1
|
Medrano-Padial C, Pérez-Novas I, Domínguez-Perles R, García-Viguera C, Medina S. Bioaccessible Phenolic Alkyl Esters of Wine Lees Decrease COX-2-Catalyzed Lipid Mediators of Oxidative Stress and Inflammation in a Time-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19016-19027. [PMID: 39145698 PMCID: PMC11363137 DOI: 10.1021/acs.jafc.4c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Lipophenols, phenolic compounds esterified with fatty alcohols or fatty acids, provide greater health benefits upon dietary ingestion of plant-based foods than unesterified (poly)phenols. Based on this premise, the present study aimed to demonstrate the role of gastrointestinal enzymes (pepsin, pancreatin, and pancreatic lipase) in releasing alkyl gallates and trans-caffeates from wine lees, providing bioactive compounds with enhanced capacities against oxidative stress (OS) and para-inflammation. The UHPLC-ESI-QqQ-MS/MS-based analysis revealed ethyl gallate and ethyl trans-caffeate as the most prominent compounds (1.675 and 0.872 μg/g dw, respectively), while the bioaccessibility of the derivatives of gallic and caffeic acids was dependent on the alkyl chain properties. The de novo formation of alkyl gallates during gastric and intestinal digestion resulted from intestinal enzyme activity. Moreover, the in vitro capacity of bioaccessible alkyl esters of gallic and trans-caffeic acids to reduce cyclooxygenase-2 concentration and modulate oxilipins related to OS (8-iso-PGF2α) and inflammation (PGF2α and PGE2) was demonstrated in a time-dependent manner. In conclusion, the presence of alkyl esters of gallic and trans-caffeic acids in wine lees and their subsequent formation during digestion of this byproduct emphasize their value as a source of antioxidant and anti-inflammatory compounds, encouraging the consideration of wine lees as a valuable ingredient for health-promoting coproducts.
Collapse
Affiliation(s)
- Concepción Medrano-Padial
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Irene Pérez-Novas
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
2
|
Nikou T, Sakavitsi ME, Kalampokis E, Halabalaki M. Metabolism and Bioavailability of Olive Bioactive Constituents Based on In Vitro, In Vivo and Human Studies. Nutrients 2022; 14:3773. [PMID: 36145149 PMCID: PMC9504511 DOI: 10.3390/nu14183773] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Consumption of olive products has been established as a health-promoting dietary pattern due to their high content in compounds with eminent pharmacological properties and well-described bioactivities. However, their metabolism has not yet been fully described. The present critical review aimed to gather all scientific data of the past two decades regarding the absorption and metabolism of the foremost olive compounds, specifically of the phenylalcohols hydroxytyrosol (HTyr) and tyrosol (Tyr) and the secoiridoids oleacein (Olea), oleocanthal (Oleo) and oleuropein (Oleu). A meticulous record of the in vitro assays and in vivo (animals and humans) studies of the characteristic olive compounds was cited, and a critical discussion on their bioavailability and metabolism was performed taking into account data from their gut microbial metabolism. The existing critical review summarizes the existing knowledge regarding the bioavailability and metabolism of olive-characteristic phenylalchohols and secoiridoids and spotlights the lack of data for specific chemical groups and compounds. Critical observations and conclusions were derived from correlating structure with bioavailability data, while results from in vitro, animal and human studies were compared and discussed, giving significant insight to the future design of research approaches for the total bioavailability and metabolism exploration thereof.
Collapse
Affiliation(s)
| | | | | | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
3
|
Stergiou A, Binou P, Igoumenidis PE, Chiou A, Yannakopoulou K, Karathanos VΤ. Host-guest inclusion complexes of hydroxytyrosol with cyclodextrins: Development of a potential functional ingredient for food application. J Food Sci 2022; 87:2678-2691. [PMID: 35534089 DOI: 10.1111/1750-3841.16165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022]
Abstract
Hydroxytyrosol (HT), a potent phenolic phytochemical, exerts positive health effects due to its antioxidant properties. However, it is highly reactive to oxygen, light, and heat and presents high instability. Alpha- and beta-cyclodextrin (α-CD, β-CD) have structures that allow them to encapsulate a variety of hydrophobic molecules. The aim of this study was to examine the outcomes of the inclusion of HT into α-CD and β-CD. Aqueous solutions of HT and either α-CD or β-CD were prepared and freeze-drying was applied for the encapsulation, in 1:1 and 2:1 molar ratios. The produced solid complexes were studied and characterized using NMR spectroscopy, differential scanning calorimetry (DSC) and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). Encapsulation efficiency (EE%), stability, and in vitro release of the encapsulated complexes under simulated digestion conditions were also evaluated. In both DSC thermograms and FTIR spectra of the inclusion complexes, absence of the characteristic peaks of HT and shifts of the CDs peaks were observed, showing an interaction between the molecules. NMR suggested a stronger complex formed between β-CD and HT. The EE% of β-CD/HT (1:1 and 2:1) complexes and α-CD/HT (1:1) complex was found to be higher (83%, 76%, 78%, respectively), compared to α-CD/HT (2:1) (51%). Data obtained support the encapsulation of HT in both CDs, revealing a potential interaction between them and an improvement in HT's thermal stability. Regarding the in vitro release study, both CD complexes had similar behavior and a controlled release of HT in the intestinal site was observed. PRACTICAL APPLICATION: The encapsulation of hydroxytyrosol in cyclodextrins resulted in white amorphous food-grade powders with no aroma and taste. Incorporation of these powders in foods could lead to an increase in their antioxidant content and offer an additional nutritional value.
