1
|
Wang M, Yue Y, Zhu X, Wang M, Zhang Y, Kong J, Guo T. Disruption of the signal recognition particle pathway leading to impaired growth, sugar metabolism and acid resistance of Lactococcus lactis. Int J Food Microbiol 2025; 426:110929. [PMID: 39378800 DOI: 10.1016/j.ijfoodmicro.2024.110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Lactococcus lactis is a well-known workhorse for dairy products, whose important industrial traits are tightly associated with numerous cytoplasmic membrane proteins. However, roles of the signal recognition particle (SRP) pathway responsible for membrane protein targeting have not been studied in L. lactis. In this work, the putative genes ffh and ftsY encoding SRP pathway components were identified in the genome of L. lactis NZ9000. Experimental evidence showed that sequence mutation in either the ffh or ftsY was not lethal, but prolonged the lag phase of the resultant mutants Δffh and ΔftsY by 2 h and lowered their biomass to 85.7 % of the wild type under static conditions, as well as deprived the mutants of improved growth capacity under aerobic respiration conditions. Besides, the speeds of glucose consumption and lactate production were significantly decreased in the mutants. Then, the impact of the SPR components on acid resistance was detected, showing that the ffh and ftsY were transcriptionally upregulated by 3.02 ± 1.21 and 8.66 ± 1.01-fold in the wild type during acid challenge at pH 3.0, and cell survival of the Δffh and ΔftsY decreased by10- and 100-fold compared with the wild type. To explore the possible mechanism about the SRP pathway involved in the above physiological traits, proteomics analysis was performed and revealed that disruption of the Ffh or FtsY led to decrease in ribosomal proteins, but increase in DnaK, GroEL and heat shock protein GrpE, indicating that the SRP pathway was closely linked to protein synthesis and folding in L. lactis. Decrease in the fructose-bisphosphate aldolase, respiratory complexes NADH dehydrogenase, as well as glutamate decarboxylase was also detected in the Δffh and ΔftsY, which is consistent with the phenomena of impaired sugar metabolism and acid resistance. Our results demonstrated the dispensable SRP pathway could contribute to the maintenance of metabolism homeostasis and acid resistance of L. lactis.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yanying Yue
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Xiaoce Zhu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Mengjie Wang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yifei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
2
|
Guo T, Cui Y, Zhang L, Xu X, Xu Z, Kong J. Holin-assisted bacterial recombinant protein export. Biotechnol Bioeng 2022; 119:2908-2918. [PMID: 35822237 DOI: 10.1002/bit.28179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/05/2022]
Abstract
A simple generic method for enhancing extracellular protein yields in engineered bacteria is still lacking. Here, we demonstrated that phage-encoded holin can be used to export proteins to the extracellular medium in both Gram-negative Escherichia coli and -positive Lactococcus lactis. When a putative holin gene LLNZ_RS10380 annotated in the genome of L. lactis NZ9000 (hol380) was recombinantly expressed in E. coli BL21(DE3), the Hol380 oligomerized up to hexamer in the cytoplasmic membrane, yielding membrane pore to allow the passage of cytosolic β-galatosidase (116 kDa), whose extracellular production reached 54.59 U/μL, accounting for 76.37% of the total activity. However, the overexpressed Hol380 could not release cytosolic proteins across the membrane in L. lactis NZ9000, but increased the secretory production of staphylococcal nuclease to 2.55-fold and fimbrial adhesin FaeG to 2.40-fold compared with those guided by signal peptide Usp45 alone. By using a combination of proteomics and transcriptional level analysis, we found that overexpression of the Hol380 raised the accumulation of Ffh and YidC involved in the signal recognition particle pathway in L. lactis, suggesting an alternative road participating in protein secretion. This study proposed a new approach by expressing holin in bacterial cell factories to export target proteins of economic or medical interest. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Yue Cui
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Lingwen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Xiaoning Xu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Zhenxiang Xu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| |
Collapse
|
3
|
