify EC in Chinese liquor. • EC is formed in the fermentation, distillation, and storage stage. • EC content can be reduced from raw material, microorganism, and production process.
Collapse
|
17
|
Liu N, Qin L, Miao S. Regulatory Mechanisms of L-Lactic Acid and Taste Substances in Chinese Acid Rice Soup (Rice-Acid) Fermented With a Lacticaseibacillus paracasei and Kluyveromyces marxianus. Front Microbiol 2021; 12:594631. [PMID: 34093453 PMCID: PMC8176858 DOI: 10.3389/fmicb.2021.594631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Rice-acid has abundant taste substances and health protection function due to the various bioactive compounds it contains, including organic acids. L-lactic acid is the most abundant organic acid in rice-acid, but the regulatory mechanisms of L-lactic acid accumulation in rice-acid are obscure. In this study, we analyzed the dynamic changes in organic acids and taste substances in rice-acid in various fermentation phases and different inoculation methods. We identified the key genes involved in taste substance biosynthesis by RNA-Seq analysis and compared the data of four experimental groups. We found that the interaction of the differences in key functional genes (L-lactate dehydrogenase and D-lactate dehydrogenase) and key metabolism pathways (glycolysis, pyruvate metabolism, TCA cycle, amino acid biosynthesis, and metabolism) might interpret the accumulation of L-lactic acid, other organic acids, and taste substances in rice-acid fermented with Lacticaseibacillus paracasei. The experimental data provided the basis for exploring regulatory mechanisms of taste substance accumulation in rice-acid.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Likang Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
18
|
Du H, Song Z, Zhang M, Nie Y, Xu Y. The deletion of Schizosaccharomyces pombe decreased the production of flavor-related metabolites during traditional Baijiu fermentation. Food Res Int 2021; 140:109872. [PMID: 33648190 DOI: 10.1016/j.foodres.2020.109872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 01/03/2023]
Abstract
The microbiota in traditional solid-state fermentation is a complex microbiota that plays a key role in the production of feed, fuel, food and pharmaceutical products. The function of microbiota is an important factor dictating the quantity and quality of products. Core functional species play key metabolic roles in the microbiota, and their disappearance could result in the abnormal fermentation process. In this work, we combined Baijiu production and laboratory experiments to explore the keystone microbes and their metabolites. We found the deletion of core functional microbe resulted in the loss of multiple metabolites involved many alcohols and acids. In the traditional Baijiu production, the absence or appearance of Schizosaccharomyces pombe caused the content divergence in 227 flavor-related metabolites, especially in ethanol, butanol and pentanoic acid between abnormal and normal group (each content > 1 mg/kg and the content ratio of normal/abnormal group > 2). Schi. pombe increased the expression level of related genes involving alcohol dehydrogenase (ADH), acyl-CoA oxidase (ACOX) and trans-2-enoyl-CoA reductase (TER). Moreover, in the verification experiment of laboratory, the absence or appearance of Schizosaccharomyces pombe C-11 caused the content divergence in 136 flavor-related metabolites, especially in ethanol, butanol and pentanoic acid between Sp- and Sp+ group (each content > 1 mg/kg and the content ratio of Sp+/Sp- group > 2). Our results identified specific member that were essential for the function of fermentation microbiota. This study also suggests species deletions from fermentation microbiota and synthetic consortium could be a useful approach to illustrate relevant microbe-metabolites association and defining metabolic roles in the traditional solid-state fermentation.
