1
|
Zhang R, Liu Y, Pan Q, Khan A, Bai X, Ali M, Yang W, Zhang L, Li B. The effects of short term blue light treatment on promoting nutrition value in Chinese cabbage. Food Chem 2023; 412:135542. [PMID: 36706505 DOI: 10.1016/j.foodchem.2023.135542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Chinese cabbage is a nutrients-rich vegetable with diverse leaf colors. Here, we used widely-targeted metabolomics technology to study the metabolic responses of three Chinese cabbage varieties with representative leaf colors after blue light treatment. The inner leaf color of orange varieties 20S530 and 15S1094 changed from yellow to golden yellow, while no visible color change occurred in the common variety 14S23 after the treatment. A total of 844 metabolites were measured from the leaf samples of these three varieties in a time course study after short term blue light treatment, with kaempferol-4'-O-glucoside, isoquercitrin, hyperin, arbutin, sulforaphane as enriched nutritional metabolites. Orange Chinese cabbage varieties showed additional nutrition enhancement after the treatment. This study is the first to explore the global metabolic responses of Chinese cabbage after blue light treatment, and our findings provided valuable insights on how to effectively use lighting conditions to enhance specific groups of nutrients in vegetables.
Collapse
Affiliation(s)
- Ruixing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Yulin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiming Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan.
| | - Xue Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Muhammad Ali
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenjing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Lugang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Baohua Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China.
| |
Collapse
|
2
|
Faisal Z, Saeed F, Afzaal M, Akram N, Shah YA, Islam F, Ateeq H. Phytochemical profile and food applications of edible flowers: a comprehensive treatise. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zargham Faisal
- Institute of Food Science and Nutrition Bahauddin Zakariya University Multan Pakistan
| | - Farhan Saeed
- Department of Food Science Government College University Faisalabad Pakistan
| | - Muhammad Afzaal
- Department of Food Science Government College University Faisalabad Pakistan
| | - Noor Akram
- Department of Human Nutrition Government College University Faisalabad Pakistan
| | - Yasir Abbas Shah
- Department of Food Science Government College University Faisalabad Pakistan
| | - Fakhar Islam
- Department of Food Science Government College University Faisalabad Pakistan
| | - Huda Ateeq
- Department of Food Science Government College University Faisalabad Pakistan
| |
Collapse
|
3
|
Izcara S, Perestrelo R, Morante-Zarcero S, Câmara JS, Sierra I. High throughput analytical approach based on μQuEChERS combined with UHPLC-PDA for analysis of bioactive secondary metabolites in edible flowers. Food Chem 2022; 393:133371. [PMID: 35661599 DOI: 10.1016/j.foodchem.2022.133371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Mallow blue (Malva sylvestris L.), hibiscus (Hibiscus rosa-sinensis L.) and nasturtium (Tropaeolum majus L.), are common edible flowers rich in bioactive secondary metabolites (BASMs) whose use in sophisticated gastronomy present currently as increasing trend. In this study the BASMs profile of these edible flowers was established using an emerging green extraction technique, μQuEChERS followed by ultra-high performance liquid chromatography coupled to a photodiode array detection system (UHPLC-PDA). After validation the μQuEChERS/UHPLC-PDA methodology allow to identify that apigenin and epigallocatechin gallate are the most abundant BASMs in mallow blue flowers, while catechin and dicaffeoylquinic acid are predominant in hibiscus flowers, and myricitrin and dicaffeoylquinic acid in nasturtium flowers. Total polyphenol content is the highest in the extract of hibiscus. Nasturtium shows the greatest radical scavenging activity. The results revealed that these flowers constitute a potential source of BASMs with different bioactive properties suggesting its use in design of new functional foods.
