1
|
Padil VVT, Senan C, Černík M, Varma RS. Karaya and Kondagogu tree gum carbohydrate polymers: A sustainable source for biobased products. Carbohydr Polym 2025; 360:123609. [PMID: 40399018 DOI: 10.1016/j.carbpol.2025.123609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 05/23/2025]
Abstract
Tree gums, classified as non-wood forest products (NWFPs), are becoming increasingly popular because of their substantial influence on the livelihoods of individuals in developing nations and their ability to enhance the well-being of locals. As food additives and frameworks for current and future non-food applications, tree-based carbohydrate gums are critical as sustainable, ecological, biodegradable, and recyclable materials. This review expounds on the crucial and assorted applications of gum Karaya (Sterculia urens; GK) and gum Kondagogu (Cochlospermum gossypium; KG) and their derivatives in nanoparticle synthesis, energy harvesting/storage, food packaging, hydrogel formulations, environmental bioremediation, and water purification. They can be applied as functional nanofibers, sponges, films, hydrogels, and nanocomposites. A thorough evaluation of recent scientific research on 'green' and sustainable manifestations of these gum polymers (including their functionalized material forms, fabrication techniques, products, and advances) has been directed in terms of various scientific applications and possible industrial domains. This review extends sustainable product enhancement based on these natural gums ranging from laboratory to future industrial-scale manufacturing and the associated challenges, thus envisaging a platform for the United Nations Sustainable Development Goals (UNSDGs 1, 2, 6, and 7) in livelihood, agricultural sustainability, clean water, and sanitation, as well as affordable clean energy.
Collapse
Affiliation(s)
- Vinod V T Padil
- Amrita School for Sustainable Futures (ASF), Sustainable Ecosystem Environmental Resilience (SEER) Lab, Amrita Vishwa Vidyapeetham, Amrita University, Amritapuri Campus, Clappana P. O., Kollam 690525, Kerala, India.
| | - Chandra Senan
- Centre for Water Soluble Polymers, Applied Science, Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, United Kingdom
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (TUL), Studentská 2, 461 17 Liberec, Czech Republic
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Karataş M, Erzen B, Aydoğmuş E, Orhan R. PVA/chitosan biofilms enriched with biosynthesized silver nanoparticles and tea tree oil: Towards multifunctional and environmentally friendly materials. Int J Biol Macromol 2025; 312:144164. [PMID: 40373914 DOI: 10.1016/j.ijbiomac.2025.144164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/16/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
This study aims to investigate the synergistic effects of biosynthesized silver nanoparticles (AgNPs) and tea tree oil (TTO) (0, 3, 5, and 7 wt%) on enhancing the functional properties of polyvinyl alcohol/chitosan (PVA/CS) nanobiofilms. The structural, morphological, mechanical, thermal, and physicochemical properties of the films were analyzed using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), mechanical tests, thermal conductivity, dielectric constant, swelling, and water solubility studies. FTIR analysis confirmed the successful incorporation of AgNPs and TTO, while SEM images revealed structural differences between silver nanoparticles synthesized using basil extract (B-AgNPs) and silver nanoparticles synthesized using bay leaf extract (BL-AgNPs), with BL-AgNPs-based films exhibiting a denser and more uniform morphology. TTO incorporation significantly influenced the dielectric properties, thermal conductivity, and water absorption behavior of the films, reducing their swelling ratio and enhancing their hydrophobicity. The biodegradation results demonstrated that the films containing 3 wt% TTO exhibited the highest degradation rates (up to 62.90 % after 21 days), indicating enhanced environmental sustainability. Research indicates that PVA/CS biofilms doped with TTO and enhanced with AgNPs, produced using eco-friendly techniques, show great promise as biodegradable substitutes for food packaging and wound dressing applications.