Collapse
Affiliation(s)
- Hai Du
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhewei Song
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Microbiology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Nie
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
19
|
Study on microbial communities and higher alcohol formations in the fermentation of Chinese Xiaoqu Baijiu produced by traditional and new mechanical technologies. Food Res Int 2021; 140:109876. [DOI: 10.1016/j.foodres.2020.109876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/13/2023]
|
20
|
Wu X, Jing R, Chen W, Geng X, Li M, Yang F, Yan Y, Liu Y. High-throughput sequencing of the microbial diversity of roasted-sesame-like flavored Daqu with different characteristics. 3 Biotech 2020; 10:502. [PMID: 33163321 PMCID: PMC7606403 DOI: 10.1007/s13205-020-02500-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
The purpose of this experiment was to analyze the microbial community diversity in three Daqu samples displaying different characteristics in the same Daqu fermentation chamber. A high throughput sequencing technique was used to detect the microbial abundance and diversity in these Daqu samples. Of the three samples, the microbial diversity in the Black sample (sample B) was significantly higher than in the other two. At the genus level, Saccharopolyspora, Bacillus, Lentibacillus, Staphylococcus, Kroppenstedtia, and Thermoactinomyces were the primary bacterial groups in the sesame-flavored liquor, while Thermomyces, Thermoascus, and Aspergillus represented the main fungal groups. In sample B, the dominant bacteria were Thermoactinomyces, Saccharopolyspora, and Pseudomonas. In the White sample (sample W), Thermoactinomyces was the most abundant, followed by Saccharopolyspora and Lentibacillus. Staphylococcus dominated in the Yellow sample (sample Y), followed by Bacillus and Kroppenstedtia. Regarding the fungi in the three samples, Thermomyces accounted for 93.70% in sample B, and Aspergillus dominated in sample W, while the Thermoascus and Aspergillus content were similar in the sample Y. This study examined the microbial diversity in liquor Daqu with different sesame flavors, providing a foundation for microbial regulation, while investigating the relationship between flavored liquor compounds and microorganisms.
Collapse
Affiliation(s)
- Xianyu Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Ruixue Jing
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Wenhao Chen
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, 644000 Sichuan China
| | - Xiaojie Geng
- China National Research Institute of Food and Fermentation Industries, Beijing, 100015 China
| | - Miao Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Fuzhen Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Yinzhuo Yan
- China National Research Institute of Food and Fermentation Industries, Beijing, 100015 China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| |
Collapse
|
21
|
Qiu L, Zhang M, Mujumdar AS, Liu Y. Recent developments in key processing techniques for oriental spices/herbs and condiments: a review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1839492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Liqing Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S. Mujumdar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Yaping Liu
- R & D Center, Guangdong Galore Food Co. Ltd, Zhongshan, China
| |
Collapse
|
22
|
Yang F, Liu Y, Chen L, Li J, Wang L, Du G. Genome sequencing and flavor compound biosynthesis pathway analyses of Bacillus licheniformis isolated from Chinese Maotai-flavor liquor-brewing microbiome. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1789474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fan Yang
- China Kweichow Moutai Distillery Co., Ltd, Renhuai, Guizhou, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Liangqiang Chen
- China Kweichow Moutai Distillery Co., Ltd, Renhuai, Guizhou, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Li Wang
- China Kweichow Moutai Distillery Co., Ltd, Renhuai, Guizhou, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
23
|
Cao G, Li K, Guo J, Lu M, Hong Y, Cai Z. Mass Spectrometry for Analysis of Changes during Food Storage and Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6956-6966. [PMID: 32516537 DOI: 10.1021/acs.jafc.0c02587] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many physicochemical changes occur during food storage and processing, such as rancidity, hydrolysis, oxidation, and aging, which may alter the taste, flavor, and texture of food products and pose risks to public health. Analysis of these changes has become of great interest to many researchers. Mass spectrometry is a promising technique for the study of food and nutrition domains as a result of its excellent ability in molecular profiling, food authentication, and marker detection. In this review, we summarized recent advances in mass spectrometry techniques and their applications in food storage and processing. Furthermore, current technical challenges associated with these methodologies were discussed.
Collapse
Affiliation(s)
- Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Kun Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Jinggong Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Minghua Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong 518057, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
24
|
Deng N, Du H, Xu Y. Cooperative Response of Pichia kudriavzevii and Saccharomyces cerevisiae to Lactic Acid Stress in Baijiu Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4903-4911. [PMID: 32180399 DOI: 10.1021/acs.jafc.9b08052] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lactic acid is a universal metabolite, as well as a growth inhibitor of ethanol producers in Baijiu fermentation. Revealing the mechanism of lactic acid tolerance is essential for the yield of fermented foods. Here, we employed reverse transcription-quantitative polymerase chain reaction to explore the degradation mechanism of lactic acid, based on the coculture of Pichia kudriavzevii and Saccharomyces cerevisiae. Under high lactic acid stress, P. kudriavzevii decreased lactic acid from 40.00 to 35.46 g L-1 within 24 h. Then, S. cerevisiae restored its capacity to degrade lactic acid. Finally, lactic acid decreased to 26.29 g L-1. Coculture significantly enhanced lactic acid consumption compared to the monoculture of P. kudriavzevii (90% higher) or S. cerevisiae (209% higher). We found that lactate catabolism, H+ extrusion, and glycerol transport were the lactic acid tolerance pathways in yeasts. This study reveals the novel acid tolerance mechanisms of microbiota and would provide new strategies for ethanol production under acid stress.
