1
|
Klaysubun C, Chaichana N, Suwannasin S, Singkhamanan K, Yaikhan T, Kantachote D, Pomwised R, Wonglapsuwan M, Surachat K. Genomic Characterization of Probiotic Purple Nonsulfur Bacteria Cereibacter sphaeroides Strains S3W10 and SS15: Implications for Enhanced Shrimp Aquaculture. Life (Basel) 2024; 14:1691. [PMID: 39768397 PMCID: PMC11676352 DOI: 10.3390/life14121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Cereibacter sphaeroides strains S3W10 and SS15, isolated from shrimp ponds, exhibit potential probiotic benefits for aquaculture. In this study, the genomic features of S3W10 and SS15 were thoroughly characterized to evaluate their probiotic properties and safety for aquaculture use. The genomes of S3W10 and SS15 consist of 130 and 74 contigs, with sizes of 4.6 Mb and 4.4 Mb and GC contents of 69.2%. Average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and phylogenomic analyses confirmed that these strains belong to C. sphaeroides. Genome annotation predicted 4260 coding sequences (CDS) in S3W10 and 4086 CDS in SS15, including genes associated with stress tolerance, nutrient absorption, and antioxidant activity. Notably, genes related to vitamin B12 synthesis, digestive enzyme production, and carotenoid biosynthesis, which support shrimp health, were identified in both genomes. CAZyme analysis identified 116 and 115 carbohydrate-active enzymes in S3W10 and SS15, respectively, supporting adaptation to gastrointestinal environments and the host immune response. Pan-genome analysis across C. sphaeroides strains revealed 7918 gene clusters, highlighting the open pan-genome structure of this species and its high genetic diversity. Further bioinformatic analyses assessing mobile genetic elements, antibiotic-resistance genes, and virulence factors demonstrated the safety of both strains for aquaculture, as no plasmids or virulence genes were identified. The genomic insights in this study provide a deeper understanding of the strains' adaptability and functional potential, aligning with previous in vitro and in vivo studies and highlighting their potential for use in shrimp cultivation.
Collapse
Affiliation(s)
- Chollachai Klaysubun
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Nattarika Chaichana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (D.K.); (R.P.); (M.W.)
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (D.K.); (R.P.); (M.W.)
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (D.K.); (R.P.); (M.W.)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
2
|
He X, Wang D, Liu J, Shi T, Wang W, Chen B, Li D, Zhang L, Tan GY. Engineering the Methylerythritol Phosphate Pathway and Using a Temporal Promoter for Enhanced Lycopene Production in Rhodobacter sphaeroides HY01. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28040-28047. [PMID: 39626274 DOI: 10.1021/acs.jafc.4c07848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Rhodobacter sphaeroides HY01 is a high-yield strain for industrial production of coenzyme Q10 (Q10), indicating its potential for producing other terpenoids. However, the production of Q10 substantially depletes isoprene precursors, nearly eliminating other terpenoids like spheroidene and spheroidenone commonly found in wild-type R. sphaeroides. Lycopene was used as an example to demonstrate its potential for terpenoid biosynthesis. By refactoring the methylerythritol phosphate (MEP) pathway, such as overexpressing crtE and introducing crtI4, lycopene production reached 126.1 mg/L in HY01. However, further overexpression of the deoxy-d-xylulose-5-phosphate synthase, 1-deoxy-d-xylulose 5-phosphate reductoisomerase, and isopentenyl-diphosphate isomerase genes led to strain degradation, significantly reducing lycopene production. Fine-tuning the engineered PrrAB two-component system, which upregulated the MEP pathway, increased lycopene production to 154.9 mg/L. Inspired by this result, a series of native promoters with varying strengths were identified and characterized through transcriptomic analysis during the late fermentation stage. Using these temporal promoters to control genes in the MEP pathway ultimately increased lycopene production to 283.1 mg/L, the highest reported in R. sphaeroides. These results underscore the potential of HY01 as a chassis for terpenoid biosynthesis.
Collapse
Affiliation(s)
- Xinwei He
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Dan Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Tong Shi
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biqin Chen
- Inner Mongolia Kingdomway Pharmaceutical Company Limited, Hohhot 010206, China
| | - Dan Li
- Inner Mongolia Kingdomway Pharmaceutical Company Limited, Hohhot 010206, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Lee YR, Lee J, Hong S, Lee SY, Lee WH, Koh M, Chang IS, Lee S. Optimization of Electroporation Conditions for Introducing Heterologous DNA into Rhodobacter sphaeroides. J Microbiol Biotechnol 2024; 34:2347-2352. [PMID: 39403725 PMCID: PMC11637821 DOI: 10.4014/jmb.2408.08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 11/29/2024]
Abstract
Rhodobacter sphaeroides is a strain capable of both photoautotrophic and chemoautotrophic growth, with various metabolic pathways that make it highly suitable for converting carbon dioxide into high value-added products. However, its low transformation efficiency has posed challenges for genetic and metabolic engineering of this strain. In this study, we aimed to increase the transformation efficiency of R. sphaeroides by deleting the rshI gene coding for an endogenous DNA restriction enzyme that inhibits. We evaluated the effects of growth conditions for making electrocompetent cells and optimized electroporation parameters to be a cuvette width of 0.1 cm, an electric field strength of 30 kV/cm, a resistance of 200 Ω, and a plasmid DNA amount of 0.5 μg, followed by a 24-h recovery period. As a result, we observed over 7,000 transformants per μg of DNA under the optimized electroporation conditions using the R. sphaeroides ΔrshI strain, which is approximately 10 times higher than that of wild-type R. sphaeroides under standard bacterial electroporation conditions. These findings are expected to enhance the application of R. sphaeroides in various industrial fields in the future.
Collapse
Affiliation(s)
- Yu Rim Lee
- National Biotechnology Policy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Juah Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Suhyeon Hong
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Won-Heong Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sangmin Lee
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Song Y, Liu H, Quax WJ, Zhang Z, Chen Y, Yang P, Cui Y, Shi Q, Xie X. Application of valencene and prospects for its production in engineered microorganisms. Front Microbiol 2024; 15:1444099. [PMID: 39171255 PMCID: PMC11335630 DOI: 10.3389/fmicb.2024.1444099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Valencene, a sesquiterpene with the odor of sweet and fresh citrus, is widely used in the food, beverage, flavor and fragrance industry. Valencene is traditionally obtained from citrus fruits, which possess low concentrations of this compound. In the past decades, the great market demand for valencene has attracted considerable attention from researchers to develop novel microbial cell factories for more efficient and sustainable production modes. This review initially discusses the biosynthesis of valencene in plants, and summarizes the current knowledge of the key enzyme valencene synthase in detail. In particular, we highlight the heterologous production of valencene in different hosts including bacteria, fungi, microalgae and plants, and focus on describing the engineering strategies used to improve valencene production. Finally, we propose potential engineering directions aiming to further increase the production of valencene in microorganisms.
Collapse
Affiliation(s)
- Yafeng Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yiwen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yinhua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 PMCID: PMC10934027 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- Correspondence: (T.L.); (B.F.)
| | | | | | | | | | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (X.L.); (H.X.); (H.Z.); (X.L.)
| |
Collapse
|
6
|
Li M, Lv S, Yang R, Chu X, Wang X, Wang Z, Peng L, Yang J. Development of lycopene-based whole-cell biosensors for the visual detection of trace explosives and heavy metals. Anal Chim Acta 2023; 1283:341934. [PMID: 37977799 DOI: 10.1016/j.aca.2023.341934] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Residual explosives in conflicting zones have caused irreversible damage to human safety and the environment. Whole-cell biosensors can to detect remnants of buried explosives, such as 2,4-dinitrotoluene (DNT), a stable and highly volatile compound in explosives. However, all the reported whole-cell biosensors utilize fluorescence or luminescence as the biological markers, making their detection difficult in real minefields. Here, we presented a lycopene-based whole-cell biosensor in Escherichia coli to output visible signals in response to DNT, which can help in the visual detection of buried explosives. To construct the whole-cell biosensor, the DNT-responsive promoter yqjF was used as the sensing element, and the lycopene synthetic gene cassette crtEBI was served as the reporting element. Then, the metabolic flux for lycopene production was enhanced to improve the output signal of the whole-cell biosensor, and a terminator was utilized to reduce the background interference. The optimized biosensor LSZ05 could perceive at least 1 mg/L DNT. The DNT-specificity and robust performance of the biosensor under different environmental factors were confirmed. Our results showed that converting the biosensor into a lyophilized powder was an effective storage method. The biosensor LSZ05 could effectively detect DNT in two kinds of soil samples. The lycopene-based whole-cell biosensor could also be used to visually detect heavy metals. Our findings laid the foundation for visually detecting buried explosives in minefields, which was a valuable supplement to the reported biosensors. The methods used for optimizing the lycopene-based whole-cell biosensor, including the improvement of the output signal and reduction of background interference, were quite effective.