Collapse
Affiliation(s)
- Mukaddes Karataş
- Fırat University, Faculty of Engineering, Department of Chemical Engineering, 23119 Elazığ, Türkiye.
| | - Buket Erzen
- Fırat University, Faculty of Engineering, Department of Chemical Engineering, 23119 Elazığ, Türkiye.
| | - Ercan Aydoğmuş
- Fırat University, Faculty of Engineering, Department of Chemical Engineering, 23119 Elazığ, Türkiye.
| | - Ramazan Orhan
- Fırat University, Faculty of Engineering, Department of Chemical Engineering, 23119 Elazığ, Türkiye.
| |
Collapse
|
3
|
Jawed A, Rizvi A, Çitoğlu S, Azeem I, Maclean M, Golder AK, Pandey LM, Duran H, Davidson CM, Lau KHA. A Polyphenol-Based Hydrogel for Enabling Enhanced Metal Ion Sorption, Antimicrobial Activity, and Water Remediation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025. [DOI: 10.1021/acssuschemeng.5c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Affiliation(s)
- Aquib Jawed
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Centre for the Environment
- Indian Institute of Technology Guwahati
| | - Aiman Rizvi
- Department of Pure and Applied Chemistry
- University of Strathclyde
| | - Senem Çitoğlu
- Department of Materials Science and Nanotechnology Engineering
- TOBB University of Economics and Technology
| | - Iqra Azeem
- Department of Pure and Applied Chemistry
- University of Strathclyde
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering
- University of Strathclyde
| | - Animes K. Golder
- Centre for the Environment
- Indian Institute of Technology Guwahati
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
| | - Lalit M. Pandey
- Centre for the Environment
- Indian Institute of Technology Guwahati
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
| | - Hatice Duran
- Department of Materials Science and Nanotechnology Engineering
- TOBB University of Economics and Technology
- UNAM─National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology
- Bilkent University
| | | | | |
Collapse
|
4
|
Hashemi SS, Alizadeh R, Rafati A, Mohammadi A, Mortazavi M, Hashempur MH. Investigation of silicon oxide nanoparticle-enhanced self-healing hydrogel for cartilage repair and regeneration in rabbit earlobe models. J Drug Target 2025:1-13. [PMID: 40019486 DOI: 10.1080/1061186x.2025.2473675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
This study developed an alginate, gelatine and chondroitin sulphate hydrogel incorporating silicon oxide nanoparticles to assess hydrogel morphology, cell proliferation and viability. The effectiveness of these hydrogels for cartilage repair was evaluated in vivo using male albino rabbits, divided into three groups: a control group without hydrogels, an observer group with hydrogels lacking nanoparticles and a treatment group with nanoparticle-enhanced hydrogels for post-injury repair. At 15, 30 and 60 days post-surgery, the rabbits were humanely euthanized and excised tissue samples were fixed in 10% formalin for histopathological analysis, then processed and embedded in paraffin for microscopic evaluation. Statistical analysis was performed using SPSS software with ANOVA and Tukey's post hoc test. Results indicated that the hydrogels supported cell viability and encouraged differentiation into chondrocyte-like phenotypes. Scanning electron microscopy confirmed the hydrogels' porosity and showed significant differences in cell survival rates compared to the control group, underscoring the potential of hydrogels in cartilage tissue engineering and regenerative repair strategies.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Alizadeh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Aliakbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Nwankwo JA, Liu W, Guo X, Lin Y, Hussain M, Khan I, Joshua M, Ibrahim AN, Ngozi OJ, Ali A, Zou X. Microemulsion gel systems: Formulation, stability studies, biopolymer interactions, and functionality in food product development. Compr Rev Food Sci Food Saf 2025; 24:e70110. [PMID: 39898912 DOI: 10.1111/1541-4337.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025]
Abstract
Microemulsion gels (MGs) are nanostructured systems created by the addition of thickening agents/biopolymers to a microemulsion's aqueous or oily phases, offering benefits like improved solubilization, enhanced stability, high encapsulation efficiency, and sustained release with versatile applications in food, pharmaceuticals, and cosmetology. MGs are intricate systems with thermodynamic robustness and controllable rheological characteristics crucial for obtaining high structural integrity and achieving innovative results regarding food product development in diverse areas of food, including colloidal carriers, food packaging, active compound delivery, antimicrobial vectors, and production of biopolymer nanoparticles. Therefore, a comprehensive analysis, hence understanding about MG systems, is needed to identify trends and gaps, helping researchers to identify promising areas for innovation and providing direction for future research. This review offers a comprehensive analysis of MG systems, their characteristics, formulation, formation mechanisms, design approaches, digestion dynamics, and rheological properties. MGs excel in solubilizing hydrophilic and lipophilic bioactives due to their enhanced viscosity and interconnected droplet network within the gel matrix. Despite their advantages, challenges, such as formulation complexity, require further understanding. This article also explores innovative biopolymers, characterization, and extensive applications, while addressing case studies, and emerging trends leveraging the potential of MG systems for enhancing food stability, functionality, and nutritional value.
