1
|
Yang Y, Chen M, Zhu Q, Lv Y, Liu C, Wei Y, Cha G, Shi X, Ren X, Ding Y. The transcription factors AdNAC3 and AdMYB19 regulate kiwifruit ripening through brassinosteroid and ethylene signaling networks. PLANT PHYSIOLOGY 2025; 197:kiaf084. [PMID: 39977254 PMCID: PMC11896978 DOI: 10.1093/plphys/kiaf084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
The pivotal role of ethylene (ETH) in fruit ripening has been extensively studied; however, the function of brassinosteroids (BRs) in regulating fruit ripening remains poorly understood. Specifically, the mechanism by which BRs interact with ETH to affect kiwifruit (Actinidia deliciosa) ripening is unclear. Our research showed that 2 genes encoding transcription factors, AdNAC3 and AdMYB19, and the fruit softening gene AdEXP3 (encoding a cell wall expansion protein, expansin 3) were upregulated by ETH and downregulated by BRs. Furthermore, AdNAC3 and AdMYB19 positively regulated the activity of the AdEXP3 promoter, and AdNAC3 positively regulated the promoter activity of AdMYB19. The physical interaction between AdNAC3 and the B-box-type zinc finger protein AdBBX32 affected fruit ripening. Transient overexpression and silencing experiments revealed that ETH upregulated and BRs downregulated the expression of AdNAC3 and AdMYB19, thereby regulating the expression level of AdEXP3 and participating in pectin degradation. Stable transformation of AdNAC3 in tomato fruits accelerated fruit color change and promoted fruit ripening. These results indicate that AdNAC3 and AdMYB19 are involved in the hormone interaction between BRs and ETH in regulating kiwifruit ripening, providing insights into the molecular mechanisms underlying the crosstalk between BRs and ETH.
Collapse
Affiliation(s)
- Yaming Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanrong Lv
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yun Wei
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guili Cha
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyan Shi
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuduan Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Hu L, Zhu Y, Wang C, Khalifa I, Wang Z, Zhang H, Jia Y, Liang X. A critical review of persimmon-derived pectin: Innovations in extraction, structural characterization, biological potentials, and health-promoting effects. Food Chem 2025; 463:141453. [PMID: 39368198 DOI: 10.1016/j.foodchem.2024.141453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Persimmon-derived pectin (PP) is a versatile dietary polysaccharide with considerable industrial and biological significance, demonstrating a range of functionalities and health-promoting benefits. This review explores the changes in PP during postharvest and processing, detailing structural alterations and extraction techniques for optimal characteristics. Key functional attributes of PP-such as emulsification, rheology, antioxidant capacity, immunomodulation, and gut microbiota regulation-highlight its potential applications in food, healthcare, pharmaceuticals, and cosmetics. The review also explores methods to enhance the functional properties of PP through synergistic interactions with polyphenols. A strategic roadmap for advancing PP research is proposed, connecting extraction methods, structural characteristics, and functional properties to tailor PP for specific applications in food science and technology. Overall, persimmon-derived pectin is positioned as a valuable food-derived bioactive ingredient with diverse capabilities, poised to drive innovation and advance nutritional science across multiple sectors.
Collapse
Affiliation(s)
- Lanlan Hu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Yingheng Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Chuang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Zhen Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China; Key Laboratory of Aquatic Products Processing and Safety Control, Xinxiang 453000, China; Engineering and Technology Research Center of Aquatic Products Processing and Quality control, Xinxiang 453000, China
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China.
| |
Collapse
|
3
|
Guan W, Cao M, Chen W, Yang Z, Li X, Wang L, Shi L. Indole-3-acetic acid treatment promotes postharvest kiwifruit softening by regulating starch and cell wall metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1485678. [PMID: 39600895 PMCID: PMC11588445 DOI: 10.3389/fpls.2024.1485678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
The softening process of postharvest kiwifruit is a critical aspect of fruit quality that has been extensively studied. However, the impact of indole-3-acetic acid (IAA) treatment on this process remains largely unexplored. In this study, we examined the effect of IAA treatment on the softening of postharvest kiwifruit. The results depicted that kiwifruit treated with IAA exhibited decreased firmness and increased ethylene production. Treatment with IAA upregulated the expression of starch decomposition genes, including AcSEX and AcBAM, resulting in a reduction in starch content. Additionally, IAA treatment induced cell wall breakdown, attributed to the enhanced transcript levels of cell wall-related degradation genes such as AcPE, AcPG, AcPL, and AcCX compared to the control. Consequently, IAA-treated kiwifruit displayed lower levels of cellulose and protopectin but higher levels of water-soluble pectin. In summary, our findings indicate that exogenous IAA promoted postharvest starch and cell wall biodegradation in kiwifruit, which reduced fruit firmness and accelerated fruit softening.
Collapse
Affiliation(s)
- Wenhao Guan
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Mengze Cao
- Senior School, Seymour College, Glen Osmond, SA, Australia
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhenfeng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Xuewen Li
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| | - Li Wang
- College of Tea and Food Sci Tech, Anhui Agricultural University, Hefei, China
| | - Liyu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
4
|
Tipu MMH, Sherif SM. Ethylene and its crosstalk with hormonal pathways in fruit ripening: mechanisms, modulation, and commercial exploitation. FRONTIERS IN PLANT SCIENCE 2024; 15:1475496. [PMID: 39574438 PMCID: PMC11579711 DOI: 10.3389/fpls.2024.1475496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/10/2024] [Indexed: 11/24/2024]
Abstract
Ethylene is an important phytohormone that orchestrates a multitude of physiological and biochemical processes regulating fruit ripening, from early maturation to post-harvest. This review offers a comprehensive analysis of ethylene's multifaceted roles in climacteric fruit ripening, characterized by a pronounced increase in ethylene production and respiration rates. It explores potential genetic and molecular mechanisms underlying ethylene's action, focusing on key transcription factors, biosynthetic pathway genes, and signal transduction elements crucial for the expression of ripening-related genes. The varied sensitivity and dependency of ripening traits on ethylene are elucidated through studies employing genetic mutations and ethylene inhibitors such as AVG and 1-MCP. Additionally, the modulation of ripening traits by ethylene is influenced by its interaction with other phytohormones, including auxins, abscisic acid, gibberellins, jasmonates, brassinosteroids, and salicylic acid. Pre-harvest fruit drop is intricately linked to ethylene, which triggers enzyme activity in the abscission zone, leading to cell wall degradation and fruit detachment. This review also highlights the potential for applying ethylene-related knowledge in commercial contexts to enhance fruit quality, control pre-harvest drop, and extend shelf life. Future research directions are proposed, advocating for the integration of physiological, genetic, biochemical, and transcriptional insights to further elucidate ethylene's role in fruit ripening and its interaction with other hormonal pathways.
Collapse
Affiliation(s)
| | - Sherif M. Sherif
- Virginia Tech School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Winchester, VA, United States
| |
Collapse
|
5
|
Garrido-Auñón F, Puente-Moreno J, García-Pastor ME, Serrano M, Valero D. Brassinosteroids: An Innovative Compound Family That Could Affect the Growth, Ripening, Quality, and Postharvest Storage of Fleshy Fruits. PLANTS (BASEL, SWITZERLAND) 2024; 13:3082. [PMID: 39520000 PMCID: PMC11548142 DOI: 10.3390/plants13213082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Brassinosteroids (BRs), a new family of plant hormones, have been used in a range of food staples, oil crops, and cereals. However, the scientific literature pertaining to their use in fleshy fruits remains scarce. This review presents, for the first time, the knowledge developed over the last decade on the role of BR preharvest treatments in crop yield and fruit quality properties at harvest and during storage, although information about the effects of BR postharvest treatments is also addressed. This review revealed that 24-epibrassinolide is the most used BR analogue in research experiments, either as a pre- or postharvest treatment, with doses ranging from 0.1 to 15 μM. Additionally, most of the research has been conducted on non-climacteric fruit species. In most of these preharvest treatments, an increase in crop yield has been reported, as well as enhanced anthocyanin concentration in red-coloured fruit. In addition, increases in firmness, total soluble solids, and phenolic content have also been observed. On the other hand, BR postharvest treatments led to the maintenance of these fruit quality properties during storage due to increased antioxidant systems, either enzymatic or non-enzymatic ones. Finally, as future perspectives, it is proposed to extend the research about BR treatments to other climacteric fruits and to deepen the knowledge of how BRs regulate physiological aspects from preharvest to postharvest. Furthermore, it is essential to investigate the role of BRs in the prevention of rot and biotic stress.