Collapse
Affiliation(s)
- Athena Stergiou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Panagiota Binou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | | | - Antonia Chiou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | | | - Vaios Τ Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
4
|
Alemán-Jiménez C, Domínguez-Perles R, Gallego-Gómez JI, Simonelli-Muñoz A, Moine E, Durand T, Crauste C, Ferreres F, Gil-Izquierdo Á, Medina S. Fatty Acid Hydroxytyrosyl Esters of Olive Oils Are Bioaccessible According to Simulated In Vitro Gastrointestinal Digestion: Unraveling the Role of Digestive Enzymes on Their Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14165-14175. [PMID: 34797062 DOI: 10.1021/acs.jafc.1c05373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, new bioactive compounds were identified in olive oil, lipophenols, which are composed of a fatty acid (FA) and a phenolic core, such as HT (HT-FA). However, their bioaccessibility remains unknown. Thus, the present study uncovers the impact of the separate phases of gastrointestinal digestion on the release and stability of HT-FAs from oily matrices under in vitro simulated conditions. Accordingly, it was found that the bioaccessibility of HT derivatives is largely dependent on the type of FA that esterifies HT, as well as the food matrix. Also, the generation of HT-FAs during intestinal digestion was observed, with pancreatin being the enzyme responsible, to a higher extent, for the de novo formation of lipophenolic derivatives. These findings prompt us to identify new applications to oily matrices and their byproducts as potential functional ingredients for the promotion of health, where the possible formation of new lipophenols during digestion should be taken into consideration.
Collapse
Affiliation(s)
| | - Raúl Domínguez-Perles
- Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, Murcia 30100, Spain
| | - Juana I Gallego-Gómez
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, Murcia 30107, Spain
| | - Agustín Simonelli-Muñoz
- Departamento de Enfermería, Fisioterapia y Medicina. Universidad de Almería, Carretera Sacramento s/n, Almería 04120, Spain
| | - Espérance Moine
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, EN-SCM, Montpellier 34093, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, EN-SCM, Montpellier 34093, France
| | - Céline Crauste
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, EN-SCM, Montpellier 34093, France
| | - Federico Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia, UCAM, Murcia 30107, Spain
| | - Ángel Gil-Izquierdo
- Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, Murcia 30100, Spain
| | - Sonia Medina
- Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, Murcia 30100, Spain
| |
Collapse
|
5
|
Strategies to Broaden the Applications of Olive Biophenols Oleuropein and Hydroxytyrosol in Food Products. Antioxidants (Basel) 2021; 10:antiox10030444. [PMID: 33805715 PMCID: PMC8000085 DOI: 10.3390/antiox10030444] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Oleuropein (OLE) and hydroxytyrosol (HT) are olive-derived phenols recognised as health-promoting agents with antioxidant, anti-inflammatory, cardioprotective, antifungal, antimicrobial, and antitumor activities, providing a wide range of applications as functional food ingredients. HT is Generally Recognised as Safe (GRAS) by the European Food Safety Authority (EFSA) and the Food and Drug Administration (FDA), whereas OLE is included in EFSA daily consumptions recommendations, albeit there is no official GRAS status for its pure form. Their application in food, however, may be hindered by challenges such as degradation caused by processing conditions and undesired sensorial properties (e.g., the astringency of OLE). Among the strategies to overcome such setbacks, the encapsulation in delivery systems and the covalent and non-covalent complexation are highlighted in this review. Additionally, the synthesis of OLE and HT derivatives are studied to improve their applicability. All in all, more research needs however to be carried out to investigate the impact of these approaches on the sensory properties of the final food product and its percussions at the gastrointestinal level, as well as on bioactivity. At last limitations of these approaches at a scale of the food industry must also be considered.