Collapse
Affiliation(s)
- Janice Adaeze Nwankwo
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenxue Liu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiusheng Guo
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunzhuoya Lin
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Magezi Joshua
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microbiology and Metabolic Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Ajibola Nihmot Ibrahim
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Okafor Jennifer Ngozi
- Faculty of Agriculture and Biotechnology, Department of Food Science and Technology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Ahmad Ali
- School of Biological Engineering, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Chen Y, Song H, Wang X, Huang R, Li S, Guan X. Propionate-functionalized chitosan hydrogel nanoparticles for effective oral delivery of insulin. Int J Biol Macromol 2025; 291:139159. [PMID: 39725095 DOI: 10.1016/j.ijbiomac.2024.139159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Oral delivery of macromolecular drugs is often hampered by the harsh gastrointestinal environment, which makes the drugs have poor bioavailability. Insulin, the most used drug for diabetes, also faces the same challenge for oral administration. Hence, we decorated microbial metabolite propionate on chitosan (CS) to fabricate insulin-loaded propionate-modified CS hydrogel nanoparticles (IN-CS/PA HNPs). The prepared IN-CS/PA HNPs exhibited high encapsulation efficiency (> 95 %) and loading capacity (∼10 %) for insulin. The system provided better protection for insulin in gastrointestinal environment compared to unmodified IN-CS HNPs. Moreover, the active functional group of propionate can be recognized and transported by mono-carboxylate transporter protein 1 (MCT1) targeting. Thus, in both Caco-2 cells and the ligated intestinal loops of rats, IN-CS/PA HNPs significantly improved permeability and uptake of insulin on intestinal epithelium, which was attributed to MCT1-mediated endocytosis. In type 1 diabetic (T1D) rats, oral delivery of IN-CS/PA HNPs with 60 IU/kg insulin led to more stable and long-lasting hypoglycemic effect than a 5IU/kg dose of subcutaneously injected insulin. It also generated 2.29-fold and 11.88-fold higher relative oral bioavailability compared with empty IN-CS HNPs and free insulin, respectively. This study demonstrated that propanoic acid-functionalized chitosan hydrogel nanoparticles could improve the oral absorption of insulin by overcoming multiple barriers in gastrointestinal tract, providing a promising active targeting strategy for the oral delivery of macromolecules drugs.
Collapse
Affiliation(s)
- Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruihan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China.
| |
Collapse
|
7
|
Zang J, Yin Z, Ouyang H, Liu Y, Liu Z, Yin Z. Advances in the preparation, applications, challenges, and future trends of polysaccharide-based gels as food-grade delivery systems for probiotics: A review. Compr Rev Food Sci Food Saf 2025; 24:e70111. [PMID: 39865632 DOI: 10.1111/1541-4337.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/28/2025]
Abstract
Probiotics are highly regarded for their multiple functions, such as regulating gut health, enhancing the immune system, and preventing chronic diseases. However, their stability in harsh environments and targeted release remain significant challenges. Therefore, exploring effective protection and delivery strategies to ensure targeted release of probiotics is critically important. Polysaccharides, known for their non-toxicity, excellent biocompatibility, and superior biodegradability, show broad prospects in probiotic delivery by forming physical barriers to protect the probiotics. Particularly, polysaccharide-based gels (PBGs), with their unique "spider-web" like structure, capture and ensure the targeted release of probiotics, significantly enhancing their efficacy. This review discusses common polysaccharides used in PBG preparation, their classification and synthesis in food applications, and the advantages of PBGs as probiotic delivery systems. Despite their potential, challenges such as inconsistent gel properties and the need for improved stability remain. Future research should focus on developing novel PBG materials with higher biodegradability and mechanical strength, optimizing the physicochemical properties and cross-linking methods, as well as designing multilayered structures for more precise release control. Additionally, exploring the co-delivery of probiotics with prebiotics, active ingredients, or multi-strain systems could further enhance the efficacy of probiotic delivery.