Zhang S, Zhao S, Shang W, Yan Z, Wu X, Li Y, Chen G, Liu X, Wang L. Synergistic mechanism of GH11 xylanases with different action modes from Aspergillus niger An76. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:118. [PMID: 33971954 PMCID: PMC8112042 DOI: 10.1186/s13068-021-01967-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Xylan is the most abundant hemicellulose polysaccharide in nature, which can be converted into high value-added products. However, its recalcitrance to breakdown requires the synergistic action of multiple enzymes. Aspergillus niger, possessing numerous xylan degrading isozyme-encoding genes, are highly effective xylan degraders in xylan-rich habitats. Therefore, it is necessary to explore gene transcription, the mode of action and cooperation mechanism of different xylanase isozymes to further understand the efficient xylan-degradation by A. niger. RESULTS Aspergillus niger An76 encoded a comprehensive set of xylan-degrading enzymes, including five endo-xylanases (one GH10 and four GH11). Quantitative transcriptional analysis showed that three xylanase genes (xynA, xynB and xynC) were up-regulated by xylan substrates, and the order and amount of enzyme secretion differed. Specifically, GH11 xylanases XynA and XynB were initially secreted successively, followed by GH10 xylanase XynC. Biochemical analyses displayed that three GH11 xylanases (XynA, XynB and XynD) showed differences in catalytic performance and product profiles, possibly because of intricate hydrogen bonding between substrates and functional residues in the active site architectures impacted their binding capacity. Among these, XynB had the best performance in the degradation of xylan and XynE had no catalytic activity. Furthermore, XynA and XynB showed synergistic effects during xylan degradation. CONCLUSIONS The sequential secretion and different action modes of GH11 xylanases were essential for the efficient xylan degradation by A. niger An76. The elucidation of the degradation mechanisms of these xylanase isozymes further improved our understanding of GH-encoding genes amplification in filamentous fungi and may guide the design of the optimal enzyme cocktails in industrial applications.
Collapse
Affiliation(s)
- Shu Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
| | - Sha Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
- School of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Weihao Shang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
| | - Zijuan Yan
- School of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353 Shandong China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353 Shandong China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
| |
Collapse
|
4
|
Shi H, Su B, Chen X, Pian R. Solid state fermentation of Moringa oleifera leaf meal by mixed strains for the protein enrichment and the improvement of nutritional value. PeerJ 2020; 8:e10358. [PMID: 33240663 PMCID: PMC7680055 DOI: 10.7717/peerj.10358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Moringa oleifera Lam. (MO) is a fast-growing multi-purpose deciduous tree with high biomass and nutritional value. However, the presence of antinutritional factors, poor palatability, and indigestibility of Moringa oleifera leaf meal (MOLM) restrict its application to animal feed. This study aimed to obtain high-quality protein feeds via solid-state fermentation (SSF) of MOLM. The process conditions for increasing the true protein (TP) content using Aspergillus niger, Candida utilis and Bacillus subtilis co-cultures were optimized, and the chemical composition of MOLM was compared before and after fermentation. The results of this study showed that the highest TP content could be obtained through mixed-strain culture of A. niger, C. utilis and B. subtilis at a ratio of 1:1:2. The MOLM was inoculated with A. niger, followed by C. utilis and B. subtilis 24 h later. The optimized co-culture parameters were as follows: total inoculation size, 24%; temperature, 32 °C; fermentation time, 6.5 days; and initial water content, 60%. The maximum TP yield was 28.37%. Notably, in the fermented MOLM (FMOLM), the content of nutrients such as crude protein (CP), small peptides, and total amino acids (AAs) were significantly increased relative to unfermented MOLM, whereas the contents of crude fiber (CF), tannin, and phytic acid were significantly decreased. MOLM analysis using scanning electron microscopy (SEM) revealed that SSF disrupted the surface structure of MOLM, and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) indicated that macromolecular proteins were degraded. The in vitro protein digestibility (IVPD) of FMOLM was also improved significantly. Our findings suggest that multi-strain fermentation with A. niger, C. utilis and B. subtilis improves the nutritional quality of MOLM, rendering it a viable functional feedstuff for use in livestock industries in the future.