Collapse
Affiliation(s)
- Fernando Garrido-Auñón
- Department of Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain; (F.G.-A.); (J.P.-M.)
| | - Jenifer Puente-Moreno
- Department of Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain; (F.G.-A.); (J.P.-M.)
| | - María E. García-Pastor
- Department of Applied Biology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain; (M.E.G.-P.); (M.S.)
| | - María Serrano
- Department of Applied Biology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain; (M.E.G.-P.); (M.S.)
| | - Daniel Valero
- Department of Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain; (F.G.-A.); (J.P.-M.)
| |
Collapse
|
6
|
Muhammad N, Liu Z, Wang L, Yang M, Liu M. The underlying molecular mechanisms of hormonal regulation of fruit color in fruit-bearing plants. PLANT MOLECULAR BIOLOGY 2024; 114:104. [PMID: 39316226 DOI: 10.1007/s11103-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/01/2024] [Indexed: 09/25/2024]
Abstract
Fruit color is a key feature of fruit quality, primarily influenced by anthocyanin or carotenoid accumulation or chlorophyll degradation. Adapting the pigment content is crucial to improve the fruit's nutritional and commercial value. Genetic factors along with other environmental components (i.e., light, temperature, nutrition, etc.) regulate fruit coloration. The fruit coloration process is influenced by plant hormones, which also play a vital role in various physiological and biochemical metabolic processes. Additionally, phytohormones play a role in the regulation of a highly conserved transcription factor complex, called MBW (MYB-bHLH-WD40). The MBW complex, which consists of myeloblastosis (MYB), basic helix-loop-helix (bHLH), and WD40 repeat (WDR) proteins, coordinates the expression of downstream structural genes associated with anthocyanin formation. In fruit production, the application of plant hormones may be important for promoting coloration. However, concerns such as improper concentration or application time must be addressed. This article explores the molecular processes underlying pigment formation and how they are influenced by various plant hormones. The ABA, jasmonate, and brassinosteroid increase anthocyanin and carotenoid formation, but ethylene, auxin, cytokinin, and gibberellin have positive as well as negative effects on anthocyanin formation. This article establishes the necessary groundwork for future studies into the molecular mechanisms of plant hormones regulating fruit color, ultimately aiding in their effective and scientific application towards fruit coloration.
Collapse
Grants
- (HBCT2024190201) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- (CARS-30-2-07) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- (2020YFD1000705 Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- 2019YFD1001605 Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- 2018YFD1000607) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
Collapse
Affiliation(s)
- Noor Muhammad
- College of Forestry, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lixin Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Minsheng Yang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
7
|
Niu J, Shi Y, Gao Z, Sun Z, Tian S, Chen X, Luan M. The β-galactosidase gene AtrBGAL2 regulates Akebia trifoliata fruit cracking. Int J Biol Macromol 2024; 275:133313. [PMID: 38936569 DOI: 10.1016/j.ijbiomac.2024.133313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Cracking of Akebia trifoliata fruit at maturity is problematic for the cultivation of the horticultural crop, shortening shelf-life quality and compromising commercial value. However, the molecular mechanisms underlying this feature of A. trifoliata are not known. Genes involved in cell wall metabolism were identified by genome and transcriptome sequencing, which may play important roles in fruit cracking. One of the galactose metabolism related genes, β-galactosidase (AtrBGAL2), was identified in A. trifoliata, and overexpression (OE) of AtrBGAL2 resulted in early fruit cracking, higher water-soluble pectin contents, and lower acid-soluble pectin, cellulose, and hemicellulose content compared to the wild type. Whereas silencing of AtrBGAL2 in trifoliata by virus induced gene silencing showed opposite trends. The levels of AtrBGAL2 transcripts were 24.6 and 66.0-fold higher in OE A. trifoliata and tomato fruits, respectively, and the cell wall-related genes were also gradually greater than in control plants during fruit ripening. Whereas the expression levels of AtrBGAL2 was significantly down-regulated by 54.1 % and 73.7 % in gene silenced A. trifoliata and CRISPR/Cas9 tomato mutant plants, respectively, and cell wall-related genes were also significantly reduced. These results demonstrate that AtrBGAL2 plays important roles in regulating fruit cracking during fruit ripening.
Collapse
Affiliation(s)
- Juan Niu
- Jingdezhen University, Jingdezhen 333032, China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China
| | - Yingying Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China
| | - Zexin Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China
| | - Zhimin Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China
| | - Shuang Tian
- Jingdezhen University, Jingdezhen 333032, China.
| | | | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572000, China.
| |
Collapse
|
8
|
Yang F, Zhao R, Suo J, Ding Y, Tan J, Zhu Q, Ma Y. Understanding quality differences between kiwifruit varieties during softening. Food Chem 2024; 430:136983. [PMID: 37527582 DOI: 10.1016/j.foodchem.2023.136983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
Research into variations between kiwifruit varieties particularly their softening quality during storage is important in improving kiwifruit quality. The potential reasons for ripening quality differences between 'Cuixiang' (CX) and 'Hayward' (HWD) kiwifruit were analyzed by physiology and metabolomic data combined with the random forests learning algorithm. The results showed that the storability difference between the two varieties mainly resulted from differences in polygalacturonase (PG) and β-galactosidase activities. The 1 °C slowed the fruit softening process of both varieties by decreasing their PG activities. A total of 368 metabolites were identified and amino acid, carbohydrate, cofactors and vitamins, as well as nucleotide metabolism are key metabolic modules that affect the ripening differences of CX and HWD kiwifruit. A total of 30 metabolites showed remarkable ability in distinguish the ripening quality of CX and HWD kiwifruit, in which d-glucose, d-maltose, 2-hydroxybutyric acid, phenyllactate, and vitamin B2 were noteworthy for their potential application on the evaluation of kiwifruit taste and nutritional value. These findings provide positive insights into the underlying mechanism of ripening quality differences between CX and HWD kiwifruit and new ideas for identifying key metabolic markers in kiwifruit.
Collapse
Affiliation(s)
- Fan Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Renkai Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiangtao Suo
- Shaanxi Bairui Kiwi Research Institute Co., Ltd., in China, Xi'an, Shaanxi 710000, PR China
| | - Yuduan Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiawei Tan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yanping Ma
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
9
|
Wu Q, He Y, Cui C, Tao X, Zhang D, Zhang Y, Ying T, Li L. Quantitative proteomic analysis of tomato fruit ripening behavior in response to exogenous abscisic acid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7469-7483. [PMID: 37421609 DOI: 10.1002/jsfa.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/17/2023] [Accepted: 07/08/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND To determine how abscisic acid (ABA) affects tomato fruit ripening at the protein level, mature green cherry tomato fruit were treated with ABA, nordihydroguaiaretic acid (NDGA) or sterile water (control, CK). The proteomes of treated fruit were analyzed and quantified using tandem mass tags (TMTs) at 7 days after treatment, and the gene transcription abundances of differently expressed proteins (DEPs) were validated with quantitative real-time polymerase chain reaction. RESULTS Postharvest tomato fruit underwent faster color transformation and ripening than the CK when treated with ABA. In total, 6310 proteins were identified among the CK and treatment groups, of which 5359 were quantified. Using a change threshold of 1.2 or 0.83 times, 1081 DEPs were identified. Among them, 127 were upregulated and 127 were downregulated in the ABA versus CK comparison group. According to KEGG and protein-protein interaction network analyses, the ABA-regulated DEPs were primarily concentrated in the photosynthesis system and sugar metabolism pathways, and 102 DEPs associated with phytohormones biosynthesis and signal transduction, pigment synthesis and metabolism, cell wall metabolism, photosynthesis, redox reactions, allergens and defense responses were identified in the ABA versus CK and NDGA versus CK comparison groups. CONCLUSION ABA affects tomato fruit ripening at the protein level to some extent. The results of this study provided comprehensive insights and data for further research on the regulatory mechanism of ABA in tomato fruit ripening. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiong Wu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Yanan He
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Chunxiao Cui
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Xiaoya Tao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dongdong Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Yurong Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Perotti MF, Posé D, Martín-Pizarro C. Non-climacteric fruit development and ripening regulation: 'the phytohormones show'. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6237-6253. [PMID: 37449770 PMCID: PMC10627154 DOI: 10.1093/jxb/erad271] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Fruit ripening involves numerous physiological, structural, and metabolic changes that result in the formation of edible fruits. This process is controlled at different molecular levels, with essential roles for phytohormones, transcription factors, and epigenetic modifications. Fleshy fruits are classified as either climacteric or non-climacteric species. Climacteric fruits are characterized by a burst in respiration and ethylene production at the onset of ripening, while regulation of non-climacteric fruit ripening has been commonly attributed to abscisic acid (ABA). However, there is controversy as to whether mechanisms regulating fruit ripening are shared between non-climacteric species, and to what extent other hormones contribute alongside ABA. In this review, we summarize classic and recent studies on the accumulation profile and role of ABA and other important hormones in the regulation of non-climacteric fruit development and ripening, as well as their crosstalk, paying special attention to the two main non-climacteric plant models, strawberry and grape. We highlight both the common and different roles of these regulators in these two crops, and discuss the importance of the transcriptional and environmental regulation of fruit ripening, as well as the need to optimize genetic transformation methodologies to facilitate gene functional analyses.