Collapse
Affiliation(s)
- Jianwei Zang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zelin Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Huidan Ouyang
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
- Vocational Teachers College, Jiangxi Agricultural University, Nanchang, China
| | - Yuanzhi Liu
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zebo Liu
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
8
|
Zeng X, Zhong W, He F, Huang C, Tong C, Pang J, Wu C. Tailoring structural and mechanical properties of konjac glucomannan/curdlan composite hydrogels by freeze-thaw treatment. Int J Biol Macromol 2024; 282:137116. [PMID: 39505174 DOI: 10.1016/j.ijbiomac.2024.137116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
To improve the gelling properties of konjac glucomannan/curdlan (KGM/CUD) composite hydrogels, KGM/CUD composite hydrogels were treated by freeze-thawing. Herein, we focus on the effects of freeze-thaw cycles, freezing temperature, and freezing time on the structural and mechanical properties of KGM/CUD composite hydrogels. SEM and SAXS results showed that ice crystals generated by freezing extruded the molecular chains and increased the cross-linking density between molecular chains, which resulted in a denser gel microstructure. Among them, the freeze-thaw treatment at -20 °C for 12 h can effectively reduce the correlation length (ξ). According to mechanical testing, freeze-thawed gels for 48 h reached 408-, 826-, and 840-fold of the hardness, gumminess and chewiness of unfrozen, respectively. After freeze-thaw treatment, the energy storage modulus (G') of the gel increased to 9872 Pa, the residual mass after heating was up to 27.9 %, the water holding capacity (WHC) was reduced to 80.85 %. In addition, low-field nuclear magnetic resonance results confirmed that the freeze-thaw treatment promoted the formation of ice crystals from water molecules, which realized the transition of the water state, thus reducing the water mobility of the gel. This study provides a facile and efficient strategy for designing hydrogels products with exceptional texture and sensory characteristics.
Collapse
Affiliation(s)
- Xinxin Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Weiquan Zhong
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fangjie He
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Chen Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Cailing Tong
- Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China.
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
9
|
Li K, Liu X, Jiang F, Zhang B, Qiao D, Xie F. In the process of polysaccharide gel formation: A review of the role of competitive relationship between water and alcohol molecules. Int J Biol Macromol 2024; 281:136398. [PMID: 39389491 DOI: 10.1016/j.ijbiomac.2024.136398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Polysaccharides have emerged as versatile materials capable of forming gels through diverse induction methods, with alcohol-induced polysaccharide gels demonstrating significant potential across food, medicinal, and other domains. The existing research mainly focused on the phenomena and mechanisms of alcohol-induced gel formation in specific polysaccharides. Therefore, this review provides a comprehensive overview of the intricate mechanisms underpinning alcohol-triggered gelation of different polysaccharides and surveys their prominent application potentials through rheological, mechanical, and other characterizations. The mechanism underlying the enhancement of polysaccharide network structures by alcohol is elucidated, where alcohol displaces water to establish hydrogen bonding and hydrophobic interactions with polysaccharide chains. Specifically, alcohols change the arrangement of water molecules, and the partial hydration shell surrounding polysaccharide molecules is disrupted, exposing polysaccharides' hydrophobic groups and enhancing hydrophobic interactions. Moreover, the pivotal influences of alcohol concentration and addition method on polysaccharide gelation kinetics are scrutinized, revealing nuanced dependencies such as the different gel-promoting capabilities of polyols versus monohydric alcohols and the critical threshold concentrations dictating gel formation. Notably, immersion of polysaccharide gels in alcohol augments gel strength, while direct alcohol addition to polysaccharide solutions precipitates gel formation. Future investigations are urged to unravel the intricate nexus between the mechanisms underpinning alcohol-induced polysaccharide gelation and their practical utility, thereby paving the path for tailored manipulation of environmental conditions to engineer bespoke alcohol-induced polysaccharide gels.