Collapse
Affiliation(s)
- Meijie Li
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| | - Shuzhe Lv
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| | - Rumeng Yang
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| | - Xiaohan Chu
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| | - Xu Wang
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| | - Ziyu Wang
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| | - Limin Peng
- Shandong TV University, Jinan, 250014, PR China.
| | - Jianming Yang
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| |
Collapse
|
7
|
Zhang J, Zheng M, Tang Z, Zhong S, Bu T, Li Q. The Regulatory Functions of the Multiple Alternative Sigma Factors RpoE, RpoHI, and RpoHII Depend on the Growth Phase in Rhodobacter sphaeroides. Microorganisms 2023; 11:2678. [PMID: 38004690 PMCID: PMC10673084 DOI: 10.3390/microorganisms11112678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial growth, under laboratory conditions or in a natural environment, goes through different growth phases. Some gene expressions are regulated with respect to the growth phase, which allows bacteria to adapt to changing conditions. Among them, many gene transcriptions are controlled by RpoHI or RpoHII in Rhodobacter sphaeroides. In a previous study, it was proven that the alternative sigma factors, RpoE, RpoHI, and RpoHII, are the major regulators of oxidative stress. Moreover, the growth of bacteria reached a stationary phase, and following the outgrowth, rpoE, rpoHI, and rpoHII mRNAs increased with respect to the growth phase. In this study, we demonstrated the regulatory function of alternative sigma factors in the rsp_0557 gene. The gene rsp_0557 is expressed with respect to the growth phase and belongs to the RpoHI/RpoHII regulons. Reporter assays showed that the antisigma factor ChrR turns on or over the RpoE activity to regulate rsp_0557 expression across the growth phase. In the exponential phase, RpoHII and sRNA Pos19 regulate the expression of rsp_0557 to an appropriate level under RpoE control. In the stationary phase, RpoHI and Pos19 stabilize the transcription of rsp_0557 at a high level. During outgrowth, RpoHI negatively regulates the transcription of rsp_0557. Taken together, our data indicate that these regulators are recruited by cells to adapt to or survive under different conditions throughout the growth phase. However, they still did not display all of the regulators involved in growth phase-dependent regulation. More research is still needed to learn more about the interaction between the regulators and the process of adapting to changed growth conditions and environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (J.Z.); (M.Z.); (Z.T.); (S.Z.); (T.B.)
| |
Collapse
|
8
|
Sandmann G. Genes and Pathway Reactions Related to Carotenoid Biosynthesis in Purple Bacteria. BIOLOGY 2023; 12:1346. [PMID: 37887056 PMCID: PMC10604819 DOI: 10.3390/biology12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
In purple bacteria, the genes of the carotenoid pathways are part of photosynthesis gene clusters which were distributed among different species by horizontal gene transfer. Their close organisation facilitated the first-time cloning of carotenogenic genes and promoted the molecular investigation of spheroidene and spirilloxanthin biosynthesis. This review highlights the cloning of the spheroidene and spirilloxanthin pathway genes and presents the current knowledge on the enzymes involved in the carotenoid biosynthesis of purple sulphur and non-sulphur bacteria. Mostly, spheroidene or spirilloxanthin biosynthesis exists in purple non-sulphur bacteria but both pathways operate simultaneously in Rubrivivax gelatinosus. In the following years, genes from other bacteria including purple sulphur bacteria with an okenone pathway were cloned. The individual steps were investigated by kinetic studies with heterologously expressed pathway genes which supported the establishment of the reaction mechanisms. In particular, the substrate and product specificities revealed the sequential order of the speroidene and spiriloxanthin pathways as well as their interactions. Information on the enzymes involved revealed that the phytoene desaturase determines the type of pathway by the formation of different products. By selection of mutants with amino acid exchanges in the putative substrate-binding site, the neurosporene-forming phytoene desaturase could be changed into a lycopene-producing enzyme and vice versa. Concerning the oxygen groups in neurosporene and lycopene, the tertiary alcohol group at C1 is formed from water and not by oxygenation, and the C2 or C4 keto groups are inserted differently by an oxygen-dependent or oxygen-independent ketolation reaction, respectively.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Biosynthesis Group, Institute for Molecular Biosciences, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, D-60438 Frankfurt, Germany
| |
Collapse
|
9
|
Du B, Sun M, Hui W, Xie C, Xu X. Recent Advances on Key Enzymes of Microbial Origin in the Lycopene Biosynthesis Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12927-12942. [PMID: 37609695 DOI: 10.1021/acs.jafc.3c03942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Lycopene is a common carotenoid found mainly in ripe red fruits and vegetables that is widely used in the food industry due to its characteristic color and health benefits. Microbial synthesis of lycopene is gradually replacing the traditional methods of plant extraction and chemical synthesis as a more economical and productive manufacturing strategy. The biosynthesis of lycopene is a typical multienzyme cascade reaction, and it is important to understand the characteristics of each key enzyme involved and how they are regulated. In this paper, the catalytic characteristics of the key enzymes involved in the lycopene biosynthesis pathway and related studies are first discussed in detail. Then, the strategies applied to the key enzymes of lycopene synthesis, including fusion proteins, enzyme screening, combinatorial engineering, CRISPR/Cas9-based gene editing, DNA assembly, and scaffolding technologies are purposefully illustrated and compared in terms of both traditional and emerging multienzyme regulatory strategies. Finally, future developments and regulatory options for multienzyme synthesis of lycopene and similar secondary metabolites are also discussed.
Collapse
Affiliation(s)
- Bangmian Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Mengjuan Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Wenyang Hui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, Jiangsu Province, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| |
Collapse
|
10
|
Liu L, Li J, Gai Y, Tian Z, Wang Y, Wang T, Liu P, Yuan Q, Ma H, Lee SY, Zhang D. Protein engineering and iterative multimodule optimization for vitamin B 6 production in Escherichia coli. Nat Commun 2023; 14:5304. [PMID: 37652926 PMCID: PMC10471632 DOI: 10.1038/s41467-023-40928-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Vitamin B6 is an essential nutrient with extensive applications in the medicine, food, animal feed, and cosmetics industries. Pyridoxine (PN), the most common commercial form of vitamin B6, is currently chemically synthesized using expensive and toxic chemicals. However, the low catalytic efficiencies of natural enzymes and the tight regulation of the metabolic pathway have hindered PN production by the microbial fermentation process. Here, we report an engineered Escherichia coli strain for PN production. Parallel pathway engineering is performed to decouple PN production and cell growth. Further, protein engineering is rationally designed including the inefficient enzymes PdxA, PdxJ, and the initial enzymes Epd and Dxs. By the iterative multimodule optimization strategy, the final strain produces 1.4 g/L of PN with productivity of 29.16 mg/L/h by fed-batch fermentation. The strategies reported here will be useful for developing microbial strains for the production of vitamins and other bioproducts having inherently low metabolic fluxes.
Collapse
Affiliation(s)
- Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jinlong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanming Gai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Zhizhong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yanyan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tenghe Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qianqian Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongwu Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 four program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Wang YH, Zhang RR, Yin Y, Tan GF, Wang GL, Liu H, Zhuang J, Zhang J, Zhuang FY, Xiong AS. Advances in engineering the production of the natural red pigment lycopene: A systematic review from a biotechnology perspective. J Adv Res 2023; 46:31-47. [PMID: 35753652 PMCID: PMC10105081 DOI: 10.1016/j.jare.2022.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Lycopene is a natural red compound with potent antioxidant activity that can be utilized both as pigment and as a raw material in functional food, and so possesses good commercial prospects. The biosynthetic pathway has already been documented, which provides the foundation for lycopene production using biotechnology. AIM OF REVIEW Although lycopene production has begun to take shape, there is still an urgent need to alleviate the yield of lycopene. Progress in this area can provide useful reference for metabolic engineering of lycopene production utilizing multiple approaches. KEY SCIENTIFIC CONCEPTS OF REVIEW Using conventional microbial fermentation approaches, biotechnologists have enhanced the yield of lycopene by selecting suitable host strains, utilizing various additives, and optimizing culture conditions. With the development of modern biotechnology, genetic engineering, protein engineering, and metabolic engineering have been applied for lycopene production. Extraction from natural plants is the main way for lycopene production at present. Based on the molecular mechanism of lycopene accumulation, the production of lycopene by plant bioreactor through genetic engineering has a good prospect. Here we summarized common strategies for optimizing lycopene production engineering from a biotechnology perspective, which are mainly carried out by microbial cultivation. We reviewed the challenges and limitations of this approach, summarized the critical aspects, and provided suggestions with the aim of potential future breakthroughs for lycopene production in plants.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550025, China
| | - Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian Zhang
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin 130118, China; Department of Biology, University of British Columbia, Okanagan, Kelowna, Canada
| | - Fei-Yun Zhuang
- Institute of Vegetable and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
12
|
Eroglu A, Al'Abri IS, Kopec RE, Crook N, Bohn T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv Nutr 2023; 14:238-255. [PMID: 36775788 DOI: 10.1016/j.advnut.2022.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Carotenoids have been related to a number of health benefits. Their dietary intake and circulating levels have been associated with a reduced incidence of obesity, diabetes, certain types of cancer, and even lower total mortality. Their potential interaction with the gut microbiota (GM) has been generally overlooked but may be of relevance, as carotenoids largely bypass absorption in the small intestine and are passed on to the colon, where they appear to be in part degraded into unknown metabolites. These may include apo-carotenoids that may have biological effects because of higher aqueous solubility and higher electrophilicity that could better target transcription factors, i.e., NF-κB, PPARγ, and RAR/RXRs. If absorbed in the colon, they could have both local and systemic effects. Certain microbes that may be supplemented were also reported to produce carotenoids in the colon. Although some bactericidal aspects of carotenoids have been shown in vitro, a few studies have also demonstrated a prebiotic-like effect, resulting in bacterial shifts with health-associated properties. Also, stimulation of IgA could play a role in this respect. Carotenoids may further contribute to mucosal and gut barrier health, such as stabilizing tight junctions. This review highlights potential gut-related health-beneficial effects of carotenoids and emphasizes the current research gaps regarding carotenoid-GM interactions.