Collapse
Affiliation(s)
- María Florencia Perotti
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - David Posé
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Carmen Martín-Pizarro
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| |
Collapse
|
11
|
Hu S, Xie B, Hou Y, Zhao L, Zheng Y, Jin P. Postharvest 24-epibrassinolide treatment improves chilling resistance of peach fruit via PpHDT1 modulating brassinosteroid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108116. [PMID: 39491268 DOI: 10.1016/j.plaphy.2023.108116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Brassinosteroids (BRs) exhibit a positive effect on facilitating chilling resistance in fruits and vegetables. However, the change and regulatory mechanism of BR metabolism in fruits and vegetables are poorly understood. This study aimed to explore the underlying relationship among chilling injury (CI), BR metabolism and regulatory factor PpHDT1. The results showed that exogenous 24-epibrassinolide (EBR) retarded peaches CI, reduced endogenous brassinolide (BL) accumulation, repressed the transcriptions of BR synthesis-related genes, promoted expression of BR signal-related genes. The results of molecular assays in vivo demonstrated that PpHDT1 down-regulated BR synthesis gene PpDWF4 and up-regulated BR signal transduction gene PpBZR1. Moreover, EBR treatment enhanced PpHDT1 expression, revealing that EBR treatment might alleviate peaches CI through PpHDT1 modulating BL metabolism and signal pathway. Our study provides a new insight into the underlying mechanism of EBR on regulating chilling resistance in postharvest peaches.
Collapse
Affiliation(s)
- Shunqing Hu
- Shandong Institute of Pomology, Taian, 271000, PR China
| | - Bing Xie
- College of Food Science and Technology, Tarim University, Alaer, 843300, PR China
| | - Yuanyuan Hou
- College of Life Sciences and Technology, Xinjiang University, Urumqi, 830046, PR China
| | - Liangyi Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
12
|
Elsayed MI, Awad MA, Al-Qurashi AD. Efficacy of 24-epibrassinolide-chitosan composite coating on the quality of 'Williams' bananas during ripening. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6297-6306. [PMID: 37188654 DOI: 10.1002/jsfa.12703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Banana fruit undergo rapid metabolic changes following the induction of ripening. They result in excessive softening, chlorophyll degradation, browning, and senescence during postharvest life. As part of a continuous effort to extend fruit shelf life and maintain the best possible quality, this study examined the effect of a 24-epibrassinolide (EBR) and chitosan (CT) composite coating on 'Williams' bananas ripening in ambient conditions. Fruit were soaked in 20 μM EBR, 10 g L-1 CT (w/v), and 20 μM EBR + 10 g L-1 CT solutions for 15 min and were kept at 23 ± 1 °C and 85-90% (RH) for 9 days. RESULTS The combined treatment (20 μM EBR + 10 g L-1 CT) clearly delayed fruit ripening; bananas treated with this showed less peel yellowing, weight loss, and total soluble solids, and greater firmness, titratable acidity, membrane stability index, and ascorbic acid content than the untreated control. After the treatment, the fruit also presented higher radical scavenging capacity, and higher total phenol and flavonoid content. The activity of polyphenoloxidase and hydrolytic enzymes was lower, and that of peroxidase was higher in both the peel and pulp of all the treated fruit than in the control. CONCLUSION The combined treatment (20 μM EBR + 10 g L-1 CT) is suggested as an effective composite edible coat to retain the quality of 'Williams' bananas during ripening. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohamed I Elsayed
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A Awad
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
- Pomology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt
| | - Adel D Al-Qurashi
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Oyedoh OP, Yang W, Dhanasekaran D, Santoyo G, Glick BR, Babalola OO. Rare rhizo-Actinomycetes: A new source of agroactive metabolites. Biotechnol Adv 2023; 67:108205. [PMID: 37356598 DOI: 10.1016/j.biotechadv.2023.108205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Numerous biotic and abiotic stress in some geographical regions predisposed their agricultural matrix to challenges threatening plant productivity, health, and quality. In curbing these threats, different customary agrarian principles have been created through research and development, ranging from chemical inputs and genetic modification of crops to the recently trending smart agricultural technology. But the peculiarities associated with these methods have made agriculturists rely on plant rhizospheric microbiome services, particularly bacteria. Several bacterial resources like Proteobacteria, Firmicutes, Acidobacteria, and Actinomycetes (Streptomycetes) are prominent as bioinoculants or the application of their by-products in alleviating biotic/abiotic stress have been extensively studied, with a dearth in the application of rare Actinomycetes metabolites. Rare Actinomycetes are known for their colossal genome, containing well-preserved genes coding for prolific secondary metabolites with many agroactive functionalities that can revolutionize the agricultural industry. Therefore, the imperativeness of this review to express the occurrence and distributions of rare Actinomycetes diversity, plant and soil-associated habitats, successional track in the rhizosphere under diverse stress, and their agroactive metabolite characteristics and functionalities that can remediate the challenges associated with agricultural productivity.
Collapse
Affiliation(s)
- Oghoye Priscilla Oyedoh
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Wei Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dharumadurai Dhanasekaran
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biolόgicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
14
|
Xu Z, Dai J, Liang L, Zhang Y, He Y, Xing L, Ma J, Zhang D, Zhao C. Chitinase-Like Protein PpCTL1 Contributes to Maintaining Fruit Firmness by Affecting Cellulose Biosynthesis during Peach Development. Foods 2023; 12:2503. [PMID: 37444241 DOI: 10.3390/foods12132503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The firmness of the flesh fruit is a very important feature in the eating process. Peach fruit is very hard during development, but its firmness slightly decreases in the later stages of development. While there has been extensive research on changes in cell wall polysaccharides during fruit ripening, little is known about the changes that occur during growth and development. In this study, we investigated the modifications in cell wall components throughout the development and ripening of peach fruit, as well as its impact on firmness. Our findings revealed a significant positive correlation between fruit firmness and cellulose content at development stage. However, the correlation was lost during the softening process, suggesting that cellulose might be responsible for the fruit firmness during development. Members of the chitinase-like protein (CTL) group are of interest because of their possible role in plant cell wall biosynthesis. Here, two CTL homologous genes, PpCTL1 and PpCTL2, were identified in peach. Spatial and temporal expression patterns of PpCTLs revealed that PpCTL1 exhibited high expression abundance in the fruit and followed a similar trend to cellulose during fruit growth. Furthermore, silencing PpCTL1 expression resulted in reduced cellulose content at 5 DAI (days after injection), this change that would have a negative effect on fruit firmness. Our results indicate that PpCTL1 plays an important role in cellulose biosynthesis and the maintenance of peach firmness during development.
Collapse
Affiliation(s)
- Ze Xu
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Jieyu Dai
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Liping Liang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Yonglan Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Yaojun He
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| |
Collapse
|
15
|
He Y, Wu Q, Cui C, Tian Q, Zhang D, Zhang Y. ChIP-Seq Analysis of SlAREB1 Downstream Regulatory Network during Tomato Ripening. Foods 2023; 12:2357. [PMID: 37372568 DOI: 10.3390/foods12122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
SlAREB1, a member of the abscisic acid (ABA) response element-binding factors (AREB/ABFs) family, was reported to play a crucial role in the expression of ABA-regulated downstream genes and affect the ripening of tomato fruit. However, the downstream genes of SlAREB1 are still unclear. Chromatin immunoprecipitation (ChIP) is a powerful tool and a standard method for studying the interactions between DNA and proteins at the genome-wide level. In the present study, SlAREB1 was proved to continually increase until the mature green stage and then decrease during the ripening period, and a total of 972 gene peaks were identified downstream of SlAREB1 by ChIP-seq analysis, mainly located in the intergenic and promoter regions. Further gene ontology (GO) annotation analysis revealed that the target sequence of SlAREB1 was the most involved in biological function. Kyoto Encylopaedia of Genes and Genomes (KEGG) pathway analysis showed that the identified genes were mainly involved in the oxidative phosphorylation and photosynthesis pathways, and some of them were associated with tomato phytohormone synthesis, the cell wall, pigment, and the antioxidant characteristic of the fruit as well. Based on these results, an initial model of SlAREB1 regulation on tomato fruit ripening was constructed, which provided a theoretical basis for further exploring the effects of the regulation mechanism of SlAREB1 and ABA on tomato fruit ripening.