Collapse
Affiliation(s)
- Kexin Li
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xizhong Liu
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
10
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
11
|
Yang Y, Xu Q, Wang X, Bai Z, Xu X, Ma J. Casein-based hydrogels: Advances and prospects. Food Chem 2024; 447:138956. [PMID: 38503069 DOI: 10.1016/j.foodchem.2024.138956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Casein-based hydrogels (Casein Gels) possess advantageous properties, including mechanical strength, stability, biocompatibility, and even adhesion, conductivity, sensing capabilities, as well as controlled-releasing behavior of drugs. These features are attributed to their gelation methods and functionalization with various polymers. Casein Gels is an important protein-based material in the food industry, in terms of dairy and functional foods, biological and medicine, in terms of carrier for bioactive and sensitive drugs, wound healing, and flexible sensors and wearable devices. Herein, this review aims to highlight the importance of the features mentioned above via a comprehensive investigation of Casein Gels through multiple directions and dimensional applications. Firstly, the composition, structure, and properties of casein, along with the gelation methods employed to create Casein Gels are elaborated, which serves as a foundation for further exploration. Then, the application progresses of Casein Gels in dairy products, functional foods, medicine, flexible sensors and wearable devices, are thoroughly discussed to provide insights into the diverse fields where Casein Gels have shown promise and utility. Lastly, the existing challenges and future research trends are highlighted from an interdisciplinary perspective. We present the latest research advances of Casein Gels and provide references for the development of multifunctional biomass-based hydrogels.
Collapse
Affiliation(s)
- Yuxi Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qunna Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Xinyi Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Xiaoyu Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| |
Collapse
|
12
|
Saavedra-Leos Z, Carrizales-Loera A, Lardizábal-Gutiérrez D, López-Martínez LA, Leyva-Porras C. Exploring the Equilibrium State Diagram of Maltodextrins across Diverse Dextrose Equivalents. Polymers (Basel) 2024; 16:2014. [PMID: 39065331 PMCID: PMC11280782 DOI: 10.3390/polym16142014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigates the equilibrium state diagram of maltodextrins with varying dextrose equivalents (DE 10 and 30) for quercetin microencapsulation. Using XRD, SEM, and optical microscopy, three transition regions were identified: amorphous (aw 0.07-0.437), semicrystalline (aw 0.437-0.739), and crystalline (aw > 0.739). In the amorphous region, microparticles exhibit a spherical morphology and a fluffy, pale-yellow appearance, with Tg values ranging from 44 to -7 °C. The semicrystalline region shows low-intensity diffraction peaks, merged spherical particles, and agglomerated, intense yellow appearance, with Tg values below 2 °C. The crystalline region is characterized by fully collapsed microstructures and a continuous, solid material with intense yellow color. Optimal storage conditions are within the amorphous region at 25 °C, aw 0.437, and a water content of 1.98 g H2O per g of dry powder. Strict moisture control is required at higher storage temperatures (up to 50 °C) to prevent microstructural changes. This research enhances understanding of maltodextrin behavior across diverse dextrose equivalents, aiding the development of stable microencapsulated products.