Collapse
Affiliation(s)
- Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, USA.
| | - Ibrahim S Al'Abri
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, rue 1 A-B, Thomas Edison, L-1445 Strassen, Luxembourg.
| |
Collapse
|
13
|
Bacterial Pigments and Their Multifaceted Roles in Contemporary Biotechnology and Pharmacological Applications. Microorganisms 2023; 11:microorganisms11030614. [PMID: 36985186 PMCID: PMC10053885 DOI: 10.3390/microorganisms11030614] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/05/2023] Open
Abstract
Synthetic dyes and colourants have been the mainstay of the pigment industry for decades. Researchers are eager to find a more environment friendly and non-toxic substitute because these synthetic dyes have a negative impact on the environment and people’s health. Microbial pigments might be an alternative to synthetic pigments. Microbial pigments are categorized as secondary metabolites and are mainly produced due to impaired metabolism under stressful conditions. These pigments have vibrant shades and possess nutritional and therapeutic properties compared to synthetic pigment. Microbial pigments are now widely used within the pharmaceuticals, food, paints, and textile industries. The pharmaceutical industries currently use bacterial pigments as a medicine alternative for cancer and many other bacterial infections. Their growing popularity is a result of their low cost, biodegradable, non-carcinogenic, and environmentally beneficial attributes. This audit article has made an effort to take an in-depth look into the existing uses of bacterial pigments in the food and pharmaceutical industries and project their potential future applications.
Collapse
|
14
|
Optimized Rhodobacter sphaeroides for the Production of Antioxidants and the Pigments with Antioxidant Activity. Mol Biotechnol 2023; 65:131-135. [PMID: 35945473 DOI: 10.1007/s12033-022-00547-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 01/11/2023]
Abstract
The photosynthetic bacterium, Rhodobacter sphaeroides, is a bacterium that can grow in a variety of environments and produces substances with antioxidant effects. In this study, we investigated the culture conditions to increase the production of antioxidants in R. sphaeroides, which can grow under both aerobic and anaerobic conditions. After incubation in the exponential phase and stationary phase under both conditions, a 2,2-diphenyl-1-picrylhydrazyl assay was used to confirm the antioxidant effect. Although the highest antioxidant effect was shown in the stationary phase under aerobic conditions, the antioxidant effect of each cell was found to be greater when cultured under anaerobic conditions. The antioxidant activity of R. sphaeroides was increased by sonication. In addition, the contents of carotenoids and bacteriochlorophyll, which are pigments with antioxidant effects, produced by R. sphaeroides were measured. We confirmed that the content of carotenoids was higher in anaerobic conditions than in aerobic conditions. However, when measuring the content of the bacterium, we found that there was more content in aerobic conditions. Therefore, we confirm that when grown in anaerobic conditions, the antioxidant effect of R. sphaeroides is higher, which suggests that this antioxidant effect comes from the effect of carotenoid.
Collapse
|
15
|
Khalaf RA, Awad M. Lycopene as a Potential Bioactive Compound: Chemistry, Extraction, and Anticancer Prospective. Curr Cancer Drug Targets 2023; 23:634-642. [PMID: 36718971 DOI: 10.2174/1568009623666230131124236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 02/01/2023]
Abstract
Lycopene, a potential bioactive agent, is a non-pro-vitamin A carotenoid recognized as a potent antioxidant. It is extracted from plants like tomatoes, watermelons, red carrots and papayas and has remarkable health benefits. A significant amount of research has been assisted to date to establish the anticancer activity of lycopene. Our review enhances information about the promising anticancer potential of this compound. The biological activity of lycopene has been described in several studies in regard to pancreatic, breast, prostate, liver, gastric, ovarian, kidney, skin, intestine, brain and spinal cord cancers. Lycopene resists cancer by inhibition of apoptosis, induction of cell proliferation, cell invasion, cell cycle development, metastasis and angiogenesis. The mechanisms of anticancer action of lycopene are attributed to the management of certain signal transduction pathways, such as modulation of insulin-like growth factors system, PI3K/Akt pathway, modification of important gene expression, inhibit the activity of sex steroid hormones, and the conversation of mitochondrial behavior. Hence, this review focuses on current knowledge of sources, extraction techniques, and chemistry of lycopene, as well as the prospective mechanisms of action related with its anticancer activity. Also, it summarizes the background information about lycopene and the most current research with consideration to its aspect in treating several types of cancer together with future directions.
Collapse
Affiliation(s)
- Reema Abu Khalaf
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Maha Awad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
16
|
Lee S, Rim Lee Y, Lee WH, Youn Lee S, Moon M, Woo Park G, Min K, Lee J, Lee JS. Valorization of CO 2 to β-farnesene in Rhodobacter sphaeroides. BIORESOURCE TECHNOLOGY 2022; 363:127955. [PMID: 36115510 DOI: 10.1016/j.biortech.2022.127955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
The valorization of CO2 into valuable products is a sustainable strategy to help overcome the climate crisis. In particular, biological conversion is attractive as it can produce long-chain hydrocarbons such as terpenoids. This study reports the high yield of β-farnesene production from CO2 by expressing heterologous β-farnesene synthase (FS) into Rhodobacter sphaeroides. To increase the expression of FS, a strong active promoter and a ribosome binding site (RBS) were engineered. Moreover, β-farnesene production was improved further through the supply of exogenous antioxidants and additional nutrients. Finally, β-farnesene was produced from CO2 at a titer of 44.53 mg/L and yield of 234.08 mg/g, values that were correspondingly 23 times and 46 times higher than those from the initial production of β-farnesene. Altogether, the results here suggest that the autotrophic production of β-farnesene can provide a starting point for achieving a circular carbon economy.
Collapse
Affiliation(s)
- Sangmin Lee
- Gwangju Bio/Energy Research and Development Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Yu Rim Lee
- Gwangju Bio/Energy Research and Development Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea; Interdisciplinary Program of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Won-Heong Lee
- Interdisciplinary Program of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy Research and Development Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy Research and Development Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy Research and Development Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy Research and Development Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Juah Lee
- Gwangju Bio/Energy Research and Development Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy Research and Development Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| |
Collapse
|
17
|
Fitriana HN, Lee S, Kim HS, Lee J, Lee Y, Lee JS, Park H, Ko CH, Lim SY, Lee SY. Enhanced CO 2 electroconversion of Rhodobacter sphaeroides by cobalt-phosphate complex assisted water oxidation. Bioelectrochemistry 2022; 145:108102. [PMID: 35338862 DOI: 10.1016/j.bioelechem.2022.108102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/02/2023]
Abstract
CO2 can be a next generation feedstock for electricity-driven bioproduction due to its abundance and availability. Microbial electrosynthesis (MES), a promising technique for CO2 electroconversion, provides an attractive route for the production of valuable products from CO2, but issues surrounding efficiency and reasonable productivity should be resolved. Improving the anode performance for water oxidation under neutral pH is one of the most important aspects to advance current MES. Here, we introduce cobalt-phosphate (Co-Pi) assisted water oxidation at the counter electrode (i.e., anode) to upgrade the MES performance at pH 7.0. We show that CO2 can be converted by photochemoautotrophic bacterium, Rhodobacter sphaeroides into organic acids and carotenoids in the MES reactor. Planktonic cells of R. sphareroides in the Co-Pi anode equipped MES reactor was ca. 1.5-fold higher than in the control condition (w/o Co-Pi). The faradaic efficiency of the Co-Pi anode equipped MES reactor was remarkably higher (58.3%) than that of the bare anode (27.8%). While the system can improve the CO2 electroconversion nonetheless there are some further optimizations are necessary.
Collapse
Affiliation(s)
- Hana Nur Fitriana
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, 61003 Gwangju, South Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, 61003 Gwangju, South Korea
| | - Hui Su Kim
- Department of Advanced Chemicals & Engineering, Chonnam National University, 61186 Gwangju, South Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, 61003 Gwangju, South Korea
| | - Yurim Lee
- Interdisciplinary Program of Agriculture and Life Science, Chonnam National University, 61186 Gwangju, South Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, 61003 Gwangju, South Korea
| | - Hyojung Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, 61003 Gwangju, South Korea; Bioremediation Team, National Institute of Agricultural Sciences, 55365 Jeollabuk-do, South Korea
| | - Chang Hyun Ko
- Department of Advanced Chemicals & Engineering, Chonnam National University, 61186 Gwangju, South Korea; School of Chemical Engineering, Chonnam National University, 61186 Gwangju, South Korea
| | - Sung Yul Lim
- Department of Chemistry, Kyung Hee University, 02447 Seoul, South Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, 61003 Gwangju, South Korea.
