1
|
Zhao Q, Wang Y, Zhu Z, Zhao Q, Zhu L, Jiang L. Efficient reduction of β-lactoglobulin allergenicity in milk using Clostridium tyrobutyricum Z816. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Production of Trehalose from Maltose by Whole Cells of Permeabilized Recombinant Corynebacterium glutamicum. Processes (Basel) 2022. [DOI: 10.3390/pr10122501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Trehalose (α-D-glucopyranosyl-1,1-α-D-glucopyranoside) is a stable and nonreducing disaccharide; can be used as sweetener, stabilizer, and humectant; and has many applications in the food, pharmaceutical, and cosmetic industries. Trehalose production from maltose catalyzed by trehalose synthase (TreS) is simple and economically feasible for industrial-scale application. Reducing the cost and enhancing the efficiency of TreS synthesis and the conversion of maltose to trehalose is critical for trehalose production. In this study, the homologous TreS was constitutively overexpressed in Corynebacterium glutamicum ATCC13032 by removing the repressor gene lacIq fragment in the plasmid, and TreS expression could be exempt from the inducer addition and induction process. For cell permeabilization, Triton X-100 was used as a permeabilization agent, and the treatment time was 3 h. In the conversion system, the permeabilized cells of recombinant C. glutamicum were used as biocatalysts, 300 g/L maltose was used as a substrate, and 173.7 g/L trehalose was produced within 12 h under 30 °C and pH 7.0 conditions. In addition, the whole-cell biocatalysts showed promising reusability. This study provides a safe, convenient, practical, and low-cost pathway for the production of trehalose.
Collapse
|
3
|
Hu M, Wei Y, Zhang R, Shao M, Yang T, Xu M, Zhang X, Rao Z. Efficient D-allulose synthesis under acidic conditions by auto-inducing expression of the tandem D-allulose 3-epimerase genes in Bacillus subtilis. Microb Cell Fact 2022; 21:63. [PMID: 35440084 PMCID: PMC9019997 DOI: 10.1186/s12934-022-01789-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND D-allulose, a hexulose monosaccharide with low calorie content and high sweetness, is commonly used as a functional sugar in food and nutrition. However, enzyme preparation of D-allulose from D-frutose was severely hindered by the non-enzymatic browning under alkaline and high-temperature, and the unnecessary by-products further increased the difficulties in separation and extraction for industrial applications. Here, to address the above issue during the production process, a tandem D-allulose 3-epimerase (DPEases) isomerase synergistic expression strategy and an auto-inducible promoter engineering were levered in Bacillus subtilis 168 (Bs168) for efficient synthesis of D-allulose under the acidic conditions without browning. RESULTS First, based on the dicistron expression system, two DPEases with complementary functional characteristics from Dorea sp. CAG:317 (DSdpe) and Clostridium cellulolyticum H10 (RCdpe) were expressed in tandem under the promoter HpaII in one cell. A better potential strain Bs168/pMA5-DSdpe-RCdpe increases enzyme activity to 18.9 U/mL at acidic conditions (pH 6.5), much higher than 17.2 and 16.7 U/mL of Bs168/pMA5-DSdpe and Bs168/pMA5-RCdpe, respectively. Subsequently, six recombinant strains based on four constitutive promoters were constructed in variable expression cassettes for improving the expression level of protein. Among those engineered strains, Bs168/pMA5-PspoVG-DSdpe-PsrfA-RCdpe exhibited the highest enzyme activity with 480.1 U/mL on fed-batch fermentation process in a 5 L fermenter at pH 6.5, about 2.1-times higher than the 228.5 U/mL of flask fermentation. Finally, the maximum yield of D-allulose reached as high as 163.5 g/L at the fructose concentration (50% w/v) by whole-cell biocatalyst. CONCLUSION In this work, the engineered recombinant strain Bs168/pMA5-PspoVG-DSdpe-PsrfA-RCdpe was demonstrated as an effective microbial cell factory for the high-efficient synthesis of D-allulose without browning under acidic conditions. Based on the perspectives from this research, this strategy presented here also made it possible to meet the requirements of the industrial hyper-production of other rare sugars under more acidic conditions in theory.