Collapse
Affiliation(s)
- Zenaida Saavedra-Leos
- Multidisciplinary Academic Unit, Altiplano Region (COARA), Autonomous University of San Luis Potosi, Carretera a Cedral km 5+600, Matehuala 78700, Mexico; (Z.S.-L.); (A.C.-L.)
| | - Anthony Carrizales-Loera
- Multidisciplinary Academic Unit, Altiplano Region (COARA), Autonomous University of San Luis Potosi, Carretera a Cedral km 5+600, Matehuala 78700, Mexico; (Z.S.-L.); (A.C.-L.)
| | - Daniel Lardizábal-Gutiérrez
- Advanced Materials Research Center (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - Laura Araceli López-Martínez
- Academic Coordination of the Western High Plateau Region, Autonomous University of San Luis Potosi, Salinas de Hidalgo 78600, Mexico;
| | - César Leyva-Porras
- Advanced Materials Research Center (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| |
Collapse
|
13
|
Koshenaj K, Ferrari G. A Comprehensive Review on Starch-Based Hydrogels: From Tradition to Innovation, Opportunities, and Drawbacks. Polymers (Basel) 2024; 16:1991. [PMID: 39065308 PMCID: PMC11281146 DOI: 10.3390/polym16141991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Natural hydrogels based on renewable and inexpensive sources, such as starch, represent an interesting group of biopolymeric materials with a growing range of applications in the biomedical, cosmeceutical, and food sectors. Starch-based hydrogels have traditionally been produced using different processes based on chemical or physical methods. However, the long processing times, high energy consumption, and safety issues related to the synthesis of these materials, mostly causing severe environmental damage, have been identified as the main limitations for their further exploitation. Therefore, the main scientific challenge for research groups is the development of reliable and sustainable processing methods to reduce the environmental footprint, as well as investigating new low-cost sources of starches and individuating appropriate formulations to produce stable hydrogel-based products. In the last decade, the possibility of physically modifying natural polysaccharides, such as starches, using green or sustainable processing methods has mostly been based on nonthermal technologies including high-pressure processing (HPP). It has been demonstrated that the latter exerts an important role in improving the physicochemical and techno-functional properties of starches. However, as for surveys in the literature, research activities have been devoted to understanding the effects of physical pre-treatments via high-pressure processing (HPP) on starch structural modifications, more so than elucidating its role and capacity for the rapid formation of stable and highly structured starch-based hydrogels with promising functionality and stability, utilizing more sustainable and eco-friendly processing conditions. Therefore, the present review addresses the recent advancements in knowledge on the production of sustainable starch-based hydrogels utilizing HPP as an innovative and clean-label preparation method. Additionally, this manuscript has the ambition to give an updated overview of starch-based hydrogels considering the different types of structures available, and the recent applications are proposed as well to critically analyze the main perspectives and technological challenges for the future exploitation of these novel structures.
Collapse
Affiliation(s)
- Katerina Koshenaj
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
- ProdAl Scarl, c/o University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
14
|
Dini I. "Edible Beauty": The Evolution of Environmentally Friendly Cosmetics and Packaging. Antioxidants (Basel) 2024; 13:742. [PMID: 38929181 PMCID: PMC11200421 DOI: 10.3390/antiox13060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The cosmetics industry plays a significant role in the global economy and consumer lifestyles. Its dynamic and adaptable characteristics make it a key player worldwide. The cosmetics industry generates enormous profits globally, injecting billions of dollars into the world's economy each year. The industry's marketing efforts, product launches, and trends influence consumer behavior and perceptions of beauty, contributing to cultural dialogues and societal norms. This study, conducted with a rigorous bibliometric and systematic literature review, offers a comprehensive overview of recent progress in edible cosmetics. The "skincare you can eat" is an innovative branch of cosmetics that employs food co-products and by-products to create edible skincare and hair products and edible packaging materials to advance human well-being and sustainability while honoring the ecological boundaries of our planet. Nutrients and antioxidants derived from organic waste are used in cosmetics and packaging. Some doubts remain about the capacity of edible packaging to be attractive to consumers and offer a reasonable shelf life for cosmetics, and also about safety. It is desirable for the authorities to guarantee consumer health through carefully regulating labeling requirements and good manufacturing practices for cosmetics and edible packaging.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
15
|
Najihah AZ, Hassan MZ, Ismail Z. Current trend on preparation, characterization and biomedical applications of natural polysaccharide-based nanomaterial reinforcement hydrogels: A review. Int J Biol Macromol 2024; 271:132411. [PMID: 38821798 DOI: 10.1016/j.ijbiomac.2024.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The tunable properties of hydrogels have led to their widespread use in various biomedical applications such as wound treatment, drug delivery, contact lenses, tissue engineering and 3D bioprinting. Among these applications, natural polysaccharide-based hydrogels, which are fabricated from materials like agarose, alginate, chitosan, hyaluronic acid, cellulose, pectin and chondroitin sulfate, stand out as preferred choices due to their biocompatibility and advantageous fabrication characteristics. Despite the inherent biocompatibility, polysaccharide-based hydrogels on their own tend to be weak in physiochemical and mechanical properties. Therefore, further reinforcement in the hydrogel is necessary to enhance its suitability for specific applications, ensuring optimal performance in diverse settings. Integrating nanomaterials into hydrogels has proven effective in improving the overall network and performance of the hydrogel. This approach also addresses the limitations associated with pure hydrogels. Next, an overview of recent trends in the fabrication and applications of hydrogels was presented. The characterization of hydrogels was further discussed, focusing specifically on the reinforcement achieved with various hydrogel materials used so far. Finally, a few challenges associated with hydrogels by using polysaccharide-based nanomaterial were also presented.