| |
Collapse
|
18
|
Le NTM, Le VV, Shin D, Park SM. Growth-promoting Effect of Alginate Oligosaccharides on Rhodobacter sphaeroides. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Grewal J, Woła̧cewicz M, Pyter W, Joshi N, Drewniak L, Pranaw K. Colorful Treasure From Agro-Industrial Wastes: A Sustainable Chassis for Microbial Pigment Production. Front Microbiol 2022; 13:832918. [PMID: 35173704 PMCID: PMC8841802 DOI: 10.3389/fmicb.2022.832918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Colors with their attractive appeal have been an integral part of human lives and the easy cascade of chemical catalysis enables fast, bulk production of these synthetic colorants with low costs. However, the resulting hazardous impacts on the environment and human health has stimulated an interest in natural pigments as a safe and ecologically clean alternative. Amidst sources of natural producers, the microbes with their diversity, ease of all-season production and peculiar bioactivities are attractive entities for industrial production of these marketable natural colorants. Further, in line with circular bioeconomy and environmentally clean technologies, the use of agro-industrial wastes as feedstocks for carrying out the microbial transformations paves way for sustainable and cost-effective production of these valuable secondary metabolites with simultaneous waste management. The present review aims to comprehensively cover the current green workflow of microbial colorant production by encompassing the potency of waste feedstocks and fermentation technologies. The commercially important pigments viz. astaxanthin, prodigiosin, canthaxanthin, lycopene, and β-carotene produced by native and engineered bacterial, fungal, or yeast strains have been elaborately discussed with their versatile applications in food, pharmaceuticals, textiles, cosmetics, etc. The limitations and their economic viability to meet the future market demands have been envisaged. The most recent advances in various molecular approaches to develop engineered microbiological systems for enhanced pigment production have been included to provide new perspectives to this burgeoning field of research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Modulation of Antioxidant Activity Enhances Photoautotrophic Cell Growth of Rhodobacter sphaeroides in Microbial Electrosynthesis. ENERGIES 2022. [DOI: 10.3390/en15030935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Global warming is currently accelerating due to an increase in greenhouse gas emissions by industrialization. Microbial electrosynthesis (MES) using electroactive autotrophic microorganisms has recently been reported as a method to reduce carbon dioxide, the main culprit of greenhouse gas. However, there are still few cases of application of MES, and the molecular mechanisms are largely unknown. To investigate the growth characteristics in MES, we carried out growth tests according to reducing power sources in Rhodobacter sphaeroides. The growth rate was significantly lower when electrons were directly supplied to cells, compared to when hydrogen was supplied. Through a transcriptome analysis, we found that the expression of reactive oxygen species (ROS)-related genes was meaningfully higher in MES than in normal photoautotrophic conditions. Similarly, endogenous contents of H2O2 were higher and peroxidase activities were lower in MES. The exogenous application of ascorbic acid, a representative biological antioxidant, promotes cell growth by decreasing ROS levels, confirming the inhibitory effects of ROS on MES. Taken together, our observations suggest that reduction of ROS by increasing antioxidant activities is important for enhancing the cell growth and production of CO2-converting substances such as carotenoids in MES in R. sphaeroides
Collapse
|
21
|
Sutherland GA, Qian P, Hunter CN, Swainsbury DJ, Hitchcock A. Engineering purple bacterial carotenoid biosynthesis to study the roles of carotenoids in light-harvesting complexes. Methods Enzymol 2022; 674:137-184. [DOI: 10.1016/bs.mie.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Screening and engineering of high-activity promoter elements through transcriptomics and red fluorescent protein visualization in Rhodobacter sphaeroides. Synth Syst Biotechnol 2021; 6:335-342. [PMID: 34738044 PMCID: PMC8531756 DOI: 10.1016/j.synbio.2021.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
The versatile photosynthetic α-proteobacterium Rhodobacter sphaeroides, has recently been extensively engineered as a novel microbial cell factory (MCF) to produce pharmaceuticals, nutraceuticals, commodity chemicals and even hydrogen. However, there are no well-characterized high-activity promoters to modulate gene transcription during the engineering of R. sphaeroides. In this study, several native promoters from R. sphaeroides JDW-710 (JDW-710), an industrial strain producing high levels of co-enzyme Q10 (Q10) were selected on the basis of transcriptomic analysis. These candidate promoters were then characterized by using gusA as a reporter gene. Two native promoters, Prsp_7571 and Prsp_6124, showed 620% and 800% higher activity, respectively, than the tac promoter, which has previously been used for gene overexpression in R. sphaeroides. In addition, a Prsp_7571-derived synthetic promoter library with strengths ranging from 54% to 3200% of that of the tac promoter, was created on the basis of visualization of red fluorescent protein (RFP) expression in R. sphaeroides. Finally, as a demonstration, the synthetic pathway of Q10 was modulated by the selected promoter T334* in JDW-710; the Q10 yield in shake-flasks increased 28% and the production reached 226 mg/L. These well-characterized promoters should be highly useful in current synthetic biology platforms for refactoring the biosynthetic pathway in R. sphaeroides-derived MCFs.
Collapse
|
23
|
Yang Y, Li L, Sun H, Li Z, Qi Z, Liu X. Improving CoQ 10 productivity by strengthening glucose transmembrane of Rhodobacter sphaeroides. Microb Cell Fact 2021; 20:207. [PMID: 34717624 PMCID: PMC8557541 DOI: 10.1186/s12934-021-01695-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023] Open
Abstract
Background Several Rhodobacter sphaeroides have been widely applied in commercial CoQ10 production, but they have poor glucose use. Strategies for enhancing glucose use have been widely exploited in R. sphaeroides. Nevertheless, little research has focused on the role of glucose transmembrane in the improvement of production. Results There are two potential glucose transmembrane pathways in R. sphaeroides ATCC 17023: the fructose specific-phosphotransferase system (PTSFru, fruAB) and non-PTS that relied on glucokinase (glk). fruAB mutation revealed two effects on bacterial growth: inhibition at the early cultivation phase (12–24 h) and promotion since 36 h. Glucose metabolism showed a corresponding change in characteristic vs. the growth. For ΔfruAΔfruB, maximum biomass (Biomax) was increased by 44.39% and the CoQ10 content was 27.08% more than that of the WT. glk mutation caused a significant decrease in growth and glucose metabolism. Over-expressing a galactose:H+ symporter (galP) in the ΔfruAΔfruB relieved the inhibition and enhanced the growth further. Finally, a mutant with rapid growth and high CoQ10 titer was constructed (ΔfruAΔfruB/tac::galPOP) using several glucose metabolism modifications and was verified by fermentation in 1 L fermenters. Conclusions The PTSFru mutation revealed two effects on bacterial growth: inhibition at the early cultivation phase and promotion later. Additionally, biomass yield to glucose (Yb/glc) and CoQ10 synthesis can be promoted using fruAB mutation, and glk plays a key role in glucose metabolism. Strengthening glucose transmembrane via non-PTS improves the productivity of CoQ10 fermentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01695-z.
Collapse
Affiliation(s)
- Yuying Yang
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China
| | - Lu Li
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China
| | - Haoyu Sun
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China
| | - Zhen Li
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China
| | - Zhengliang Qi
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.
| | - Xinli Liu
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China. .,State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.
| |
Collapse
|
24
|
Schmid F, Novion Ducassou J, Couté Y, Gescher J. Developing Rhodobacter sphaeroides for cathodic biopolymer production. BIORESOURCE TECHNOLOGY 2021; 336:125340. [PMID: 34090098 DOI: 10.1016/j.biortech.2021.125340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
In this work, Rhodobacter sphaeroides was identified as a potential cathodic production strain for photoautotrophic production processes. First, a stable cultivation in a bioelectrochemical system (BES) was established under conditions in which hydrogen produced by a poised cathode served as an electron donor. It was shown that both the introduction of a plasmid vector and exposure to the corresponding antibiotic selection pressure caused a strong improvement in both cathodic biofilm formation and electrochemical properties. A quantitative proteomic analysis identified key players in the molecular adaptation to biofilm growth on the cathodic surface. Furthermore, biofilm formation kinetics were quantified by optical coherence tomography measurements, which showed a strong tendency for biofilm formation together with a robust biofilm architecture. A media switch to N2-limited conditions resulted in increased cathodic poly(3-hydroxybutyrate) (PHB) accumulation, suggesting R. sphaeroides as a potential strain for photoautotrophic PHB production in future industrial applications.
Collapse
Affiliation(s)
- Ferdinand Schmid
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe Germany
| | - Julia Novion Ducassou
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048 38000, Grenoble France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048 38000, Grenoble France
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe Germany.
| |
Collapse
|
25
|
Enhanced β-carotene production by overexpressing the DID2 gene, a subunit of ESCRT complex, in engineered Yarrowia lipolytica. Biotechnol Lett 2021; 43:1799-1807. [PMID: 34160748 DOI: 10.1007/s10529-021-03150-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE β-Carotene has been widely used in the food and feed industry and has significant commercial value. This study aimed to increase the β-carotene production in engineered Yarrowia lipolytica by optimizing the host metabolic network. The DID2 gene, a subunit of the endosomal sorting complex required for transport (ESCRT), was integrated into a β-carotene producing strain. RESULTS The β-carotene production was increased by 260%, and the biomass increased by 10% for engineered Y. lipolytica. Meanwhile, DID2 elevated the mRNA level and protein level of the genes in the β-carotene synthesis pathway, then increased precursors (FPP, Lycopene) utilization. DID2 also increased the mRNA level of the genes in the glucose pathway, pentose phosphate pathway, and tricarboxylic acid cycle and promoted glucose utilization and cofactors consumption. CONCLUSION The ESCRT protein complex subunit, DID2, improved β-carotene production in engineered Y. lipolytica and beneficial to glucose utilization and cofactors consumption. This study provided new finding of the DID2 gene's function and it mostly could be used for many other natural product productions.
Collapse
|
26
|
Zhang Y, Song X, Lai Y, Mo Q, Yuan J. High-Yielding Terpene-Based Biofuel Production in Rhodobacter capsulatus. ACS Synth Biol 2021; 10:1545-1552. [PMID: 34101430 DOI: 10.1021/acssynbio.1c00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Energy crisis and global climate change have driven an increased effort toward biofuel synthesis from renewable feedstocks. Herein, purple nonsulfur photosynthetic bacterium (PNSB) of Rhodobacter capsulatus was explored as a platform for high-titer production of a terpene-based advanced biofuel-bisabolene. A multilevel engineering strategy such as promoter screening, improving the NADPH availability, strengthening the precursor supply, suppressing the side pathways, and introducing a heterologous mevalonate pathway, was used to improve the bisabolene titer in R. capsulatus. The above strategies enabled a 35-fold higher titer of bisabolene than that of the starting strain, reaching 1089.7 mg/L from glucose in a shake flask. The engineered strain produced 9.8 g/L bisabolene with a yield of >0.196 g/g-glucose under the two-phase fed-batch fermentation, which corresponds to >78% of theoretical maximum. Taken together, our work represents one of the pioneering studies to demonstrate PNSB as a promising platform for terpene-based advanced biofuel production.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaohui Song
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yumeng Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiwen Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
27
|
Wu X, Ma G, Liu C, Qiu XY, Min L, Kuang J, Zhu L. Biosynthesis of pinene in purple non-sulfur photosynthetic bacteria. Microb Cell Fact 2021; 20:101. [PMID: 34001115 PMCID: PMC8130110 DOI: 10.1186/s12934-021-01591-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background Pinene is a monoterpene, that is used in the manufacture of fragrances, insecticide, fine chemicals, and renewable fuels. Production of pinene by metabolic-engineered microorganisms is a sustainable method. Purple non-sulfur photosynthetic bacteria belong to photosynthetic chassis that are widely used to synthesize natural chemicals. To date, researches on the synthesis of pinene by purple non-sulfur photosynthetic bacteria has not been reported, leaving the potential of purple non-sulfur photosynthetic bacteria synthesizing pinene unexplored. Results Rhodobacter sphaeroides strain was applied as a model and engineered to express the fusion protein of heterologous geranyl diphosphate synthase (GPPS) and pinene synthase (PS), hence achieving pinene production. The reaction condition of pinene production was optimized and 97.51 μg/L of pinene was yielded. Then, genes of 1-deoxy-d-xylulose 5-phosphate synthase, 1-deoxy-d-xylulose 5-phosphate reductoisomerase and isopentenyl diphosphate isomerase were overexpressed, and the ribosome binding site of GPPS-PS mRNA was optimized, improving pinene titer to 539.84 μg/L. Conclusions In this paper, through heterologous expression of GPPS-PS, pinene was successfully produced in R. sphaeroides, and pinene production was greatly improved by optimizing the expression of key enzymes. This is the first report on pinene produce by purple non-sulfur photosynthetic bacteria, which expands the availability of photosynthetic chassis for pinene production. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01591-6.