Collapse
Affiliation(s)
- Yanan He
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Qiong Wu
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Chunxiao Cui
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Qisheng Tian
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Dongdong Zhang
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yurong Zhang
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
16
|
Ma Y, Wang C, Gao Z, Yao Y, Kang H, Du Y. VvPL15 Is the Core Member of the Pectate Lyase Gene Family Involved in Grape Berries Ripening and Softening. Int J Mol Sci 2023; 24:ijms24119318. [PMID: 37298267 DOI: 10.3390/ijms24119318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The process of ripening and softening in grape begins at veraison and is closely related to the depolymerization of pectin components. A variety of enzymes are involved in pectin metabolism and one class of enzyme, pectin lyases (PLs), have been reported to play an important role in softening in many fruits; however, little information is available on the VvPL gene family in grape. In this study, 16 VvPL genes were identified in the grape genome using bioinformatics methods. Among them, VvPL5, VvPL9, and VvPL15 had the highest expression levels during grape ripening, which suggests that these genes are involved in grape ripening and softening. Furthermore, overexpression of VvPL15 affects the contents of water-soluble pectin (WSP) and acid-soluble pectin (ASP) in the leaves of Arabidopsis and significantly changes the growth of Arabidopsis plants. The relationship between VvPL15 and pectin content was further determined by antisense expression of VvPL15. In addition, we also studied the effect of VvPL15 on fruit in transgenic tomato plants, which showed that VvPL15 accelerated fruit ripening and softening. Our results indicate that VvPL15 plays an important role in grape berry softening during ripening by depolymerizing pectin.
Collapse
Affiliation(s)
- Yuying Ma
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Chukun Wang
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Zhen Gao
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yuxin Yao
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Hui Kang
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yuanpeng Du
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
17
|
Lin X, Huang S, Huber DJ, Zhang Q, Wan X, Peng J, Luo D, Dong X, Zhu S. Melatonin Treatment Affects Wax Composition and Maintains Storage Quality in 'Kongxin' Plum ( Prunus salicina L. cv) during Postharvest. Foods 2022; 11:foods11243972. [PMID: 36553714 PMCID: PMC9778571 DOI: 10.3390/foods11243972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cuticular wax is an essential barrier against biological and abiotic stress and is also an important factor affecting fruit storage quality. This paper investigated the effect of melatonin treatment on cuticular wax and the storage quality of plum fruit at low temperature storage of 4 ± 1 °C. 'Kongxin' plum was treated with 150 μmol·L-1 melatonin, dried overnight at room temperature 25 ± 1 °C, and then stored at 4 ± 1 °C for 40 d. The microstructure of the fruit epidermis was examined after 0, 20, and 40 d of storage, and the wax composition and fruit storage quality were measured at 10 d intervals. The results demonstrated that melatonin promoted the disintegration and thickening of rod-shaped waxy crystals of 'Kongxin' plum fruit and inhibited the combination of disintegrated wax and inner wax. Melatonin maintained fruit firmness and decreased the correlation between fruit firmness and other storage quality parameters. The correlation between firmness and wax composition was enhanced. Melatonin promoted long-chain alkanes that were positively correlated with firmness and water retention and strengthened the correlation between the length of the alkane chain and storage quality parameters but reduced the difference between alkane isomers and storage quality parameters.
Collapse
Affiliation(s)
- Xin Lin
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Shian Huang
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
- Guiyang Agricultural Reclamation Investment Development Group Co., Ltd., Guizhou 550001, China
| | - Donald J. Huber
- Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0690, USA
| | - Qin Zhang
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Xuan Wan
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Junsen Peng
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Dengcan Luo
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Xiaoqing Dong
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
- Correspondence: (X.D.); (S.Z.)
| | - Shouliang Zhu
- Guizhou Workstation for Fruit and Vegetables, Guizhou 550025, China
- Correspondence: (X.D.); (S.Z.)
| |
Collapse
|
18
|
Peng Z, Liu G, Li H, Wang Y, Gao H, Jemrić T, Fu D. Molecular and Genetic Events Determining the Softening of Fleshy Fruits: A Comprehensive Review. Int J Mol Sci 2022; 23:12482. [PMID: 36293335 PMCID: PMC9604029 DOI: 10.3390/ijms232012482] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit softening that occurs during fruit ripening and postharvest storage determines the fruit quality, shelf life and commercial value and makes fruits more attractive for seed dispersal. In addition, over-softening results in fruit eventual decay, render fruit susceptible to invasion by opportunistic pathogens. Many studies have been conducted to reveal how fruit softens and how to control softening. However, softening is a complex and delicate life process, including physiological, biochemical and metabolic changes, which are closely related to each other and are affected by environmental conditions such as temperature, humidity and light. In this review, the current knowledge regarding fruit softening mechanisms is summarized from cell wall metabolism (cell wall structure changes and cell-wall-degrading enzymes), plant hormones (ETH, ABA, IAA and BR et al.), transcription factors (MADS-Box, AP2/ERF, NAC, MYB and BZR) and epigenetics (DNA methylation, histone demethylation and histone acetylation) and a diagram of the regulatory relationship between these factors is provided. It will provide reference for the cultivation of anti-softening fruits.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tomislav Jemrić
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
19
|
Groszyk J, Przyborowski M. Inhibition of the Glycogen Synthase Kinase 3 Family by the Bikinin Alleviates the Long-Term Effects of Salinity in Barley. Int J Mol Sci 2022; 23:11644. [PMID: 36232941 PMCID: PMC9569769 DOI: 10.3390/ijms231911644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Crops grown under stress conditions show restricted growth and, eventually, reduced yield. Among others, brassinosteroids (BRs) mitigate the effects of stress and improve plant growth. We used two barley cultivars with differing sensitivities to BRs, as determined by the lamina joint inclination test. Barley plants with the 2nd unfolded leaf were sprayed with a diluted series of bikinin, an inhibitor of the Glycogen Synthase Kinase 3 (GSK3) family, which controls the BR signaling pathway. Barley was grown under salt stress conditions up to the start of the 5th leaf growth stage. The phenotypical, molecular, and physiological changes were determined. Our results indicate that the salt tolerance of barley depends on its sensitivity to BRs. We confirmed that barley treatment with bikinin reduced the level of the phosphorylated form of HvBZR1, the activity of which is regulated by GSK3. The use of two barley varieties with different responses to salinity led to the identification of the role of BR signaling in photosynthesis activity. These results suggest that salinity reduces the expression of the genes controlling the BR signaling pathway. Moreover, the results also suggest that the functional analysis of the GSK3 family in stress responses can be a tool for plant breeding in order to improve crops' resistance to salinity or to other stresses.
Collapse
Affiliation(s)
- Jolanta Groszyk
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland
| | | |
Collapse
|
20
|
Wang J, Liu XF, Zhang HQ, Allan AC, Wang WQ, Yin XR. Transcriptional and post-transcriptional regulation of ethylene biosynthesis by exogenous acetylsalicylic acid in kiwifruit. HORTICULTURE RESEARCH 2022; 9:uhac116. [PMID: 35937863 PMCID: PMC9347011 DOI: 10.1093/hr/uhac116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Levels of ethylene, implicated in the induction of fruit ripening in a diverse array of plants, are influenced by genetic and environmental factors, such as other plant hormones. Among these, salicylic acid (SA) and its derivative, acetylsalicylic acid (ASA), have been demonstrated to inhibit ethylene biosynthesis in fruit, yet the underlying regulatory mechanisms remain elusive. Here, we showed that treatment with exogenous ASA dramatically reduced ethylene production, as well as activities of ACC synthase (ACS) and ACC oxidase (ACO), in kiwifruit tissues. Comparative transcriptome analysis indicated the differential expression of ethylene biosynthetic genes (AdACS1/2 and AdACO5). A screen of transcription factors indicated that AdERF105L and AdWRKY29 were ASA-responsive regulators of AdACS1/2 and AdACO5, respectively. In addition to these genes, AdACS3 and AdACO3 were abundantly expressed in both ASA-treated and control tissues. AdACS3 protein was phosphorylated and stabilized by AdMPK16, a mitogen-activated protein kinase, while AdACO3 activity was enhanced by AdAP, an aspartic peptidase. Exogenous ASA downregulated AdMPK16 and AdAP, thereby influencing ethylene biosynthesis at a post-transcriptional level. These findings led us to propose a multidimensional system for inhibition of ethylene biosynthesis by ASA, inducing differential expression of some ethylene biosynthesis genes, as well as differential effects on protein activity on other targets.