Collapse
Affiliation(s)
- Sergio Izcara
- ESCET- Escuela Superior de Ciencias Experimentales y Tecnología, Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Sonia Morante-Zarcero
- ESCET- Escuela Superior de Ciencias Experimentales y Tecnología, Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Isabel Sierra
- ESCET- Escuela Superior de Ciencias Experimentales y Tecnología, Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
4
|
Huang B, Zhang Z, Ding N, Zhuang Y, Zhang G, Fei P. Preparation of acylated chitosan with caffeic acid in non-enzymatic and enzymatic systems: Characterization and application in pork preservation. Int J Biol Macromol 2022; 194:246-253. [PMID: 34875310 DOI: 10.1016/j.ijbiomac.2021.11.193] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022]
Abstract
To further improve the performance of chitosan in food processing and preservation, this study investigated the grafting of the caffeic acid onto the chitosan in non-enzymatic and enzymatic systems. Result suggested that the caffeic acid was successfully incorporated into the chitosan in the non-enzymatic system, and the grafting ratio of modified chitosan (CA@CTS-N) was 7.49%. Moreover, lipase had a significant positive effect on the grafting reaction of the chitosan, and the modified chitosan prepared in enzymatic system (CA@CTS-E) obtained a higher grafting ratio, which was 11.82%. In both systems, the carboxyl of the caffeic acid was bonded to the amino of the chitosan and formed carbonyl ammonia. After the introduction of foreign group, many changes occurred in the functional properties of the modified chitosan. First, the water solubility of the chitosan was significantly improved from 0.00285 (native chitosan, CTS) to 0.221 (CA@CTS-N) and 0.774 g/100 mL (CA@CTS-E). The caffeoyl had a significant impact on the emulsifying properties of the chitosan. Compared with those of CTS, the modified chitosan had stronger antioxidation and antibacterial activities against Escherichia coli, Staphylococcus aureus, and Candida albicans. Finally, the pork treated with the modified chitosan exhibited longer shelf life than that treated with CTS.
Collapse
Affiliation(s)
- Bingqing Huang
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group Co., Ltd., Xiamen 361000, PR China
| | - Nengshui Ding
- Fujian Aonong Biological Science and Technology Group Co.,Ltd., Zhangzhou 363000, PR China
| | - Yuanhong Zhuang
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Guoguang Zhang
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Peng Fei
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
5
|
Bento-Silva A, Duarte N, Mecha E, Belo M, Serra AT, Vaz Patto MC, Bronze MR. Broa, an Ethnic Maize Bread, as a Source of Phenolic Compounds. Antioxidants (Basel) 2021; 10:672. [PMID: 33925894 PMCID: PMC8145897 DOI: 10.3390/antiox10050672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/21/2022] Open
Abstract
Maize is an important source of phenolic compounds, specially hydroxycinnamic acids, which are widely known for their antioxidant activity and associated health benefits. However, these effects depend on their bioaccessibility, which is influenced by the different techniques used for food processing. Several traditional products can be obtained from maize and, in Portugal, it is used for the production of an ethnic bread called broa. In order to evaluate the effect of processing on maize phenolic composition, one commercial hybrid and five open-pollinated maize flours and broas were studied. The total phenolic content and antioxidant activity were evaluated by the Folin-Ciocalteu and ORAC assays, respectively. The major phenolics, namely ferulic and p-coumaric acids (in their soluble-free, soluble-conjugated and insoluble forms), insoluble ferulic acid dimers and soluble hydroxycinnamic acid amides were quantitated. Results show that the total phenolic content, antioxidant activity and hydroxycinnamic acids resisted traditional processing conditions used in the production of broas. The content in soluble-free phenolics increased after processing, meaning that their bioaccessibility improved. Portuguese traditional broas, produced with open-pollinated maize varieties, can be considered an interesting dietary source of antioxidant compounds due to the higher content in hydroxycinnamic acids and derivatives.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- FCT NOVA, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
- FFULisboa, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Noélia Duarte
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Elsa Mecha
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria Belo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal;
| | - Maria Carlota Vaz Patto
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria Rosário Bronze
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal;
| |
Collapse
|
6
|
Eleazu CO, Eleazu KF, Ukamaka G, Adeolu T, Ezeorah V, Ezeorah B, Ituma C, Ilom J. Nutrient and Antinutrient Composition and Heavy Metal and Phenolic Profiles of Maize ( Zea mays) as Affected by Different Processing Techniques. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:113-123. [DOI: 10.1021/acsfoodscitech.0c00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chinedum Ogbonnaya Eleazu
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi Nigeria
| | - Kate Frank Eleazu
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi Nigeria
| | - Gladys Ukamaka
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi Nigeria
| | - Tosin Adeolu
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi Nigeria
| | - Valentine Ezeorah
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi Nigeria
| | - Blessing Ezeorah
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi Nigeria
| | - Chiamaka Ituma
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi Nigeria
| | - Judith Ilom
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi Nigeria
| |
Collapse
|
7
|
Butts-Wilmsmeyer CJ, Mumm RH, Bohn MO. Quantitative Genetic Analysis of Hydroxycinnamic Acids in Maize ( Zea mays L.) for Plant Improvement and Production of Health-Promoting Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9585-9593. [PMID: 32786871 DOI: 10.1021/acs.jafc.0c02774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydroxycinnamic acids, including ferulic acid and p-coumaric acid, have been tied to multiple positive health and agronomic benefits. However, little work has been done to improve the concentration of hydroxycinnamic acids in maize. We evaluated a set of 12 commercially important maize (Zea mays L.) inbred lines and 66 hybrids derived from their crosses for hydroxycinnamic acid concentration in the grain, grain yield, and test weight. The grain was obtained from replicated field experiments, which were conducted for 3 years. Both ferulic acid and p-coumaric acid were found to be highly heritable, and most of the genetic variation was additive. Grain yield and test weight were not correlated with hydroxycinnamic acid concentration. These findings suggest that breeding maize for improved hydroxycinnamic acid concentration is feasible. Maize hybrids with high hydroxycinnamic acid concentrations in the grain could be useful for the production of dietary supplements or all-natural food additives while imparting enhanced resistance to biotic and abiotic stresses during the growing season and grain storage.