Collapse
Affiliation(s)
- Mengkai Hu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yuxia Wei
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Minglong Shao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
4
|
Chen Y, Zhao Y, Zhou X, Liu N, Ming D, Zhu L, Jiang L. Improving the thermostability of trehalose synthase from Thermomonospora curvata by covalent cyclization using peptide tags and investigation of the underlying molecular mechanism. Int J Biol Macromol 2020; 168:13-21. [PMID: 33285196 DOI: 10.1016/j.ijbiomac.2020.11.195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
One of the most desirable properties for industrial enzymes is high thermotolerance, which can reduce the amount of biocatalyst used and lower the production cost. Aiming to improve the thermotolerance of trehalose synthase (TreS, EC 5.4.99.16) from Thermomonospora curvata, four mutants (G78D, V289L, G322A, I323L) and four cyclized TreS variants fused using different Tag/Catcher pairs (SpyTag-TreS-SpyCatcher, SpyTag-TreS-KTag, SnoopTag-TreS-SnoopCatcher, SnoopTagJR-TreS-DogTag) were constructed. The results showed that cyclization led to a much larger increase of thermostability than that achieved via site-directed mutagenesis. The t1/2 of all four cyclized TreS variants at 55 °C increased 2- to 3- fold, while the analysis of kinetic and thermodynamic stability indicated that the T50 of the different cyclized TreS variants increased by between 7.5 °C and 15.5 °C. Molecular dynamics simulations showed that the Rg values of cyclized TreS decreased significantly, indicating that the protein maintained a tight tertiary structure at high temperatures, avoiding exposure of the hydrophobic core to the solvent. Cyclization using a Tag/Catcher pair is a simple and effective method for improving the thermotolerance of enzymes.
Collapse
Affiliation(s)
- Yao Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yang Zhao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xue Zhou
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Nian Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Zhu L, Shen B, Song Z, Jiang L. Permeabilized TreS-Expressing Bacillus subtilis Cells Decorated with Glucose Isomerase and a Shell of ZIF-8 as a Reusable Biocatalyst for the Coproduction of Trehalose and Fructose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4464-4472. [PMID: 32193930 DOI: 10.1021/acs.jafc.0c00971] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of porous materials with versatile properties. In this study, ZIF-8 was employed to establish a two-enzyme system by encapsulating permeabilized Bacillus subtilis cells coated with glucose isomerase. B. subtilis was constructed by introducing the shuttle plasmid PMA5 associated with the overexpression of trehalose synthase. Using this two-enzyme system, trehalose was produced by trehalose synthase and the byproduct glucose was converted to fructose with the help of glucose isomerase. The decrease in glucose production not only relieved the inhibition of the entire reaction chain but also increased the final yield of trehalose. The highest trehalose production rate reached 67.7% and remained above 50% after 20 batches. In addition, the toxicity of the ZIF-8 coating for B. subtilis was investigated by fluorescence microscopy and was found to be negligible. By simulating an extreme environment, the ZIF-8 coating was demonstrated to have a protective effect on the cells and enzymes. This study provides a theoretical basis for the application of MOFs in the immobilization of microorganisms and enzymes.
Collapse
Affiliation(s)
- Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Bowen Shen
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Zhe Song
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
6
|
Gloster TM. Exploitation of carbohydrate processing enzymes in biocatalysis. Curr Opin Chem Biol 2020; 55:180-188. [PMID: 32203896 DOI: 10.1016/j.cbpa.2020.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/26/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Exploitation of enzymes in biocatalytic processes provides scope both in the synthesis and degradation of molecules. Enzymes have power not only in their catalytic efficiency, but their chemoselectivity, regioselectivity, and stereoselectivity means the reactions they catalyze are precise and reproducible. Focusing on carbohydrate processing enzymes, this review covers advances in biocatalysis involving carbohydrates over the last 2-3 years. Given the notorious difficulties in the chemical synthesis of carbohydrates, the use of enzymes for synthesis has potential for significant impact in the future. The use of catabolic enzymes in the degradation of biomass, which can be exploited in the production of biofuels to provide a sustainable and greener source of energy, and the synthesis of molecules that have a range of applications including in the pharmaceutical and food industries will be explored.