Collapse
Affiliation(s)
- Jian Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou Zhejiang, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou Zhejiang, 310058, China
| | - Xiao-fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou Zhejiang, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou Zhejiang, 310058, China
| | - Hui-qin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou Zhejiang, 310021, China
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | - Xue-ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou Zhejiang, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou Zhejiang, 310058, China
| |
Collapse
|
21
|
Xu Z, Dai J, Kang T, Shah K, Li Q, Liu K, Xing L, Ma J, Zhang D, Zhao C. PpePL1 and PpePL15 Are the Core Members of the Pectate Lyase Gene Family Involved in Peach Fruit Ripening and Softening. FRONTIERS IN PLANT SCIENCE 2022; 13:844055. [PMID: 35401624 PMCID: PMC8990770 DOI: 10.3389/fpls.2022.844055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/07/2022] [Indexed: 06/12/2023]
Abstract
Pectin is the major component in the primary cell wall and middle lamella, maintaining the physical stability and mechanical strength of the cell wall. Pectate lyase (PL), a cell wall modification enzyme, has a major influence on the structure of pectin. However, little information and no comprehensive analysis is available on the PL gene family in peach (Prunus persica L. Batsch). In this study, 20 PpePL genes were identified in peach. We characterized their physicochemical characteristics, sequence alignments, chromosomal locations, and gene structures. The PpePL family members were classified into five groups based on their phylogenetic relationships. Among those, PpePL1, 9, 10, 15, and 18 had the higher expression abundance in ripe fruit, and PpePL1, 15, and 18 were upregulated during storage. Detailed RT-qPCR analysis revealed that PpePL1 and PpePL15 were responsive to ETH treatment (1 g L-1 ethephon) with an abundant transcript accumulation, which suggested these genes were involved in peach ripening and softening. In addition, virus-induced gene silencing (VIGS) technology was used to identify the roles of PpePL1 and PpePL15. Compared to controls, the RNAi fruit maintained greater firmness in the early storage stage, increased acid-soluble pectin (ASP), and reduced water-soluble pectin (WSP). Moreover, transmission electron microscopy (TEM) showed that cell wall degradation was reduced in the fruit of RNAi-1 and RNAi-15, which indicated that softening of the RNAi fruit has been delayed. Our results indicated that PpePL1 and PpePL15 play an important role in peach softening by depolymerizing pectin and degrading cell wall.
Collapse
|
22
|
Zhang H, Yang D, Wang P, Zhang X, Ding Z, Zhao L. Feedback Inhibition Might Dominate the Accumulation Pattern of BR in the New Shoots of Tea Plants ( Camellia sinensis). Front Genet 2022; 12:809608. [PMID: 35273632 PMCID: PMC8902050 DOI: 10.3389/fgene.2021.809608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/28/2021] [Indexed: 11/15/2022] Open
Abstract
Brassinosteroid (BR), a kind of polyhydroxylated steroid hormone, plays an important role in physiological and biochemical processes in plants. Studies were mainly focused on BR signaling and its exogenous spraying to help enhance crop yields. Few research studies are centered on the accumulation pattern of BR and its mechanism. Yet, it is crucial to unlock the mystery of the function of BR and its cross action with other hormones. Tea (Camellia sinensis (L.) O. Kuntze) is one of the important economic crops in some countries, and new shoots are the raw materials for the preparation of various tea products. Different concentrations of exogenous BR were reported to have different effects on growth and development. New shoots of tea plants can thus be considered a valuable research object to study the accumulation pattern of BR. In this study, the quantity of five BR components (brassinolide, 28-norbrassinolide, 28-homobrassinolide, castasterone, and 28-norcastasterone) in different tissues of tea plants, including buds (Bud), different maturity of leaves (L1, L2), and stems (S1, S2) were determined by UPLC-MS/MS. A total of 15 cDNA libraries of the same tissue with three repetitions for each were constructed and sequenced. The BR-accumulation pattern and gene expression pattern were combined together for weighted gene co-expression network analysis (WGCNA). BR-accumulation-relative genes were then screened using two methods, based on the K.in value and BR biosynthetic pathway (ko00905), respectively. The result showed that photosynthesis-related genes and CYP450 family genes were actively involved and might play important roles in BR accumulation and/or its accumulation pattern. First and foremost, feedback inhibition was more likely to dominate the accumulation pattern of BR in the new shoots of tea plants. Moreover, three conserved miRNAs with their target transcriptional factors and target mRNAs had been figured out from negative correlation modules that might be strongly linked to the BR-accumulation pattern. Our study provided an experimental basis for the role of BR in tea plants. The excavation of genes related to the accumulation pattern of BR provided the possibility of cross-action studies on the regulation of BR biosynthesis and the study between BR and other hormones.
Collapse
Affiliation(s)
- Hanghang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Dong Yang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Peiqiang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhaotang Ding
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
23
|
Guo C, Li J, Li M, Xu X, Chen Y, Chu J, Yao X. Regulation Mechanism of Exogenous Brassinolide on Bulbil Formation and Development in Pinellia ternata. FRONTIERS IN PLANT SCIENCE 2022; 12:809769. [PMID: 35069668 PMCID: PMC8766408 DOI: 10.3389/fpls.2021.809769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The bulbil is the propagative organ of the P. ternata, which has a great effect on the yield of P. ternata. It is well known that plant hormones play important roles in bulbil formation and development. However, there is not clear about brassinolide (BR) regulation on bulbil formation and development. In this study, we revealed the effects of BR and BR biosynthesis inhibitors (propiconazole, Pcz) application on the histological observation, starch and sucrose metabolism, photosynthesis pathway, and hormone signaling pathway of P. ternata. The results showed that BR treatment reduced starch catabolism to maltodextrin and maltose in bulbil by decreasing BAM and ISA genes expression and increased cellulose catabolism to D-glucose in bulbil by enhancing edg and BGL genes expression. BR treatment enhanced the photosynthetic pigment content and potential maximum photosynthetic capacity and improved the photoprotection ability of P. ternata by increasing the dissipation of excess light energy to heat, thus reduced the photodamage in the PSII center. BR treatment increased the GA and BR content in bulbil of P. ternata, and decreased the ABA content in bulbil of P. ternata. Pcz treatment increased the level of GA, SL, ABA, and IAA in bulbil of P. ternata. BR regulated the signal transduction of BR, IAA, and ABA to regulate the formation and development of bulbil in P. ternata. These results provide molecular insight into BR regulation on bulbil formation and development.
Collapse
Affiliation(s)
- Chenchen Guo
- College of Life Sciences, Hebei University, Baoding, China
| | - Jigang Li
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Minghui Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Xihang Xu
- College of Life Sciences, Hebei University, Baoding, China
| | - Ying Chen
- College of Life Sciences, Hebei University, Baoding, China
| | - Jianzhou Chu
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xiaoqin Yao
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
24
|
Guo C, Li M, Chen Y, Xu X, Liu C, Chu J, Yao X. Seed bulb size influences the effects of exogenous brassinolide on yield and quality of Pinellia ternata. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:117-126. [PMID: 34693612 DOI: 10.1111/plb.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
In recent years, natural Pinellia ternata populations of have gradually been exhausted, while the cultivated yield has been limited due to lack of research and uncertain climate condition. Therefore, it is necessary to explore methods of improving yield and quality in P. ternata using brassinolide (BR) treatments and choice of a suitable seed bulb size. This article reports the effects of BR and two seed bulb sizes (diameter: 0.5-1.0 cm and 1.0-1.5 cm) on active and nutrient components and antioxidant activity in P. ternata. The experiment included six levels of BR (0, 0.05, 0.10, 0.50, 1.00 and 2.00 mg l-1 ). The tuber yield of the two seed bulb sizes and bulbil yield of small seed bulbs increased 5.67%, 22.66% and 69.23% by day 105 after 0.50 mg l-1 BR treatment, compared with the control. On day 105, only 0.05 mg l-1 BR increased scores in principal components analysis (PCA) in tubers of small seed bulbs by 167.29%, and 0.05 and 0.50 mg l-1 BR increased PCA score in bulbils of large seed bulbs by 145.66% and 252.97%, respectively, compared with the control. Significant BR × seed bulb size interactions were found on yield and quality of P. ternata. The results indicate that BR effects on yield and quality of tubers and bulbils of P. ternata are not only related to BR concentration but also to seed bulb size.