Collapse
Affiliation(s)
- Xiaomin Wu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China.
| | - Guang Ma
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Xin-Yuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Lu Min
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Jingyu Kuang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China.
| |
Collapse
|
28
|
Qu Y, Su A, Li Y, Meng Y, Chen Z. Manipulation of the Regulatory Genes ppsR and prrA in Rhodobacter sphaeroides Enhances Lycopene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4134-4143. [PMID: 33813825 DOI: 10.1021/acs.jafc.0c08158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rhodobacter sphaeroides is a non-sulfur purple bacterium with great metabolic versatility, capable of producing a variety of valuable compounds that include carotenoids and CoQ10. In order to enhance lycopene production, we deleted the photosynthetic gene cluster repressor ppsR from a lycopene-producing Rb. sphaeroides strain (RL1) constructed in a previous study to break the control of carotenoid synthesis by the oxygen level. Also, lycopene production was further increased by overexpression of the activator prrA. The superior lycopene producer DppsR/OprrA thus obtained had a high growth rate and a lycopene production of 150.15 mg/L with a yield of 21.45 mg/g dry cell weight (DCW) under high oxygen conditions; these values were ≥6.85-fold higher than those of RL1 (19.13 mg/L; 3.32 mg/g DCW). Our findings indicate that elimination of oxygen repression led to more efficient lycopene production by DppsR/OprrA and that its increased productivity under high oxygen conditions makes it a potentially useful strain for industrial-scale lycopene production.
Collapse
Affiliation(s)
- Yuling Qu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Anping Su
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yonghong Meng
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
29
|
Liu L, Qu YL, Dong GR, Wang J, Hu CY, Meng YH. Elevated β-Carotene Production Using Codon-Adapted CarRA&B and Metabolic Balance in Engineered Yarrowia lipolytica. Front Microbiol 2021; 12:627150. [PMID: 33746920 PMCID: PMC7970187 DOI: 10.3389/fmicb.2021.627150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
β-carotene is a precursor of vitamin A and has multiple physiological functions. Producing β-carotene by microbial fermentation has attracted much attention to consumers' preference for natural products. This study focused on improving β-carotene production by constructing codon-adapted genes and minimizing intermediate accumulation. The codon-adapted CarRA and CarB genes from the industrial strain of Blakeslea trispora were integrated into the genome of the Yarrowia lipolytica to construct YL-C0, the baseline strain for producing β-carotene. Thereafter, the β-carotene biosynthetic pathway's metabolic balance was accurately regulated to reduce the intermediates' accumulation. Notably, the β-carotene content increased by 21 times to reach 12.5 dry cell weight (DCW) mg/g when minimizing HMG-CoA and FPP accumulation. Further, we improved the expression levels of the CarRA and CarB genes to minimize the accumulation of phytoene and lycopene. Total production of β-carotene of 1.7 g/L and 21.6 mg/g DCW was achieved. These results reveal that the rate-limiting enzymes CarRA and CarB of B. trispora exhibited higher catalytic activity than the same enzymes from other microorganisms. Promoting metabolic balance by minimizing the accumulation of intermediates is a very effective strategy for increasing β-carotene. The β-carotene-producing strain constructed in this study has established the foundation for its potential use in industrial production. These successful engineering strategies also provide a foundation for large-scale production of other terpenoids.
Collapse
Affiliation(s)
- Liang Liu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yu Ling Qu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Gui Ru Dong
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Jing Wang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Ching Yuan Hu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Yong Hong Meng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
30
|
Stephens S, Mahadevan R, Allen DG. Engineering Photosynthetic Bioprocesses for Sustainable Chemical Production: A Review. Front Bioeng Biotechnol 2021; 8:610723. [PMID: 33490053 PMCID: PMC7820810 DOI: 10.3389/fbioe.2020.610723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial production of chemicals using renewable feedstocks such as glucose has emerged as a green alternative to conventional chemical production processes that rely primarily on petroleum-based feedstocks. The carbon footprint of such processes can further be reduced by using engineered cells that harness solar energy to consume feedstocks traditionally considered to be wastes as their carbon sources. Photosynthetic bacteria utilize sophisticated photosystems to capture the energy from photons to generate reduction potential with such rapidity and abundance that cells often cannot use it fast enough and much of it is lost as heat and light. Engineering photosynthetic organisms could enable us to take advantage of this energy surplus by redirecting it toward the synthesis of commercially important products such as biofuels, bioplastics, commodity chemicals, and terpenoids. In this work, we review photosynthetic pathways in aerobic and anaerobic bacteria to better understand how these organisms have naturally evolved to harness solar energy. We also discuss more recent attempts at engineering both the photosystems and downstream reactions that transfer reducing power to improve target chemical production. Further, we discuss different methods for the optimization of photosynthetic bioprocess including the immobilization of cells and the optimization of light delivery. We anticipate this review will serve as an important resource for future efforts to engineer and harness photosynthetic bacteria for chemical production.
Collapse
Affiliation(s)
- Sheida Stephens
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - D Grant Allen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Wan X, Zhou XR, Moncalian G, Su L, Chen WC, Zhu HZ, Chen D, Gong YM, Huang FH, Deng QC. Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering. Prog Lipid Res 2020; 81:101083. [PMID: 33373616 DOI: 10.1016/j.plipres.2020.101083] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
There is an increasing demand for astaxanthin in food, feed, cosmetics and pharmaceutical applications because of its superior anti-oxidative and coloring properties. However, naturally produced astaxanthin is expensive, mainly due to low productivity and limited sources. Reprogramming of microorganisms for astaxanthin production via metabolic engineering is a promising strategy. We primarily focus on the application of synthetic biology, enzyme engineering and metabolic engineering in enhancing the synthesis and accumulation of astaxanthin in microorganisms in this review. We also discuss the biosynthetic pathways of astaxanthin within natural producers, and summarize the achievements and challenges in reprogramming microorganisms for enhancing astaxanthin production. This review illuminates recent biotechnological advances in microbial production of astaxanthin. Future perspectives on utilization of new technologies for boosting microbial astaxanthin production are also discussed.
Collapse
Affiliation(s)
- Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | | | - Gabriel Moncalian
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Wen-Chao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Hang-Zhi Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Dan Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yang-Min Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Feng-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | - Qian-Chun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| |
Collapse
|
32
|
Li M, Xia Q, Zhang H, Zhang R, Yang J. Metabolic Engineering of Different Microbial Hosts for Lycopene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14104-14122. [PMID: 33207118 DOI: 10.1021/acs.jafc.0c06020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a result of the extensive use of lycopene in a variety of fields, especially the dietary supplement and health food industries, the production of lycopene has attracted considerable interest. Lycopene can be obtained through extraction from vegetables and chemical synthesis. Alternatively, the microbial production of lycopene has been extensively researched in recent years. Various types of microbial hosts have been evaluated for their potential to accumulate a high level of lycopene. Metabolic engineering of the hosts and optimization of culture conditions are performed to enhance lycopene production. After years of research, great progress has been made in lycopene production. In this review, strategies used to improve lycopene production in different microbial hosts and the advantages and disadvantages of each microbial host are summarized. In addition, future perspectives of lycopene production in different microbial hosts are discussed.
Collapse
Affiliation(s)
- Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changchen Road, Qingdao, Shandong 266109, People's Republic of China
| | - Qingqing Xia
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changchen Road, Qingdao, Shandong 266109, People's Republic of China
| | - Haibo Zhang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 135 Songling Road, Qingdao, Shandong 266101, People's Republic of China
| | - Rubing Zhang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 135 Songling Road, Qingdao, Shandong 266101, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changchen Road, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
33
|
Li L, Liu Z, Jiang H, Mao X. Biotechnological production of lycopene by microorganisms. Appl Microbiol Biotechnol 2020; 104:10307-10324. [PMID: 33097966 DOI: 10.1007/s00253-020-10967-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022]
Abstract
Lycopene is a dark red carotenoid belonging to C40 terpenoids and is widely found in a variety of plants, especially ripe red fruits and vegetables. Lycopene has been shown to reduce the risk of prostate cancer, other cancers, and cardiovascular disease. It is one of the most widely used carotenoids in the healthcare product market. Currently, commercially available lycopene is mainly extracted from tomatoes. However, production of lycopene from plants is costly and environmentally unfriendly. To date, there have been many reports on the biosynthesis of lycopene by microorganisms, providing another route for lycopene production. This review discusses the lycopene biosynthetic pathway and natural and engineered lycopene-accumulating microorganisms, as well as their production of lycopene. The effects of different metabolic engineering strategies on lycopene accumulation are also considered. Furthermore, this work presents perspectives concerning the microbial production of lycopene, especially trends to construct microbial cell factories for lycopene production. KEY POINTS: • Recent achievements in the lycopene biosynthesis in microorganisms. • Review of lycopene biosynthetic metabolism engineering strategy. • Discuss the current challenges and prospects of using microorganisms to produce lycopene.