Collapse
Affiliation(s)
- Honghui Shi
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, Guangdong, China.,Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangzhou, Guangdong, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong, China
| | - Bin Su
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, Guangdong, China.,Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangzhou, Guangdong, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, Guangdong, China.,Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangzhou, Guangdong, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong, China
| | - Ruiqi Pian
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, Guangdong, China.,Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangzhou, Guangdong, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
A new β-galactosidase extracted from the infant feces with high hydrolytic and transgalactosylation activity. Appl Microbiol Biotechnol 2019; 103:8439-8448. [DOI: 10.1007/s00253-019-10092-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 02/05/2023]
|
6
|
Mild hydrothermal pretreatment of sugarcane bagasse enhances the production of holocellulases by Aspergillus niger. J Ind Microbiol Biotechnol 2019; 46:1517-1529. [PMID: 31236777 DOI: 10.1007/s10295-019-02207-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
Abstract
Holocellulase production by Aspergillus niger using raw sugarcane bagasse (rSCB) as the enzyme-inducing substrate is hampered by the intrinsic recalcitrance of this material. Here we report that mild hydrothermal pretreatment of rSCB increases holocellulase secretion by A. niger. Quantitative proteomic analysis revealed that pretreated solids (PS) induced a pronounced up-regulation of endoglucanases and cellobiohydrolases compared to rSCB, which resulted in a 10.1-fold increase in glucose release during SCB saccharification. The combined use of PS and pretreatment liquor (PL), referred to as whole pretreated slurry (WPS), as carbon source induced a more balanced up-regulation of cellulases, hemicellulases and pectinases and resulted in the highest increase (4.8-fold) in the release of total reducing sugars from SCB. The use of PL as the sole carbon source induced the modulation of A. niger's secretome towards hemicellulose degradation. Mild pretreatment allowed the use of PL in downstream biological operations without the need for undesirable detoxification steps.
Collapse
|
7
|
Jana UK, Suryawanshi RK, Prajapati BP, Soni H, Kango N. Production optimization and characterization of mannooligosaccharide generating β-mannanase from Aspergillus oryzae. BIORESOURCE TECHNOLOGY 2018; 268:308-314. [PMID: 30092484 DOI: 10.1016/j.biortech.2018.07.143] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
A multi-tolerant β-mannanase (ManAo) was produced by Aspergillus oryzae on copra meal, a low-cost agro waste. Under statistically optimized conditions, 4.3-fold increase in β-mannanase production (434 U/gds) was obtained. Purified ManAo had MW ∼34 kDa and specific activity of 335.85 U/mg with optimum activity at 60 °C and at pH 5.0. Activity of ManAo was enhanced by most metal ions and modulators while maximum enhancement was noticed with Ag+ and Triton X-100. Km and Vmax were 2.7 mg/mL and 1388.8 µmol/min/mg for locust bean gum while the enzyme showed lower affinity towards konjac gum (8.8 mg/mL, 555.5 µmol/min/mg). Evaluation of various thermodynamic parameters indicated high-efficiency of the ManAo with activation energy 12.42 KJ/mol and 23.31 KJ/mol towards LBG and konjac gum, respectively. End product analysis of β-mannanase action by fluorescence assisted carbohydrate electrophoresis (FACE) revealed the generation of sugars from DP 1-4 with some higher DP MOS from different mannans.
Collapse
Affiliation(s)
- Uttam Kumar Jana
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Rahul Kumar Suryawanshi
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Bhanu Pratap Prajapati
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Hemant Soni
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| |
Collapse
|