Collapse
Affiliation(s)
- Carolyn J Butts-Wilmsmeyer
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois 61801, United States
- The Center for Predictive Analytics, Southern Illinois University Edwardsville, 40 Hairpin Drive, Edwardsville, Illinois 62026, United States
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, Illinois 62025, United States
| | - Rita H Mumm
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Martin O Bohn
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Beyond Enzyme Production: Solid State Fermentation (SSF) as an Alternative Approach to Produce Antioxidant Polysaccharides. SUSTAINABILITY 2020. [DOI: 10.3390/su12020495] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Solid state fermentation (SSF) is a sustainable process that uses low amounts of water and transforms plant-based agro-industrial residues into valuable products such as enzymes, biofuels, nanoparticles and other bioactive compounds. Many fungal species can be used in SSF because of their low requirements of water, O2 and light. During SSF, plant-based wastes rich in soluble and insoluble fiber are utilized by lignocellulolytic fungi that have enzymes such as lignases, celullases or hemicelullases that break fiber hard structure. During the hydrolysis of lignin, some phenolic compounds are released but fungi also synthetize bioactive compounds such as mycophenolic acid, dicerandrol C, phenylacetates, anthraquinones, benzofurans and alkenyl phenols that have health beneficial effects such as antitumoral, antimicrobial, antioxidant and antiviral activities. Another important group of compounds synthetized by fungi during SSF are polysaccharides that also have important health promoting properties. Polysaccharides have antioxidant, antiproliferative and immunomodulatory activities as well as prebiotic effects. Fungal SSF has also proved to be a process which can release high contents of phenolics and it also increases the bioactivity of these compounds.
Collapse
|
9
|
|
10
|
Ma T, Lan T, Ju Y, Cheng G, Que Z, Geng T, Fang Y, Sun X. Comparison of the nutritional properties and biological activities of kiwifruit (Actinidia) and their different forms of products: towards making kiwifruit more nutritious and functional. Food Funct 2019; 10:1317-1329. [PMID: 30694282 DOI: 10.1039/c8fo02322k] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nutritional properties and biological activities of kiwifruit and their different products made from same raw kiwifruit were investigated. Compared with the more common Hayward variety, three new kiwifruit varieties, namely Qinmei, Hongyang and Huayou, showed better nutritional properties and biological activities. After processing into different products, the nutritional properties and biological activities of kiwifruit changed substantially but still showed a correlation with the variety's characteristics. Processing kiwifruit into juice, wine and vinegar retained a higher vitamin C and polyphenol content than dried slices and jam and demonstrated better biological activities, while dried slices and jam provided more mineral elements than the three liquid products. In addition, the fermentation products wine and vinegar showed a similar nutritional composition that were present at a higher concentration than in juice, which indicated that fermentation helps in the dissolution of nutrient substances, while the thermal processing products dried slices and jam showed a similar nutritional composition. Consuming original kiwifruit supplies a more comprehensive nutritional composition than from any kiwifruit products.