Collapse
|
6
|
Food (Matrix) Effects on Bioaccessibility and Intestinal Permeability of Major Olive Antioxidants. Foods 2020; 9:foods9121831. [PMID: 33317079 PMCID: PMC7764665 DOI: 10.3390/foods9121831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND olive pomace extract (OPE) is a rich source of health promoting polyphenols (hydroxytyrosol (HTS) and tyrosol (TS)) and can be used as a nutraceutical ingredient of dietary supplements and functional foods. Its adequate bioavailability is a prerequisite for excreting biological activity and can be significantly and specifically affected by different food matrices. METHODS in order to investigate food effects on polyphenol bioaccessibility, OPE was co-digested with different foods according to internationally harmonized in vitro digestibility method. Impact of particular nutrients on HTS and TS permeability was assessed on Caco-2 cell monolayer. RESULTS HTS and TS bioaccessibility and transepithelial permeability can be significantly affected by foods (nutrients), especially by casein and certain types of dietary fiber. Those effects are polyphenol-and nutrient-specific and are achieved either through complexation in gastrointestinal lumen and/or through direct effects of nutrients on intestinal monolayer. CONCLUSIONS obtained results emphasize the significance and complexity of polyphenol interactions within the food matrix and the necessity of individual investigational approaches with respect to particular food/nutrient and interacting phenolic compounds.
Collapse
|
7
|
Zhang R, Zhang Q, Ma LQ, Cui X. Effects of Food Constituents on Absorption and Bioaccessibility of Dietary Synthetic Phenolic Antioxidant by Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4670-4677. [PMID: 32064879 DOI: 10.1021/acs.jafc.9b07315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One typical synthetic phenolic antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT) is widely used in foodstuff. Concerns are rising on the toxicity of BHT and its metabolites through dietary exposure. In this study, the effects of food macronutrients (i.e., lipid, carbohydrate, fiber, protein, and fasted (as control)) on absorption and bioaccessibility of BHT by Caco-2 cells were investigated. Food components decreased the absorption and bioaccessibility by Caco-2 cells. The highest absorption rate by Caco-2 cells was fasted state (first-order rate constant = 4.26 h-1), followed by carbohydrate (2.36 h-1), fiber (1.39 h-1), lipid (1.34 h-1), and protein (1.15 h-1). The order of bioaccessibility of BHT and its metabolites was fasted (100 ± 11.5%) > protein (83.1 ± 2.69%) > fiber (65.8 ± 2.67%) > carbohydrate (56.8 ± 1.58%) ≈ lipid (56.7 ± 0.82%). A solid-phase microextraction test together with a computational in vitro kinetic model suggested that the macronutrients may bind to BHT to reduce its free concentration and decrease the bioaccessibility. To our knowledge, this is the first study to report food influence on the absorption and bioaccessibility of BHT by Caco-2 cells. Results here can provide important implications for the safety regulation for dietary synthetic phenolic antioxidants.
Collapse
Affiliation(s)
- Ruirui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518057, China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518057, China
| |
Collapse
|
8
|
Tian B, Xiao D, Hei T, Ping R, Hua S, Liu J. The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: a review. POLYM INT 2020. [DOI: 10.1002/pi.5992] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bingren Tian
- College of Chemistry and Chemical EngineeringXinjiang University Urumchi China
| | - Dong Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing China
| | - Tingting Hei
- School of PharmacyNingxia Medical University Yinchuan China
| | - Rui Ping
- School of Clinical MedicineNingxia Medical University Yinchuan China
| | - Shiyao Hua
- School of PharmacyNingxia Medical University Yinchuan China
| | - Jiayue Liu
- School of PharmacyNingxia Medical University Yinchuan China
| |
Collapse
|
9
|
Influence of Pomace Matrix and Cyclodextrin Encapsulation on Olive Pomace Polyphenols' Bioaccessibility and Intestinal Permeability. Nutrients 2020; 12:nu12030669. [PMID: 32121413 PMCID: PMC7146296 DOI: 10.3390/nu12030669] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Olive pomace is a rich source of biologically active compounds, mainly polyphenols. Recently, an efficient and sustainable cyclodextrin (CD)-enhanced extraction was developed. It enabled a relatively simple formulation of high-quality olive pomace extracts (OPEs) that can be used as alternative sources of olive-derived polyphenols in the nutrition and pharma industries. However, biological effects and nutraceutical potential of OPEs are primarily limited by generally low oral bioavailability of major polyphenols (hydroxytyrosol and its derivatives) that can be significantly influenced by OPE matrix and the presence of CDs in formulation. The major goal of this research was to investigate the impact of complex matrix and different types of CDs on gastrointestinal stability and intestinal permeability of major OPE polyphenols, and provide additional data about mechanisms of absorption and antioxidant activity in gut lumen. Obtained results showed high bioaccessibility but relatively low permeability of OPE polyphenols, which was negatively affected by OPE matrix. CDs improved antioxidant efficiency of tested OPEs and tyrosol gastrointestinal stability. Effects of CDs on permeability and the metabolism of particular OPE polyphenols were CD- and polyphenol-specific.