Collapse
Affiliation(s)
- Lei Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
34
|
Orsi E, Beekwilder J, Eggink G, Kengen SWM, Weusthuis RA. The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol Bioeng 2020; 118:531-541. [PMID: 33038009 PMCID: PMC7894463 DOI: 10.1002/bit.27593] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Microbial cell factories are the workhorses of industrial biotechnology and improving their performances can significantly optimize industrial bioprocesses. Microbial strain engineering is often employed for increasing the competitiveness of bio‐based product synthesis over more classical petroleum‐based synthesis. Recently, efforts for strain optimization have been standardized within the iterative concept of “design‐build‐test‐learn” (DBTL). This approach has been successfully employed for the improvement of traditional cell factories like Escherichia coli and Saccharomyces cerevisiae. Within the past decade, several new‐to‐industry microorganisms have been investigated as novel cell factories, including the versatile α‐proteobacterium Rhodobacter sphaeroides. Despite its history as a laboratory strain for fundamental studies, there is a growing interest in this bacterium for its ability to synthesize relevant compounds for the bioeconomy, such as isoprenoids, poly‐β‐hydroxybutyrate, and hydrogen. In this study, we reflect on the reasons for establishing R. sphaeroides as a cell factory from the perspective of the DBTL concept. Moreover, we discuss current and future opportunities for extending the use of this microorganism for the bio‐based economy. We believe that applying the DBTL pipeline for R. sphaeroides will further strengthen its relevance as a microbial cell factory. Moreover, the proposed use of strain engineering via the DBTL approach may be extended to other microorganisms that have not been critically investigated yet for industrial applications.
Collapse
Affiliation(s)
- Enrico Orsi
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands.,Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Gerrit Eggink
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands.,Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
35
|
Lv PJ, Qiang S, Liu L, Hu CY, Meng YH. Dissolved-oxygen feedback control fermentation for enhancing β-carotene in engineered Yarrowia lipolytica. Sci Rep 2020; 10:17114. [PMID: 33051539 PMCID: PMC7555900 DOI: 10.1038/s41598-020-74074-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023] Open
Abstract
The DO-stat fed-batch fermentation was carried out to explore the volumetric productivity of β-carotene in engineered Yarrowia lipolytica C11 strain. Using DO-stat fed-batch fermentation, we achieved 94 g/L biomass and 2.01 g/L β-carotene. Both biomass and β-carotene were about 1.28-fold higher than that in fed-batch fermentation. The ATP, NADP+/NADPH, and gene expression levels of tHMG, GGS1, carRA, and carB were promoted as compared to that in fed-batch fermentation. As for as the kinetic parameters in DO-stat fed-batch fermentation, μm', Yx/s', and Yp/s' was 0.527, 0.353, and 0.158, respectively. The μm' was elevated 4.66-fold than that in fed-batch fermentation. These data illustrate that more dissolved oxygen increased the biomass. The Yx/s' and Yp/s' were increased 1.15 and 22.57-fold, which suggest that the DO-stat fed-batch fermentation reduced the Crabtree effect and improved the utilization rate of glucose. Therefore, DO-stat fed-batch fermentation is a promising strategy in the industrialized production of β-carotene.
Collapse
Affiliation(s)
- Peng Jun Lv
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, 710119, P.R. China
| | - Shan Qiang
- Xian Healthful Biotechnology Co., Ltd., Hang Tuo Road, Changan, Xi'an, 710100, People's Republic of China
| | - Liang Liu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, 710119, P.R. China
| | - Ching Yuan Hu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, 710119, P.R. China
| | - Yong Hong Meng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, 710119, P.R. China.
| |
Collapse
|
36
|
Venil CK, Dufossé L, Renuka Devi P. Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
37
|
Qiang S, Wang J, Xiong XC, Qu YL, Liu L, Hu CY, Meng YH. Promoting the Synthesis of Precursor Substances by Overexpressing Hexokinase (Hxk) and Hydroxymethylglutaryl-CoA Synthase (Erg13) to Elevate β-Carotene Production in Engineered Yarrowia lipolytica. Front Microbiol 2020; 11:1346. [PMID: 32636824 PMCID: PMC7316989 DOI: 10.3389/fmicb.2020.01346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 11/23/2022] Open
Abstract
As a valuable carotenoid, β-carotene is commercially used in food, cosmetics, animal feeds, and other industries. Metabolic engineering of microorganisms has been widely explored to improve the production of β-carotene. Compared with the traditional genetic modifications mainly focused on the pathways of mevalonate (MVA) and β-carotene biosynthesis, this study aims to increase the β-carotene production through promoting the synthesis of precursor substances by overexpressing hexokinase and hydroxymethylglutaryl-CoA synthase in an engineered Yarrowia lipolytica. In this study, we investigated the effect of the unique hexokinase gene (Hxk) overexpression on β-carotene accumulation and glucose consumption. The Hxk gene was introduced into a β-carotene producing strain Y.L-1 to generate strain Y.L-2, and this increased the β-carotene content by 98%. Overexpression of the Hxk gene led to increasing in hexokinase activity (329% higher), glucose-6-phosphate content (92% higher), and improvement of the transcriptional level of Hxk (315% higher) compared to the control Y.L-1 strain. Moreover, Hxk overexpression accelerated the utilization rate of glucose. The gene erg13 encoding hydroxymethylglutaryl-CoA synthase was also overexpressed to increase the precursor supply for β-carotene biosynthesis. Recombinant Y.L-4 harboring two copies of erg13 produced 8.41 mg/g dry cell weight (DCW) of β-carotene, which was 259% higher than Y.L-1. The β-carotene content of 9.56 mg/g DCW was achieved in strain Y.L-6 by integrating erg13 into the chromosome and Hxk overexpression. The 3-Hydroxy-3-Methylglutaryl-CoA content in the cells was increased by overexpressing two copies of the erg13 gene. Finally, the titer of β-carotene reached 2.4 g/L using a 50 L bioreactor by the engineered strain, and the fermentation cycle was shortened from 144 to 120 h. Overall, overexpression of Hxk and erg13 could improve β-carotene production and successfully overcoming the bottleneck of precursor generation to support a more efficient pathway for the production of the target product. Our results revealed a novel strategy to engineer the pathway of β-carotene synthesis.
Collapse
Affiliation(s)
- Shan Qiang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,Xi'an Healthful Biotechnology Co., Ltd., Xi'an, China
| | - Jing Wang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiao Chao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Yu Ling Qu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Liang Liu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Ching Yuan Hu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yong Hong Meng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
38
|
Capson-Tojo G, Batstone DJ, Grassino M, Vlaeminck SE, Puyol D, Verstraete W, Kleerebezem R, Oehmen A, Ghimire A, Pikaar I, Lema JM, Hülsen T. Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnol Adv 2020; 43:107567. [PMID: 32470594 DOI: 10.1016/j.biotechadv.2020.107567] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Sustainable development is driving a rapid focus shift in the wastewater and organic waste treatment sectors, from a "removal and disposal" approach towards the recovery and reuse of water, energy and materials (e.g. carbon or nutrients). Purple phototrophic bacteria (PPB) are receiving increasing attention due to their capability of growing photoheterotrophically under anaerobic conditions. Using light as energy source, PPB can simultaneously assimilate carbon and nutrients at high efficiencies (with biomass yields close to unity (1 g CODbiomass·g CODremoved-1)), facilitating the maximum recovery of these resources as different value-added products. The effective use of infrared light enables selective PPB enrichment in non-sterile conditions, without competition with other phototrophs such as microalgae if ultraviolet-visible wavelengths are filtered. This review reunites results systematically gathered from over 177 scientific articles, aiming at producing generalized conclusions. The most critical aspects of PPB-based production and valorisation processes are addressed, including: (i) the identification of the main challenges and potentials of different growth strategies, (ii) a critical analysis of the production of value-added compounds, (iii) a comparison of the different value-added products, (iv) insights into the general challenges and opportunities and (v) recommendations for future research and development towards practical implementation. To date, most of the work has not been executed under real-life conditions, relevant for full-scale application. With the savings in wastewater discharge due to removal of organics, nitrogen and phosphorus as an important economic driver, priorities must go to using PPB-enriched cultures and real waste matrices. The costs associated with artificial illumination, followed by centrifugal harvesting/dewatering and drying, are estimated to be 1.9, 0.3-2.2 and 0.1-0.3 $·kgdry biomass-1. At present, these costs are likely to exceed revenues. Future research efforts must be carried out outdoors, using sunlight as energy source. The growth of bulk biomass on relatively clean wastewater streams (e.g. from food processing) and its utilization as a protein-rich feed (e.g. to replace fishmeal, 1.5-2.0 $·kg-1) appears as a promising valorisation route.
Collapse
Affiliation(s)
- Gabriel Capson-Tojo
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia; CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - María Grassino
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Daniel Puyol
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, Móstoles, Spain.
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium; Avecom NV, Industrieweg 122P, 9032 Wondelgem, Belgium.
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands.