Collapse
Affiliation(s)
- Tracey M Gloster
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
7
|
Liu H, Wang S, Song L, Yuan H, Liu K, Meng W, Wang T. Trehalose Production Using Recombinant Trehalose Synthase in Bacillus subtilis by Integrating Fermentation and Biocatalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9314-9324. [PMID: 31352776 DOI: 10.1021/acs.jafc.9b03402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trehalose, a stable nonreducing disaccharide, protects biomolecules against environmental stress. However, trehalose production using secretory trehalose synthase (TreS) by Bacillus subtilis has not been well studied. In this study, a mutant TreS was successfully secreted and expressed in B. subtilis WB800N. The extracellular enzyme activity of TreS regulated by the P43 promoter and SPPhoD signal peptide in recombinant B. subtilis WB800N reached 23080.6 ± 1119.4 U/L in a 5-L fermenter after optimizing the culture medium, while xpF, skfA, lytC, and sdpC were knocked out. To reduce maltose consumption, malP and amyE corresponding to maltose transporters were further deleted. To simplify the trehalose production process, we invented a fermentation-coupling biocatalysis process involving recombinant bacteria fermentation to secrete TreS and simultaneous conversion of maltose to trehalose by TreS and found that the conversion rate of maltose to trehalose reached 75.5%, suggesting that this is an efficient strategy for large-scale trehalose production using recombinant B. subtilis.
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Song Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Longxiang Song
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Wu Meng
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| |
Collapse
|
8
|
Liu H, Liu H, Yang S, Wang R, Wang T. Improved Expression and Optimization of Trehalose Synthase by Regulation of P glv in Bacillus subtilis. Sci Rep 2019; 9:6585. [PMID: 31036837 PMCID: PMC6488592 DOI: 10.1038/s41598-019-43172-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Trehalose synthase (TreS) converts maltose to trehalose, which has several important functions; therefore, enhancing TreS expression is desirable. Here, a recombinant Bacillus subtilis W800N (ΔamyE)-Pglv strain was constructed to achieve enhanced expression of TreS. Process optimization strategies were developed to improve the expression level of TreS in B. subtilis W800N (ΔamyE)-Pglv. Intracellular activity of TreS was induced using 60 g/L of maltose in shake flask culture. The protein activity reached 5211 ± 134 U/g at 33 °C and pH 7.0 in Luria-Bertani medium. A fed-batch fermentation strategy was applied in a 30 L fermenter containing 18 L terrific broth to achieve high cell density by replacing glycerol with high maltose syrup as a carbon source and an inducer. After 32 h of fermentation, recombinant B. subtilis W800N (ΔamyE)-Pglv activity reached 6850 ± 287 U/g dry cell weight. Our results demonstrate the efficiency of the Pglv promoter in increasing the expression of TreS in B. subtilis W800N (ΔamyE)-Pglv.
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin, 300457, China
| | - Hao Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin, 300457, China
| | - Shaojie Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China. .,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| |
Collapse
|
9
|
Li J, Duan Y, Bian C, Pan X, Yao C, Wang J, Zhou M. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:152-160. [PMID: 30744889 DOI: 10.1016/j.pestbp.2018.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Validamycin, known to interfere with fungal energy metabolism by inhibiting trehalase, has been extensively used to control plant diseases caused by Rhizoctonia spp. However, the effect of validamycin on controlling Fusarium graminearum has not been previously reported. In this study, when applied to F. graminearum in vitro, validamycin inhibited the synthesis of deoxynivalenol (DON), which is a mycotoxin and virulence factor, by decreasing trehalase activity and the production of glucose and pyruvate, which are precursors of DON biosynthesis. Because FgNTH encodes the main trehalase in F. graminearum, these effects were nullified in the FgNTH deletion mutant ΔFgNTH but restored in the complemented strain ΔFgNTHC. In addition, validamycin also increased the expression of pathogenesis-related genes (PRs) PR1, PR2, and PR5 in wheat, inducing resistance responses of wheat against F. graminearum. Therefore, validamycin exhibits dual efficacies on controlling Fusarium head blight (FHB) caused by F. graminearum: inhibition of DON biosynthesis and induction of host resistance. In addition, field trials further confirmed that validamycin increased FHB control and reduced DON contamination in grain. Control of FHB and DON contamination by validamycin increased when the antibiotic was applied with the triazole fungicide metconazole. Overall, this study is a successful case from foundational research to applied research, providing useful information for wheat protection programs against toxigenic fungi responsible for FHB and the consequent mycotoxin accumulation in grains.
Collapse
Affiliation(s)
- Jing Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Chuanhong Bian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayan Pan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengjie Yao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|