Collapse
|
10
|
Hesler M, Schwarz DH, Dähnhardt-Pfeiffer S, Wagner S, von Briesen H, Wenz G, Kohl Y. Synthesis and in vitro evaluation of cyclodextrin hyaluronic acid conjugates as a new candidate for intestinal drug carrier for steroid hormones. Eur J Pharm Sci 2019; 143:105181. [PMID: 31852628 DOI: 10.1016/j.ejps.2019.105181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
Steroid hormones became increasingly interesting as active pharmaceutical ingredients for the treatment of endocrine disorders. However, medical applications of many steroidal drugs are inhibited by their very low aqueous solubilities giving rise to low bioavailabilities. Therefore, the prioritized oral administration of steroidal drugs remains problematic. Cyclodextrins are promising candidates for the development of drug delivery systems for oral route applications, since they solubilize hydrophobic steroids and increase their rate of transport in aqueous environments. In this study, the synthesis and characterization of polymeric β-cyclodextrin derivates is described, which result from the attachment of a hydrophilic β-CD-thioether to hyaluronic acid. Host-guest complexes of the synthesized β-cyclodextrin hyaluronic acid conjugates were formed with two poorly soluble model steroids (β-estradiol, dexamethasone) and compared to monomeric β-cyclodextrin derivates regarding solubilization and complexation efficiency. The β-cyclodextrin-drug (host-guest) complexes were evaluated in vitro for their suitability (cytotoxicity and transport rate) as intestinal drug carriers for steroid hormones. In case of β-estradiol, higher solubilities could be achieved by complexation with both synthesized β-cyclodextrin derivates, leading to significantly higher intestinal transport rates in vitro. However, this success could not be shown for dexamethasone, which namely solubilized better, but could not enhance the transport rate significantly. Thus, this study demonstrates the biocompatibility of the synthesized and characterized β-cyclodextrin derivates and shows their potential as new candidate for intestinal drug carrier for steroid hormones like β-estradiol.
Collapse
Affiliation(s)
- Michelle Hesler
- Fraunhofer Institute for Biomedical Engineering, Department Bioprocessing & Bioanalytics, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany.
| | - Dennis H Schwarz
- Saarland University, Organic Macromolecular Chemistry, 66123 Saarbrücken, Germany.
| | | | - Sylvia Wagner
- Fraunhofer Institute for Biomedical Engineering, Department Bioprocessing & Bioanalytics, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany.
| | - Hagen von Briesen
- Fraunhofer Institute for Biomedical Engineering, Department Bioprocessing & Bioanalytics, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany.
| | - Gerhard Wenz
- Saarland University, Organic Macromolecular Chemistry, 66123 Saarbrücken, Germany.
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering, Department Bioprocessing & Bioanalytics, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany.
| |
Collapse
|
11
|
Fois CAM, Le TYL, Schindeler A, Naficy S, McClure DD, Read MN, Valtchev P, Khademhosseini A, Dehghani F. Models of the Gut for Analyzing the Impact of Food and Drugs. Adv Healthc Mater 2019; 8:e1900968. [PMID: 31592579 DOI: 10.1002/adhm.201900968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/30/2019] [Indexed: 12/16/2022]
Abstract
Models of the human gastrointestinal tract (GIT) can be powerful tools for examining the biological interactions of food products and pharmaceuticals. This can be done under normal healthy conditions or using models of disease-many of which have no curative therapy. This report outlines the field of gastrointestinal modeling, with a particular focus on the intestine. Traditional in vivo animal models are compared to a range of in vitro models. In vitro systems are elaborated over time, recently culminating with microfluidic intestines-on-chips (IsOC) and 3D bioengineered models. Macroscale models are also reviewed for their important contribution in the microbiota studies. Lastly, it is discussed how in silico approaches may have utility in predicting and interpreting experimental data. The various advantages and limitations of the different systems are contrasted. It is posited that only through complementary use of these models will salient research questions be able to be addressed.