Collapse
Affiliation(s)
- C Guo
- College of Life Sciences, Hebei University, Baoding, China
| | - M Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Y Chen
- College of Life Sciences, Hebei University, Baoding, China
| | - X Xu
- College of Life Sciences, Hebei University, Baoding, China
| | - C Liu
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - J Chu
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - X Yao
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
25
|
Hu D, Wei L, Liao W. Brassinosteroids in Plants: Crosstalk with Small-Molecule Compounds. Biomolecules 2021; 11:biom11121800. [PMID: 34944444 PMCID: PMC8698649 DOI: 10.3390/biom11121800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Brassinosteroids (BRs) are known as the sixth type of plant hormone participating in various physiological and biochemical activities and play an irreplaceable role in plants. Small-molecule compounds (SMCs) such as nitric oxide (NO), ethylene, hydrogen peroxide (H2O2), and hydrogen sulfide (H2S) are involved in plant growth and development as signaling messengers. Recently, the involvement of SMCs in BR-mediated growth and stress responses is gradually being discovered in plants, including seed germination, adventitious rooting, stem elongation, fruit ripening, and stress responses. The crosstalk between BRs and SMCs promotes plant development and alleviates stress damage by modulating the antioxidant system, photosynthetic capacity, and carbohydrate metabolism, as well as osmotic adjustment. In the present review, we try to explain the function of BRs and SMCs and their crosstalk in the growth, development, and stress resistance of plants.
Collapse
Affiliation(s)
| | | | - Weibiao Liao
- Correspondence: ; Tel.: +86-931-763-2155; Fax: +86-931-763-2155
| |
Collapse
|
26
|
Yang N, Zhou Y, Wang Z, Zhang Z, Xi Z, Wang X. Emerging roles of brassinosteroids and light in anthocyanin biosynthesis and ripeness of climacteric and non-climacteric fruits. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34793267 DOI: 10.1080/10408398.2021.2004579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Anthocyanins are important pigments that contribute to fruit quality. The regulation of anthocyanin biosynthesis by several transcription factors via sophisticated regulatory networks has been studied in various plants. Brassinosteroids (BRs), a new class of plant hormone, are involved in regulating anthocyanin biosynthesis in fruits. Furthermore, light directly affects the synthesis and distribution of anthocyanins. Here, we summarize the recent progress toward understanding the impact of BR and light on anthocyanin biosynthesis in climacteric and non-climacteric fruits. We review the BR and light signaling pathways and highlight the important transcription factors that are associated with the synthesis of anthocyanins, such as BZR1 (brassinazole-resistant 1, BR signaling pathway), HY5 (elongated hypocotyl 5) and COP1 (constitutively photomorphogenic 1, light signal transduction pathway), which bind with the target genes involved in anthocyanin synthesis. In addition, we review the mechanism by which light signals interact with hormonal signals to regulate anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Ni Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yali Zhou
- College of Enology, Northwest A&F University, Yangling, China.,College of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Zhaoxiang Wang
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Xuefei Wang
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
27
|
He Y, Liu H, Li H, Jin M, Wang X, Yin X, Zhu Q, Rao J. Transcription factors DkBZR1/2 regulate cell wall degradation genes and ethylene biosynthesis genes during persimmon fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6437-6446. [PMID: 34185065 DOI: 10.1093/jxb/erab312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/28/2021] [Indexed: 05/10/2023]
Abstract
BRASSINAZOLE RESISTANT (BZR) transcription factors are critical components of the brassinosteroid signalling pathway, but their possible roles in fruit ripening have rarely been reported. In this study, four BZR sequences were isolated from persimmon fruit. Among the four BZR genes, DkBZR1/2 were expressed in persimmon fruit; DkBZR1 protein amount decreased and dephosphorylated DkBZR2 gradually accumulated during the storage period. DkBZR1/2 proteins were localized in both the nucleus and cytoplasm and accumulated in the nucleus after 24-epibrassinolide treatment. DkBZR1 suppressed the transcription of Diospyros kaki endo-1,4-betaglucanase 1 (DkEGase1) and 1-aminocyclopropane-1-carboxylate synthase 1 (DkACS1) by binding to the BR response element (BRRE) in their promoters, and DkBZR2 activated the transcription of pectate lyase 1 (DkPL1) and 1-aminocyclopropane-1-carboxylate oxidase 2 (DkACO2) by binding to the E-box motif in their promoters. Transient overexpression of DkBZR2 promoted the conversion of acid-soluble pectin to water-soluble pectin and increased ethylene production in persimmon fruit. Our findings indicate that DkBZR1 and DkBZR2 serve as repressors and activators of persimmon fruit ripening, respectively.
Collapse
Affiliation(s)
- Yiheng He
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan, China
| | - Hui Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Huan Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Mijing Jin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianglan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xueren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingping Rao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Yadav A, Fennec A, Guan C, Yang Y, Kochanek B, Israel D, Izhaki A, Zilkah S, Friedman H. Phenotypic Characterization of Postharvest Fruit Qualities in Astringent and Non-astringent Persimmon ( Diospyros kaki) Cultivars. Front Genet 2021; 12:670929. [PMID: 34163526 PMCID: PMC8215578 DOI: 10.3389/fgene.2021.670929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
Phenotypic characterization of postharvest traits is essential for the breeding of high-quality fruits. To compare postharvest traits of different genetic lines, it is essential to use a reference point during fruit development that will be common to all the lines. In this study, we employed a non-destructive parameter of chlorophyll levels to establish a similar physiological age and compared several postharvest traits of ten astringent and seven non-astringent persimmon cultivars. The fruit's traits examined were astringency, weight, total soluble solids (TSS), titratable acidity (TA), chlorophyll levels (I AD ), color (hue), firmness, color development and firmness loss during storage, crack development, and susceptibility to Alternaria infection. Although the chlorophyll (I AD ) index and color (hue) showed a high correlation among mature fruits of all cultivars, the chlorophyll parameter could detect higher variability in each cultivar, suggesting that I AD is a more rigorous parameter for detecting the developmental stage. The average weight, TSS, and TA were similar between astringent and non-astringent cultivars. Cracks appeared only on a few cultivars at harvest. Resistance to Alternaria infection and firmness were lower in astringent than in non-astringent cultivars. Only the astringent cultivar "32" was resistant to infection possibly due to the existence of an efficient peel barrier. It was concluded that a high correlation existed between astringency, susceptibility to Alternaria infection, and firmness. Cracks did not correlate with astringency or firmness. The phenotypic traits evaluated in this work can be used in future breeding programs for elite persimmon fruits.