Collapse
Affiliation(s)
- Nan Deng
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hai Du
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute for Chinese Jiang-Flavor Baijiu (Liquor), Renhuai, Guizhou 564500, China
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute for Chinese Jiang-Flavor Baijiu (Liquor), Renhuai, Guizhou 564500, China
| |
Collapse
|
25
|
Directional design of a starter to assemble the initial microbial fermentation community of baijiu. Food Res Int 2020; 134:109255. [PMID: 32517943 DOI: 10.1016/j.foodres.2020.109255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Tetramethylpyrazine (TTMP) is an important aroma compound in the sesame-flavored Chinese liquor, baijiu. Similar to other traditional spontaneously fermented foods, it is difficult to directionally increase the key aroma compound in situ fermentation system of baijiu without changing its sensory profile. The assembly of the starting microbial community for fermentation by using a functional starter provides a promising solution which needs careful manipulations. This study aimed to increase TTMP concentration in baijiu using the functional starter inoculated with the indigenous strain B. amyloliquefaciens XJB-104 with high TTMP production ability. After inoculation, the relative abundance of Bacillus in the initial stage of fermentation increased from 82.14% to 88.47%. The TTMP concentration increased by about 26 and 24-fold in the fermented grains (zaopei) and baijiu respectively compared with controls. Moreover, the quality of baijiu was improved according to sensory analyses. In addition, correlation analysis confirmed that the increased TTMP content in baijiu was due to the successful assembly of the initial fermentation microbiota after the inoculation of B. amyloliquefaciens.
Collapse
|
26
|
Palladium-catalyzed regioselective cascade reaction of carbon dioxide, amines and allenes for the synthesis of functionalized carbamates. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9679-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Schizosaccharomyces pombe can Reduce Acetic Acid Produced by Baijiu Spontaneous Fermentation Microbiota. Microorganisms 2019; 7:microorganisms7120606. [PMID: 31766775 PMCID: PMC6956116 DOI: 10.3390/microorganisms7120606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/19/2023] Open
Abstract
The spontaneous fermentation of alcoholic beverage is a bioprocess donated by microbiota with complex stress environments. Among various microbes, non-Saccharomyces yeasts have high stress tolerance and significantly affect the taste and quality of products in process. Although many researchers have focused on the influence of acid stress, the mechanism of non-Saccharomyces yeasts to tolerant stress remains unclear in microbiota. To bridge the gap, we constructed in situ and in vitro studies to explore the reduction pathway of acetic acid in non-Saccharomyces yeasts. In this study, we found Schizosaccharomyces pombe has special capacities to resist 10 g/L acetic acid in laboratory cultures and decrease the average concentration of acetic acid from 9.62 to 6.55 g/kg fermented grains in Chinese Maotai-flavor liquor (Baijiu) production. Moreover, Schi. pombe promoted metabolic level of mevalonate pathway (high expressions of gene ACCAT1, HMGCS1, and HMGCR1) to degrade a high concentration of acetic acid. Meanwhile, Schi. pombe also improved the concentration of mevalonic acid that is the precursor of terpenes to enhance the taste and quality of Baijiu. Overall, the synchronicity of reduction and generation in Schi. pombe advances the current knowledge to guide more suitable strategies for mechanism studies of non-Saccharomyces yeasts in fermented industries of alcoholic beverages.
Collapse
|
28
|
Zhao QS, Yang JG, Zhang KZ, Wang MY, Zhao XX, Su C, Cao XZ. Lactic acid bacteria in the brewing of traditional Daqu liquor. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.593] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qing-Song Zhao
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| | - Jian-Gang Yang
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| | - Kai-Zheng Zhang
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| | - Ming-Yao Wang
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| | - Xing-Xiu Zhao
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| | - Chang Su
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| | - Xin-Zhi Cao
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| |
Collapse
|