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Anish Ghimire
- Department of Environmental Science and Engineering, Kathmandu University, Dhulikhel, Nepal.
| | - Ilje Pikaar
- School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Tim Hülsen
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
39
|
Kang CK, Jeong SW, Yang JE, Choi YJ. High-Yield Production of Lycopene from Corn Steep Liquor and Glycerol Using the Metabolically Engineered Deinococcus radiodurans R1 Strain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5147-5153. [PMID: 32275417 DOI: 10.1021/acs.jafc.0c01024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing a highly efficient and ecofriendly system to produce desired products from waste can be considered important to a sustainable society. Here, we report for the first time high-yield production of lycopene through metabolically engineering an extremophilic microorganism, Deinococcus radiodurans R1, from corn steep liquor (CSL) and glycerol. First, the crtLm gene-encoding lycopene cyclase was deleted to prevent the conversion of lycopene to γ-carotene. Then, the crtB gene-encoding phytoene synthase and the dxs gene-encoding 1-deoxy-d-xylulose 5-phosphate synthase were overexpressed to increase carbon flux toward lycopene. The engineered ΔcrtLm/crtB+dxs+ D. radiodurans R1 could produce 273.8 mg/L [80.7 mg/g dry cell weight (DCW)] and 373.5 mg/L (108.0 mg/g DCW) of lycopene from 10 g/L of glucose with 5 g/L of yeast extract and 9.9 g/L of glucose with 20 g/L of CSL, respectively. Moreover, the lycopene titer and content were increased by 26% (470.6 mg/L) and 28% (138.2 mg/g DCW), respectively, when the carbon source was changed to glycerol. Finally, fed-batch fermentation of the final engineered strain allowed the production of 722.2 mg/L (203.5 mg/g DCW) of lycopene with a yield and productivity of 20.3 mg/g glycerol and 6.0 mg/L/h, respectively, from 25 g/L of CSL and 35.7 g/L of glycerol.
Collapse
Affiliation(s)
- Chang Keun Kang
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Sun-Wook Jeong
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Jung Eun Yang
- World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
40
|
Luo Y, Zhou M, Zhao Q, Wang F, Gao J, Sheng H, An L. Complete genome sequence of Sphingomonas sp. Cra20, a drought resistant and plant growth promoting rhizobacteria. Genomics 2020; 112:3648-3657. [PMID: 32334112 DOI: 10.1016/j.ygeno.2020.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/19/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023]
Abstract
Sphingomonas sp. Cra20 is a rhizobacteria isolated from the root surface of Leontopodium leontopodioides in the Tianshan Mountains of China and was found to influence root system architecture. We analyzed its ability for plant-growth promotion and the molecular mechanism involved by combining the physiological and genome information. The results indicated that the bacterium enhanced the drought resistance of Arabidopsis thaliana and promoted growth mainly through the strain-released volatile organic compounds. The genome consisted of one circular chromosome and one circular plasmid, containing a series of genes related to the plant-growth promotion. Furthermore, multiple copies of cold-associated genes, general stress response genes, oxidative stress genes and DNA repair mechanisms supported its survivability in extreme environments. In addition, the strain had the ability to degrade xylene and 2, 4-D via a variety of monooxygenases and dioxygenases. This provides further information and will promote the application of Cra20 as a biofertilizer in agriculture.
Collapse
Affiliation(s)
- Yang Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meng Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qi Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiangli Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongmei Sheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; The College of Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
41
|
Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103867] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
42
|
Usmani Z, Sharma M, Sudheer S, Gupta VK, Bhat R. Engineered Microbes for Pigment Production Using Waste Biomass. Curr Genomics 2020; 21:80-95. [PMID: 32655303 PMCID: PMC7324876 DOI: 10.2174/1389202921999200330152007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Agri-food waste biomass is the most abundant organic waste and has high valorisation potential for sustainable bioproducts development. These wastes are not only recyclable in nature but are also rich sources of bioactive carbohydrates, peptides, pigments, polyphenols, vitamins, natural antioxidants, etc. Bioconversion of agri-food waste to value-added products is very important towards zero waste and circular economy concepts. To reduce the environmental burden, food researchers are seeking strategies to utilize this waste for microbial pigments production and further biotechnological exploitation in functional foods or value-added products. Microbes are valuable sources for a range of bioactive molecules, including microbial pigments production through fermentation and/or utilisation of waste. Here, we have reviewed some of the recent advancements made in important bioengineering technologies to develop engineered microbial systems for enhanced pigments production using agri-food wastes biomass/by-products as substrates in a sustainable way.
Collapse
Affiliation(s)
| | - Minaxi Sharma
- Address correspondence to these authors at the ERA Chair for Food (By-) Products Valorization Technologies- VALORTECH, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006, Tartu, Estonia; Tel/Fax: +372 7313927; E-mails: ;, ;
| | | | | | - Rajeev Bhat
- Address correspondence to these authors at the ERA Chair for Food (By-) Products Valorization Technologies- VALORTECH, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006, Tartu, Estonia; Tel/Fax: +372 7313927; E-mails: ;, ;
| |
Collapse
|
43
|
Orsi E, Mougiakos I, Post W, Beekwilder J, Dompè M, Eggink G, van der Oost J, Kengen SWM, Weusthuis RA. Growth-uncoupled isoprenoid synthesis in Rhodobacter sphaeroides. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:123. [PMID: 32684976 PMCID: PMC7359475 DOI: 10.1186/s13068-020-01765-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Microbial cell factories are usually engineered and employed for cultivations that combine product synthesis with growth. Such a strategy inevitably invests part of the substrate pool towards the generation of biomass and cellular maintenance. Hence, engineering strains for the formation of a specific product under non-growth conditions would allow to reach higher product yields. In this respect, isoprenoid biosynthesis represents an extensively studied example of growth-coupled synthesis with rather unexplored potential for growth-independent production. Rhodobacter sphaeroides is a model bacterium for isoprenoid biosynthesis, either via the native 2-methyl-d-erythritol 4-phosphate (MEP) pathway or the heterologous mevalonate (MVA) pathway, and for poly-β-hydroxybutyrate (PHB) biosynthesis. RESULTS This study investigates the use of this bacterium for growth-independent production of isoprenoids, with amorpha-4,11-diene as reporter molecule. For this purpose, we employed the recently developed Cas9-based genome editing tool for R. sphaeroides to rapidly construct single and double deletion mutant strains of the MEP and PHB pathways, and we subsequently transformed the strains with the amorphadiene producing plasmid. Furthermore, we employed 13C-metabolic flux ratio analysis to monitor the changes in the isoprenoid metabolic fluxes under different cultivation conditions. We demonstrated that active flux via both isoprenoid pathways while inactivating PHB synthesis maximizes growth-coupled isoprenoid synthesis. On the other hand, the strain that showed the highest growth-independent isoprenoid yield and productivity, combined the plasmid-based heterologous expression of the orthogonal MVA pathway with the inactivation of the native MEP and PHB production pathways. CONCLUSIONS Apart from proposing a microbial cell factory for growth-independent isoprenoid synthesis, this work provides novel insights about the interaction of MEP and MVA pathways under different growth conditions.
Collapse
Affiliation(s)
- Enrico Orsi
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Present Address: Systems and Synthetic Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ioannis Mougiakos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Present Address: Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Wilbert Post
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | - Marco Dompè
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Gerrit Eggink
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Wageningen Food & Biobased Research, 6708WG Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
44
|
Mougiakos I, Orsi E, Ghiffary MR, Post W, de Maria A, Adiego-Perez B, Kengen SWM, Weusthuis RA, van der Oost J. Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering. Microb Cell Fact 2019; 18:204. [PMID: 31767004 PMCID: PMC6876111 DOI: 10.1186/s12934-019-1255-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Background Rhodobacter sphaeroides is a metabolically versatile bacterium that serves as a model for analysis of photosynthesis, hydrogen production and terpene biosynthesis. The elimination of by-products formation, such as poly-β-hydroxybutyrate (PHB), has been an important metabolic engineering target for R. sphaeroides. However, the lack of efficient markerless genome editing tools for R. sphaeroides is a bottleneck for fundamental studies and biotechnological exploitation. The Cas9 RNA-guided DNA-endonuclease from the type II CRISPR-Cas system of Streptococcus pyogenes (SpCas9) has been extensively employed for the development of genome engineering tools for prokaryotes and eukaryotes, but not for R. sphaeroides. Results Here we describe the development of a highly efficient SpCas9-based genomic DNA targeting system for R. sphaeroides, which we combine with plasmid-borne homologous recombination (HR) templates developing a Cas9-based markerless and time-effective genome editing tool. We further employ the tool for knocking-out the uracil phosphoribosyltransferase (upp) gene from the genome of R. sphaeroides, as well as knocking it back in while altering its start codon. These proof-of-principle processes resulted in editing efficiencies of up to 100% for the knock-out yet less than 15% for the knock-in. We subsequently employed the developed genome editing tool for the consecutive deletion of the two predicted acetoacetyl-CoA reductase genes phaB and phbB in the genome of R. sphaeroides. The culturing of the constructed knock-out strains under PHB producing conditions showed that PHB biosynthesis is supported only by PhaB, while the growth of the R. sphaeroides ΔphbB strains under the same conditions is only slightly affected. Conclusions In this study, we combine the SpCas9 targeting activity with the native homologous recombination (HR) mechanism of R. sphaeroides for the development of a genome editing tool. We further employ the developed tool for the elucidation of the PHB production pathway of R. sphaeroides. We anticipate that the presented work will accelerate molecular research with R. sphaeroides.
Collapse
Affiliation(s)
- Ioannis Mougiakos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Enrico Orsi
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Mohammad Rifqi Ghiffary
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Wilbert Post
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Alberto de Maria
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Systems and Synthetic Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Belén Adiego-Perez
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
45
|
Lal PB, Wells FM, Lyu Y, Ghosh IN, Landick R, Kiley PJ. A Markerless Method for Genome Engineering in Zymomonas mobilis ZM4. Front Microbiol 2019; 10:2216. [PMID: 31681183 PMCID: PMC6797605 DOI: 10.3389/fmicb.2019.02216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/10/2019] [Indexed: 01/12/2023] Open
Abstract
Metabolic engineering of the biofuel-producing Zymomonas mobilis is necessary if we are to unlock the metabolic potential present in this non-model microbe. Manipulation of such organisms can be challenging because of the limited genetic tools for iterative genome modification. Here, we have developed an efficient method for generating markerless genomic deletions or additions in Z. mobilis. This is a two-step process that involves homologous recombination of an engineered suicide plasmid bearing Z. mobilis targeting sequences and a subsequent recombination event that leads to loss of the suicide plasmid and a genome modification. A key feature of this strategy is that GFP expressed from the suicide plasmid allows easy identification of cells that have lost the plasmid by using a fluorescence activated cell sorter. Using this method, we demonstrated deletion of the gene encoding lactate dehydrogenase (ldh) and the operon for cellulose synthase (bcsABC). In addition, by modifying the plasmid design, we demonstrated targeted insertion of the crtIBE operon encoding a neurosporene biosynthetic pathway into the Z. mobilis genome without addition of any antibiotic resistance genes. We propose this approach will provide an efficient and flexible platform for improved genetic engineering of Z. mobilis.