Collapse
Affiliation(s)
- Akhilesh Yadav
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| | - Anton Fennec
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| | - Changfei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yong Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Bettina Kochanek
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| | - David Israel
- Department of Fruit Tree Sciences, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| | - Anat Izhaki
- Department of Fruit Tree Sciences, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| | - Shmuel Zilkah
- Department of Fruit Tree Sciences, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| | - Haya Friedman
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
29
|
Zhu X, Chen Y, Li J, Ding X, Xiao S, Fan S, Song Z, Chen W, Li X. Exogenous 2,4-Epibrassinolide Treatment Maintains the Quality of Carambola Fruit Associated With Enhanced Antioxidant Capacity and Alternative Respiratory Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:678295. [PMID: 34149778 PMCID: PMC8212023 DOI: 10.3389/fpls.2021.678295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Brassinosteroids act by delaying fruit ripening. The effects of different concentrations of 2,4-epibrassinolide (eBL) treatments on carambola fruit ripening were investigated. The results show that treatment of 2.8 mg L-1, eBL with 10 min effectively delays ripening and maintains the quality of carambola fruit. This is achieved by retarding color changes and firmness losses while maintaining high level of soluble protein content and vitamin C, and low organic acid content. eBL-delayed senescence may be due to the inhibition of respiration rate and enhanced antioxidant system. It is noteworthy that eBL treatment markedly reduces the content of fructose-6-phosphate (6-P-F) and enhances the activity of cytochrome oxidase (CCO), and the total activity of glucose-6-phosphate dehydrogenase (G-6-PDH) and 6-phosphate gluconate dehydrogenase (6-PGDH). eBL treatment induces the IAA and GA contents but reduces that of ABA. In general, senescence retardation and quality improvement by eBL treatment may be due to the enhanced antioxidant capacity and altered respiratory pathways.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuxin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Junyi Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaochun Ding
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shuangling Xiao
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, China
| | - Silin Fan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zunyang Song
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Weixin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xueping Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
30
|
Jin M, Jiao J, Zhao Q, Ban Q, Gao M, Suo J, Zhu Q, Rao J. Dose effect of exogenous abscisic acid on controlling lignification of postharvest kiwifruit (Actinidia chinensis cv. hongyang). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
24-Epibrasinolide Modulates the Vase Life of Lisianthus Cut Flowers by Modulating ACC Oxidase Enzyme Activity and Physiological Responses. PLANTS 2021; 10:plants10050995. [PMID: 34067603 PMCID: PMC8156624 DOI: 10.3390/plants10050995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022]
Abstract
Ethylene is the most important factor playing roles in senescence and deterioration of harvested crops including cut flowers. Brassinosteroids (BRs), as natural phytohormones, have been reported to differently modulate ethylene production and related senescence processes in different crops. This study was carried out to determine the effects of different levels of 24-epibrassinolide (EBL) on ACC oxidase enzyme activity, the final enzyme in ethylene biosynthesis pathway, vase life, and senescence rate in lisianthus cut flowers. Harvested flowers were treated with EBL (at 0, 3, 6, and 9 µmol/L) and kept at 25 °C for 15 days. The ACC oxidase activity, water absorption, malondialdehyde (MDA) production and vase solution absorption rates, chlorophyll and anthocyanin contents, and the vase life of the flowers were evaluated during and at the end of storage. EBL at 3 µmol/L significantly (p ≤ 0.01) enhanced the flower vase life by decreasing the ACC oxidase activity, MDA production and senescence rates, and enhancing chlorophyll and anthocyanin biosynthesis and accumulation, relative water content, and vase solution absorption rates. By increasing the concentration, EBL negatively affected the flower vase life and postharvest quality probably via enhancing the ACC oxidase enzyme activity and subsequent ethylene production. EBL at 6 and 9 µmol/L and in a concentration dependent manner, enhanced the ACC oxidase activity and MDA production rate and decreased chlorophyll and anthocyanin accumulation and water absorption rate. The results indicate that the effects of brassinosteroids on ethylene production and physiology of lisianthus cut flowers is highly dose dependent.
Collapse
|
32
|
Ma X, Yuan Y, Li C, Wu Q, He Z, Li J, Zhao M. Brassinosteroids suppress ethylene-induced fruitlet abscission through LcBZR1/2-mediated transcriptional repression of LcACS1/4 and LcACO2/3 in litchi. HORTICULTURE RESEARCH 2021; 8:105. [PMID: 33931615 PMCID: PMC8087802 DOI: 10.1038/s41438-021-00540-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 05/16/2023]
Abstract
Abscission in plants is tightly controlled by multiple phytohormones and the expression of various genes. However, whether the plant hormone brassinosteroids (BRs) are involved in this process is largely unknown. Here, we found that exogenous application of BRs reduced the ethylene-induced fruitlet abscission of litchi due to lower ethylene (ET) production and suppressed the expression of the ethylene biosynthetic genes LcACS1/4 and LcACO2/3 in the fruitlet abscission zone (FAZ). Two genes that encode the BR core signaling components brassinazole resistant (BZR) proteins, namely, LcBZR1 and LcBZR2, were characterized. LcBZR1/2 were localized to the nucleus and acted as transcription repressors. Interestingly, the LcBZR1/2 transcript levels were not changed during ET-induced fruitlet abscission, while their expression levels were significantly increased after BR application. Moreover, gel shift and transient expression assays indicated that LcBZR1/2 could suppress the transcription of LcACS1/4 and LcACO2/3 by specifically binding to their promoters. Importantly, ectopic expression of LcBZR1/2 in Arabidopsis significantly delayed floral organ abscission and suppressed ethylene biosynthesis. Collectively, our results suggest that BRs suppress ET-induced fruitlet abscission through LcBZR1/2-controlled expression of genes related to ethylene biosynthesis in litchi. In addition, similar results were observed in the Arabidopsis gain-of-function mutant bzr1-1D, which showed delayed floral organ abscission in parallel with lower expression of ACS/ACO genes and reduced ethylene production, suggesting that the mechanism of BZR-controlled organ abscission via regulation of ethylene biosynthesis might be conserved in Arabidopsis.
Collapse
Affiliation(s)
- Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, 510642, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 510642, Guangzhou, China
| | - Ye Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, 510642, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 510642, Guangzhou, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, 510642, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 510642, Guangzhou, China
| | - Qian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, 510642, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 510642, Guangzhou, China
| | - Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, 510642, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 510642, Guangzhou, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, 510642, Guangzhou, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 510642, Guangzhou, China.
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, 510642, Guangzhou, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 510642, Guangzhou, China.
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
33
|
Ji Y, Qu Y, Jiang Z, Yan J, Chu J, Xu M, Su X, Yuan H, Wang A. The mechanism for brassinosteroids suppressing climacteric fruit ripening. PLANT PHYSIOLOGY 2021; 185:1875-1893. [PMID: 33743010 PMCID: PMC8133653 DOI: 10.1093/plphys/kiab013] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/02/2021] [Indexed: 05/21/2023]
Abstract
The plant hormone ethylene is important for the ripening of climacteric fruit, such as pear (Pyrus ussuriensis), and the brassinosteroid (BR) class of phytohormones affects ethylene biosynthesis during ripening via an unknown molecular mechanism. Here, we observed that exogenous BR treatment suppressed ethylene production and delayed fruit ripening, whereas treatment with a BR biosynthesis inhibitor promoted ethylene production and accelerated fruit ripening in pear, suggesting BR is a ripening suppressor. The expression of the transcription factor BRASSINAZOLE-RESISTANT 1PuBZR1 was enhanced by BR treatment during pear fruit ripening. PuBZR1 interacted with PuACO1, which converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene, and suppressed its activity. BR-activated PuBZR1 bound to the promoters of PuACO1 and of PuACS1a, which encodes ACC synthase, and directly suppressed their transcription. Moreover, PuBZR1 suppressed the expression of transcription factor PuERF2 by binding its promoter, and PuERF2 bound to the promoters of PuACO1 and PuACS1a. We concluded that PuBZR1 indirectly suppresses the transcription of PuACO1 and PuACS1a through its regulation of PuERF2. Ethylene production and expression profiles of corresponding apple (Malus domestica) homologs showed similar changes following epibrassinolide treatment. Together, these results suggest that BR-activated BZR1 suppresses ACO1 activity and the expression of ACO1 and ACS1, thereby reducing ethylene production and suppressing fruit ripening. This likely represents a conserved mechanism by which BR suppresses ethylene biosynthesis during climacteric fruit ripening.
Collapse
Affiliation(s)
- Yinglin Ji
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yi Qu
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongyu Jiang
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mingyang Xu
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Su
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Author for communication:
| |
Collapse
|
34
|
Chen Y, Zhang X, Luo Z, Sun J, Li L, Yin X, Li J, Xu Y. Effects of inside-out heat-shock via microwave on the fruit softening and quality of persimmon during postharvest storage. Food Chem 2021; 349:129161. [PMID: 33545598 DOI: 10.1016/j.foodchem.2021.129161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/24/2020] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
Rapid postharvest softening largely limits the shelf-life of persimmon (Diospyros kaki L.) fruit. Microwave is a new environmental-friendly inside-out heat-shock approach, whose effect on the fruit softening and quality has not yet been investigated. The current study applied two kinds of microwave treatments (low-power long-time, LPLT, or high-power short-time, HPST) to persimmon fruit with comparison to the hot water (HW) treatments. The results showed both microwave treatments maintained firmness, facilitated the deastringency, and increased soluble solid contents (SSC) and sugar-acid ratio of persimmon fruit. The microwave treatments reduced the cellulose and pectin degradation, and inhibited the cellulase activity, resulting in a significantly higher firmness than HW treatment and control after 2 and 4 days of storage. Moreover, application of HPST treatment down-regulated gene expression of DkPG1, DkPE2 and DkEGase1 compared with untreated fruits. These results indicated that microwave treatment is a promising soft-delaying method for the preservation of persimmon fruit.