Collapse
Affiliation(s)
- Tingting Ma
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, 712100, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ma T, Lan T, Geng T, Ju Y, Cheng G, Que Z, Gao G, Fang Y, Sun X. Nutritional properties and biological activities of kiwifruit ( Actinidia) and kiwifruit products under simulated gastrointestinal in vitro digestion. Food Nutr Res 2019; 63:1674. [PMID: 31007652 PMCID: PMC6458959 DOI: 10.29219/fnr.v63.1674] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Kiwifruit is one of the most commercialized fruits on the international market, which has notable high nutritional and medicinal value with many health benefits. In addition to being consumed fresh, numerous kiwifruit products are popular, such as kiwifruit juice, vinegar, dried slices, jam, wine, yogurt, and jelly. Although many studies have described the nutritional properties of kiwifruit, investigations on the nutritional properties of kiwifruit products remain limited, especially for kiwifruit products made from raw kiwifruit. METHODS Nutritional properties and biological activities of kiwifruit and kiwifruit products, as well as the digestive and absorption characteristics of their nutritional substances, were investigated. RESULTS Kiwifruit, juice, wine, and vinegar were observed to be rich in vitamin C (VC) and polyphenol and exhibited high biological activities, whereas dried kiwifruit slices and jam showed higher amounts of mineral elements. During oral digestion, VC and polyphenol showed similar absorption characteristics, while mineral elements exhibited a number of different trends. A good release rate of all nutritional substances was observed during stomach digestion, while the release rate decreased in serum-available, colon-available, and post-colonic fractions. Eating dried slices and jam supplied high amounts of mineral elements, while eating kiwifruit supplied the most comprehensive nutritional substances. The biological activities detected in raw foodstuffs were much higher than those detected after in vitro digestion. Furthermore, kiwifruit and wine showed the highest biological activities, while dried kiwifruit slices showed the lowest biological activities. CONCLUSION These results increased our understanding of the nutritional properties of kiwifruit and its products, providing new information and scientific recommendations to consumers for kiwifruit consumption and to producers for kiwifruit production.
Collapse
Affiliation(s)
- Tingting Ma
- Key Laboratory of Agro-Products Processing, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China
| | - Tian Lan
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China
| | - Tonghui Geng
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China
| | - Yanlun Ju
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China
| | - Guo Cheng
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China
| | - Zhiluo Que
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China
| | - Guitian Gao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Yulin Fang
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China
| | - Xiangyu Sun
- Key Laboratory of Agro-Products Processing, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Infant Cereals: Current Status, Challenges, and Future Opportunities for Whole Grains. Nutrients 2019; 11:nu11020473. [PMID: 30813426 PMCID: PMC6412837 DOI: 10.3390/nu11020473] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Infant cereals play an important role in the complementary feeding period. The aim of this study was to review existing research about the quantity, type, and degree of infant cereal processing, with a special focus on whole grain infant cereals. Accumulating evidence shows many benefits of whole grain consumption for human health. Likewise, consumers are frequently linking the term whole grains to healthiness and naturality, and sustainable food production becomes a more important aspect when choosing an infant cereal brand. Whole grain cereals should be consumed as early as possible, i.e., during infancy. However, there are several challenges that food manufacturers are facing that need to be addressed. Recommendations are needed for the intake of whole grain cereals for infants and young children, including product-labeling guidelines for whole grain foods targeting these age stages. Another challenge is minimizing the higher contaminant content in whole grains, as well as those formed during processing. Yet, the greatest challenge may be to drive consumers' acceptance, including taste. The complementary feeding period is absolutely key in shaping the infant's food preferences and habits; therefore, it is the appropriate stage in life at which to introduce whole grain cereals for the acceptance of whole grains across the entire lifespan.
Collapse
|
13
|
Butts-Wilmsmeyer C, Yana NA, Kandhola G, Rausch KD, Mumm RH, Bohn MO. High-throughput, Microscale Protocol for the Analysis of Processing Parameters and Nutritional Qualities in Maize (Zea mays L.). J Vis Exp 2018. [PMID: 29985319 PMCID: PMC6101757 DOI: 10.3791/57809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Maize is an important grain crop in the United States and worldwide. However, maize grain must be processed prior to human consumption. Furthermore, whole grain composition and processing characteristics vary among maize hybrids and can impact the quality of the final processed product. Therefore, in order to produce healthier processed food products from maize, it is necessary to know how to optimize processing parameters for particular sets of germplasm to account for these differences in grain composition and processing characteristics. This includes a better understanding of how current processing techniques impact the nutritional quality of the final processed food product. Here, we describe a microscale protocol that both simulates the processing pipeline to produce cornflakes from large flaking grits and allows for the processing of multiple grain samples simultaneously. The flaking grits, the intermediate processed products, or final processed product, as well as the corn grain itself, can be analyzed for nutritional content as part of a high-throughput analytical pipeline. This procedure was developed specifically for incorporation into a maize breeding research program, and it can be modified for other grain crops. We provide an example of the analysis of insoluble-bound ferulic acid and p-coumaric acid content in maize. Samples were taken at five different processing stages. We demonstrate that sampling can take place at multiple stages during microscale processing, that the processing technique can be utilized in the context of a specialized maize breeding program, and that, in our example, most of the nutritional content was lost during food product processing.
Collapse
Affiliation(s)
| | - Nicole A Yana
- Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Gurshagan Kandhola
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign
| | - Kent D Rausch
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign
| | - Rita H Mumm
- Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Martin O Bohn
- Department of Crop Sciences, University of Illinois at Urbana-Champaign
| |
Collapse
|