Collapse
Affiliation(s)
- Chiara Anna Maria Fois
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Thi Yen Loan Le
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Dale David McClure
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Mark Norman Read
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Ali Khademhosseini
- Department of Chemical and Biomolecular Engineering Department of Bioengineering Department of Radiology California NanoSystems Institute (CNSI) University of California Los Angeles CA 90095 USA
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
12
|
Taj A, Shaheen A, Xu J, Estrela P, Mujahid A, Asim T, Zubair Iqbal M, Khan WS, Bajwa SZ. In-situ synthesis of 3D ultra-small gold augmented graphene hybrid for highly sensitive electrochemical binding capability. J Colloid Interface Sci 2019; 553:289-297. [PMID: 31212228 DOI: 10.1016/j.jcis.2019.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
The fascinating properties of graphene can be augmented with other nanomaterials to generate hybrids to design innovative applications. Contrary to the conventional methodologies, we showed a novel yet simple, in-situ, biological approach which allowed for the effective growth of gold nanostructures on graphene surfaces (3D Au NS@GO). The morphology of the obtained hybrid consisted of sheets of graphene, anchoring uniform dispersion of ultra-small gold nanostructures of about 2-8 nm diameter. Surface plasmon resonance at 380 nm confirmed the nano-regimen of the hybrid. Fourier transform infrared spectroscopy indicated the utilization of amine spacers to host gold ions leading to nucleation and growth. The exceptional positive surface potential of 55 mV suggest that the hybrid as an ideal support for electrocatalysis. Ultimately, the hybrid was found to be an efficient receptor material for electrochemical performance towards the binding of uric acid which is an important biomolecule of human metabolism. The designed material enabled the detection of uric acid concentrations as low as 30 nM. This synthesis strategy is highly suitable to design new hybrid materials with interesting morphology and outstanding properties for the identification of clinically relevant biomolecules.
Collapse
Affiliation(s)
- Ayesha Taj
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Ayesha Shaheen
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Jie Xu
- Department of Industrial and Mechanical Engineering, College of Engineering, University of Illinois at Chicago, Chicago, USA
| | - Pedro Estrela
- Centre of Biosensor Bioelectronics and Biodevices (C3Bio) and Department of Electronics and Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Adnan Mujahid
- Institute of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | - Tayyaba Asim
- Department of Environmental Science, Lahore College for Women University, Lahore 54590, Pakistan
| | - M Zubair Iqbal
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, No. 2 Road of Xiasha, Hangzhou 310018, PR China
| | - Waheed S Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan.
| | - Sadia Z Bajwa
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
13
|
Characterization of hydroxytyrosol-β-cyclodextrin complexes in solution and in the solid state, a potential bioactive ingredient. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
β-Cyclodextrin Does not Alter the Bioaccessibility and the Uptake by Caco-2 Cells of Olive By-Product Phenolic Compounds. Nutrients 2018; 10:nu10111653. [PMID: 30400310 PMCID: PMC6266305 DOI: 10.3390/nu10111653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
Alperujo—a two-phase olive mill waste that is composed of olive vegetation water and solid skin, pulp, and seed fragments - is a highly valuable olive by-product due to its high content in phenolic compounds. In this study, we assessed whether β-cyclodextrin (β-CD), which is used to extract and protect alpejuro phenolic compounds (hydroxytyrosol-O-glucoside, tyrosol, caffeic, and p-coumaric acids) could impact on their bioaccessibility (i.e., the percentage of molecule found in the aqueous phase of the digesta) and uptake by intestinal cells, by using an in vitro digestion model and Caco-2 TC7 cells in culture, respectively. Our results showed that β-CD did not change the bioaccessibility of the selected phenols. Hydroxytyrosol-O-glucoside and caffeic did not cross Caco-2 cell monolayers. Conversely ferulic acid, identified as the main caffeic acid intestinal metabolite, was absorbed through intestinal cell monolayers (~20%). Interestingly, β-CD moderately but significantly improved the local absorption of tyrosol and p-coumaric acid (2.3 + 1.4% and 8.5 ± 4.2%, respectively, p < 0.05), even if their final bioavailability (expressed as bioaccessibility × absorption by Caco-2 cells) was not modified (16.2 ± 0.6% vs. 16.8 ± 0.5% for tyrosol and 32.0 ± 3.2% vs. 37.2 ± 3.2% for p-coumaric acid, from pure alperujo and alperujo complexed with β-CD, respectively). Overall, our results show that β-CD is an interesting extraction and storage agent for phenolic compounds that does not alter their in vitro bioavailability.
Collapse
|