Collapse
Affiliation(s)
- Yanpei Chen
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaochen Zhang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zisheng Luo
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jian Sun
- Guangxi Academy of Agricultural Sciences, Nanning 530007, People's Republic of China
| | - Li Li
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xueren Yin
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiangkuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, People's Republic of China
| | - Yanqun Xu
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
35
|
Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening. Sci Rep 2021; 11:1671. [PMID: 33462344 PMCID: PMC7814023 DOI: 10.1038/s41598-021-81155-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/04/2021] [Indexed: 12/04/2022] Open
Abstract
Kiwifruit has gained increasing attention worldwide for its unique flavor and high nutritional value. Rapid softening after harvest greatly shortens its shelf-life and reduces the commercial value. Therefore, it is imperative and urgent to identify and clarify its softening mechanism. This study aimed to analyze and compare the long noncoding RNA (lncRNA) and mRNA expression patterns in ABA-treated (ABA) and room temperature (RT)-stored fruits with those in freshly harvested fruits (CK) as control. A total of 697 differentially expressed genes (DEGs) and 81 differentially expressed lncRNAs (DELs) were identified while comparing ABA with CK, and 458 DEGs and 143 DELs were detected while comparing RT with CK. The Kyoto Encyclopedia of Genes and Genomes analysis of the identified DEGs and the target genes of DELs revealed that genes involved in starch and sucrose metabolism, brassinosteroid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis accounted for a large part. The co-localization networks, including 38 DEGs and 31 DELs in ABA vs. CK, and 25 DEGs and 25 DELs in RT vs. CK, were also performed. Genes related to fruit ripening, such as genes encoding β-galactosidase, mannan endo-1,4-β-mannosidase, pectinesterase/pectinesterase inhibitor, and NAC transcription factor, were present in the co-localization network, suggesting that lncRNAs were involved in regulating kiwifruit ripening. Notably, several ethylene biosynthesis- and signaling-related genes, including one 1-aminocyclopropane-1-carboxylic acid oxidase gene and three ethylene response factor genes, were found in the co-localization network of ABA vs. CK, suggesting that the promoting effect of ABA on ethylene biosynthesis and fruit softening might be embodied by increasing the expression of these lncRNAs. These results may help understand the regulatory mechanism of lncRNAs in ripening and ABA-induced fruit softening of kiwifruit.
Collapse
|
36
|
Hu S, Liu L, Li S, Shao Z, Meng F, Liu H, Duan W, Liang D, Zhu C, Xu T, Wang Q. Regulation of fruit ripening by the brassinosteroid biosynthetic gene SlCYP90B3 via an ethylene-dependent pathway in tomato. HORTICULTURE RESEARCH 2020; 7:163. [PMID: 33082970 PMCID: PMC7527449 DOI: 10.1038/s41438-020-00383-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 05/04/2023]
Abstract
The essential role of ethylene in fruit ripening has been thoroughly studied. However, the involvement of brassinosteroids (BRs) in the regulation of fruit ripening and their relationship with the ethylene pathway are poorly understood. In the current study, we found that BRs were actively synthesized during tomato fruit ripening. We then generated transgenic lines overexpressing or silencing SlCYP90B3, which encodes a cytochrome P450 monooxygenase that catalyzes the rate-limiting step of BR synthesis. The expression level of SlCYP90B3 was positively related to the contents of bioactive BRs as well as the ripening process in tomato fruit, including enhanced softening and increased soluble sugar and flavor volatile contents. Both carotenoid accumulation and ethylene production were strongly correlated with the expression level of SlCYP90B3, corroborated by the altered expression of carotenoid biosynthetic genes as well as ethylene pathway genes in transgenic tomato fruits. However, the application of the ethylene perception inhibitor 1-methycyclopropene (1-MCP) abolished the promotion effect of SlCYP90B3 overexpression on carotenoid accumulation. Taken together, these results increase our understanding of the involvement of SlCYP90B3 in bioactive BR biosynthesis as well as fruit ripening in tomato, thus making SlCYP90B3 a target gene for improvement of visual, nutritional and flavor qualities of tomato fruits with no yield penalty.
Collapse
Affiliation(s)
- Songshen Hu
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou, 310058 China
| | - Lihong Liu
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou, 310058 China
| | - Shuo Li
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou, 310058 China
| | - Zhiyong Shao
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou, 310058 China
| | - Fanliang Meng
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou, 310058 China
| | - Haoran Liu
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou, 310058 China
| | - Wenyi Duan
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou, 310058 China
| | - Dongyi Liang
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou, 310058 China
| | - Changqing Zhu
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou, 310058 China
| | - Tao Xu
- Key Laboratory of Protected Horticulture of Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 China
| | - Qiaomei Wang
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
37
|
Zhao Q, Jin M, Guo L, Pei H, Nan Y, Rao J. Modified atmosphere packaging and 1-methylcyclopropene alleviate chilling injury of ‘Youhou’ sweet persimmon during cold storage. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100479] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Jiang Y, Xu Y, Li F, Li D, Huang Q. Pectin extracted from persimmon peel: A physicochemical characterization and emulsifying properties evaluation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105561] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Effects of Brassinosteroids on Postharvest Physiology of Horticultural Crops: A Concise Review. ACTA ACUST UNITED AC 2019. [DOI: 10.46653/jhst190203062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Brassinosteroids are natural polyhydroxylated steroidal plant growth regulators or phyto-hormones. These are ubiquitous in plant kingdom and influence a wide variety of molecular, physiological and biochemical responses of plants. Brassinosteroids have also been applied and their possible role has been investigated on postharvest physiology of various horticultural crops. Brassinosteroids regulate ripening of different non-climacteric and climacteric fruits and influence colour metabolism. They inhibit activities of peroxidase and polyphenol oxidase enzymes and delay enzymatic browning. Exogenous application of brassinosteroids inhibits cell wall degradation and delays softening of fruits. In addition, their application regulates sugar and energy metabolism in different fruit and vegetable crops. They suppress lipoxygenase and phospholipase D enzyme activities and conserve higher unsaturated fatty acid contents, suppress electrolyte leakage, inhibit lipid peroxidation and maintain higher membrane integrity eventually leading to suppressed chilling injury during postharvest storage. These alleviate oxidative stress and prolong storage life potential of various horticultural crops. So, the present review summarizes various roles and mechanism of action of brassinosteroids in extending postharvest life and maintaining quality of different horticultural crops.
Collapse
|
40
|
Guo YF, Shan W, Liang SM, Wu CJ, Wei W, Chen JY, Lu WJ, Kuang JF. MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. PHYSIOLOGIA PLANTARUM 2019; 165:555-568. [PMID: 29704245 DOI: 10.1111/ppl.12750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/14/2018] [Accepted: 04/23/2018] [Indexed: 05/21/2023]
Abstract
Banana fruit (Musa acuminate L.) ripening is a complex genetical process affected by multiple phytohormones and expression of various genes. However, whether plant hormone brassinosteroid (BR) is involved in this process remains obscure. In this work, three genes that encode BR core signaling components brassinazole resistant (BZR) proteins, namely MaBZR1 to MaBZR3, were characterized from banana fruit. MaBZR1-MaBZR3 exhibited both nuclear and cytoplasmic localization and behaved as transcription inhibitors. Expression analysis showed that MaBZR1/2/3 were continuously decreased as fruit ripening proceeded, indicating their negative roles in banana ripening. Moreover, gel shift and transient expression assays demonstrated that MaBZR1/2 could suppress the transcription of ethylene biosynthetic genes, including MaACS1, MaACO13 and MaACO14, which increased gradually during the banana ripening, via specifically binding to CGTGT/CG sequence in their promoters. Importantly, exogenous application of BRs promotes banana ripening, which is presumably due to the accelerated expression of MaACS1 and MaACO13/14, and consequently the ethylene production. Our study indicates that MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes during banana fruit ripening.
Collapse
Affiliation(s)
- Yu-Fan Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shu-Min Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Chao-Jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|