Collapse
Affiliation(s)
- Piyush Behari Lal
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Fritz M Wells
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Yucai Lyu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Indro N Ghosh
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert Landick
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States.,Cell and Molecular Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Patricia J Kiley
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States.,Cell and Molecular Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
46
|
Qiang S, Su AP, Li Y, Chen Z, Hu CY, Meng YH. Elevated β-Carotene Synthesis by the Engineered Rhodobacter sphaeroides with Enhanced CrtY Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9560-9568. [PMID: 31368704 DOI: 10.1021/acs.jafc.9b02597] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
β-Carotene is a precursor of vitamin A and a dietary supplement for its antioxidant property. Producing β-carotene by microbial fermentation has attracted much attention owing to consumers' preference for the natural product. In this study, an engineered photosynthetic Rhodobacter sphaeroides producing β-carotene was constructed by the following strategies: (1) five promoters of different strengths were used to investigate the effect of the expression level of crtY on β-carotene content. It was found that PrrnB increased the β-carotene content by 109%. (2) blocking of the branched pentose phosphate pathway by zwf deletion, and (3) overexpressing dxs could restore the transcriptional levels of crtE and crtB. Finally, the engineered RS-C3 has the highest β-carotene content of 14.93 mg/g dry cell weight (DCW) among all of the reported photosynthetic bacteria and the β-carotene content reached 3.34 mg/g DCW under light conditions. Our results will be available for industrial use to supply a large quantity of natural β-carotene.
Collapse
Affiliation(s)
- Shan Qiang
- Shaanxi Engineering Lab for Food Green Processing and Security Control, College of Food Engineering and Nutritional Science , Shaanxi Normal University , 620 West Chang'an Avenue , Chang'an, Xi'an 710119 , P. R. China
- Xi'an Healthful Biotechnology Co., Ltd. , HangTuo Road , Chang'an, Xi'an 710100 , P. R. China
| | - An Ping Su
- Shaanxi Engineering Lab for Food Green Processing and Security Control, College of Food Engineering and Nutritional Science , Shaanxi Normal University , 620 West Chang'an Avenue , Chang'an, Xi'an 710119 , P. R. China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology , China Agricultural University , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , P. R. China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology , China Agricultural University , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , P. R. China
| | - Ching Yuan Hu
- Human Nutrition, Food, and Animal Science , University of Hawai'i at Manoa , 1955 East-West Road, AgSci. 415J , Honolulu , Hawaii 96822-2217 , United States
| | - Yong Hong Meng
- Shaanxi Engineering Lab for Food Green Processing and Security Control, College of Food Engineering and Nutritional Science , Shaanxi Normal University , 620 West Chang'an Avenue , Chang'an, Xi'an 710119 , P. R. China
| |
Collapse
|
47
|
Moser S, Pichler H. Identifying and engineering the ideal microbial terpenoid production host. Appl Microbiol Biotechnol 2019; 103:5501-5516. [PMID: 31129740 PMCID: PMC6597603 DOI: 10.1007/s00253-019-09892-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
More than 70,000 different terpenoid structures are known so far; many of them offer highly interesting applications as pharmaceuticals, flavors and fragrances, or biofuels. Extraction of these compounds from their natural sources or chemical synthesis is-in many cases-technically challenging with low or moderate yields while wasting valuable resources. Microbial production of terpenoids offers a sustainable and environment-friendly alternative starting from simple carbon sources and, frequently, safeguards high product specificity. Here, we provide an overview on employing recombinant bacteria and yeasts for heterologous de novo production of terpenoids. Currently, Escherichia coli and Saccharomyces cerevisiae are the two best-established production hosts for terpenoids. An increasing number of studies have been successful in engineering alternative microorganisms for terpenoid biosynthesis, which we intend to highlight in this review. Moreover, we discuss the specific engineering challenges as well as recent advances for microbial production of different classes of terpenoids. Rationalizing the current stages of development for different terpenoid production hosts as well as future prospects shall provide a valuable decision basis for the selection and engineering of the cell factory(ies) for industrial production of terpenoid target molecules.
Collapse
Affiliation(s)
- Sandra Moser
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010, Graz, Austria
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Graz University of Technology, Petersgasse 14/2, 8010, Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010, Graz, Austria.
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Graz University of Technology, Petersgasse 14/2, 8010, Graz, Austria.
| |
Collapse
|
48
|
Orsi E, Folch PL, Monje-López VT, Fernhout BM, Turcato A, Kengen SWM, Eggink G, Weusthuis RA. Characterization of heterotrophic growth and sesquiterpene production by Rhodobacter sphaeroides on a defined medium. J Ind Microbiol Biotechnol 2019; 46:1179-1190. [PMID: 31187318 PMCID: PMC6697705 DOI: 10.1007/s10295-019-02201-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 11/30/2022]
Abstract
Rhodobacter sphaeroides is a metabolically versatile bacterium capable of producing terpenes natively. Surprisingly, terpene biosynthesis in this species has always been investigated in complex media, with unknown compounds possibly acting as carbon and nitrogen sources. Here, a defined medium was adapted for R. sphaeroides dark heterotrophic growth, and was used to investigate the conversion of different organic substrates into the reporter terpene amorphadiene. The amorphadiene synthase was cloned in R. sphaeroides, allowing its biosynthesis via the native 2-methyl-d-erythritol-4-phosphate (MEP) pathway and, additionally, via a heterologous mevalonate one. The latter condition increased titers up to eightfold. Consequently, better yields and productivities to previously reported complex media cultivations were achieved. Productivity was further investigated under different cultivation conditions, including nitrogen and oxygen availability. This novel cultivation setup provided useful insight into the understanding of terpene biosynthesis in R. sphaeroides, allowing to better comprehend its dynamics and regulation during chemoheterotrophic cultivation.
Collapse
Affiliation(s)
- Enrico Orsi
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Pauline L Folch
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Vicente T Monje-López
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Bas M Fernhout
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Alessandro Turcato
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Gerrit Eggink
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands.,Biobased Products Food and Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
49
|
Wang C, Zhao S, Shao X, Park JB, Jeong SH, Park HJ, Kwak WJ, Wei G, Kim SW. Challenges and tackles in metabolic engineering for microbial production of carotenoids. Microb Cell Fact 2019; 18:55. [PMID: 30885243 PMCID: PMC6421696 DOI: 10.1186/s12934-019-1105-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/08/2019] [Indexed: 02/07/2023] Open
Abstract
Naturally occurring carotenoids have been isolated and used as colorants, antioxidants, nutrients, etc. in many fields. There is an ever-growing demand for carotenoids production. To comfort this, microbial production of carotenoids is an attractive alternative to current extraction from natural sources. This review summarizes the biosynthetic pathway of carotenoids and progresses in metabolic engineering of various microorganisms for carotenoid production. The advances in synthetic pathway and systems biology lead to many versatile engineering tools available to manipulate microorganisms. In this context, challenges and possible directions are also discussed to provide an insight of microbial engineering for improved production of carotenoids in the future.
Collapse
Affiliation(s)
- Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China.
| | - Shuli Zhao
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Xixi Shao
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Ji-Bin Park
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Seong-Hee Jeong
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Hyo-Jin Park
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Won-Ju Kwak
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
50
|
Zuo ZQ, Xue Q, Zhou J, Zhao DH, Han J, Xiang H. Engineering Haloferax mediterranei as an Efficient Platform for High Level Production of Lycopene. Front Microbiol 2018; 9:2893. [PMID: 30555438 PMCID: PMC6282799 DOI: 10.3389/fmicb.2018.02893] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/12/2018] [Indexed: 01/22/2023] Open
Abstract
Lycopene attracts increasing interests in the pharmaceutical, food, and cosmetic industries due to its anti-oxidative and anti-cancer properties. Compared with other lycopene production methods, such as chemical synthesis or direct extraction from plants, the biosynthesis approach using microbes is more economical and sustainable. In this work, we engineered Haloferax mediterranei, a halophilic archaeon, as a new lycopene producer. H. mediterranei has the de novo synthetic pathway for lycopene but cannot accumulate this compound. To address this issue, we reinforced the lycopene synthesis pathway, blocked its flux to other carotenoids and disrupted its competitive pathways. The reaction from geranylgeranyl-PP to phytoene catalyzed by phytoene synthase (CrtB) was identified as the rate-limiting step in H. mediterranei. Insertion of a strong promoter PphaR immediately upstream of the crtB gene, or overexpression of the heterologous CrtB and phytoene desaturase (CrtI) led to a higher yield of lycopene. In addition, blocking bacterioruberin biosynthesis increased the purity and yield of lycopene. Knock-out of the key genes, responsible for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biosynthesis, diverted more carbon flux into lycopene synthesis, and thus further enhanced lycopene production. The metabolic engineered H. mediterranei strain produced lycopene at 119.25 ± 0.55 mg per gram of dry cell weight in shake flask fermentation. The obtained yield was superior compared to the lycopene production observed in most of the engineered Escherichia coli or yeast even when they were cultivated in pilot scale bioreactors. Collectively, this work offers insights into the mechanism involved in carotenoid biosynthesis in haloarchaea and demonstrates the potential of using haloarchaea for the production of lycopene or other carotenoids.
Collapse
Affiliation(s)
- Zhen-Qiang Zuo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Da-He Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|