Collapse
Affiliation(s)
- A Z Najihah
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mohamad Zaki Hassan
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
16
|
Do UT, Nguyen QT, Kim J, Luu QS, Park Y, Song M, Yang S, Choi J, Yun S, Kang DK, Lee Y. Tailored synthesis of pH-responsive biodegradable microcapsules incorporating gelatin, alginate, and hyaluronic acid for effective-controlled release. Int J Biol Macromol 2024; 270:132178. [PMID: 38735614 DOI: 10.1016/j.ijbiomac.2024.132178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
In response to escalating environmental concerns and the urgent need for sustainable drug delivery systems, this study introduces biodegradable pH-responsive microcapsules synthesized from a blend of gelatin, alginate, and hyaluronic acid. Employing the coacervation process, capsules were created with a spherical shape, multicore structure, and small sizes ranging from 10 to 20 μm, which exhibit outstanding vitamin E encapsulation efficiency. With substantial incorporation of hyaluronic acid, a pH-responsive component, the resulting microcapsules displayed noteworthy swelling behavior, facilitating proficient core ingredient release at pH 5.5 and 7.4. Notably, these capsules can effectively deliver active substances to the dermal layer under specific skin conditions, revealing promising applications in topical medications and cosmetics. Furthermore, the readily biodegradable nature of the designed capsules was demonstrated through Biochemical Oxygen Demand (BOD) testing, with over 80 % of microcapsules being degraded by microorganisms after one week of incubation. This research contributes to the development of responsive microcapsules and aligns with broader environmental initiatives, offering a promising pathway to mitigate the impact of microplastics while advancing various applications.
Collapse
Affiliation(s)
- Uyen Thi Do
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Quynh Thi Nguyen
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Jiwon Kim
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Quy Son Luu
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Yeeun Park
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Minji Song
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Seyoung Yang
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Jaehwa Choi
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Seokki Yun
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Dong-Ku Kang
- Department of Chemistry, Incheon National University, Incheon 22012, South Korea.
| | - Youngbok Lee
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea; Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
17
|
Yu K, Yang L, Zhang S, Zhang N, Xie M, Yu M. Stretchable, antifatigue, and intelligent nanocellulose hydrogel colorimetric film for real-time visual detection of beef freshness. Int J Biol Macromol 2024; 268:131602. [PMID: 38626836 DOI: 10.1016/j.ijbiomac.2024.131602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The use of biopolymers as matrices and anthocyanins as pH-sensing indicators has generated increasing interest in freshness detection. Nevertheless, the weak mechanical properties and color stability of biopolymer-based smart packaging systems restrict their practicality. In this study, a nanocellulose hydrogel colorimetric film with enhanced stretchability, antifatigue properties, and color stability was prepared using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), sodium alginate (SA), and anthocyanin (Anth) as raw materials. This hydrogel colorimetric film was used to detect beef freshness. The structure and properties (e.g., mechanical, thermal stability and hydrophobicity) of these hydrogel colorimetric films were characterized using different techniques. Fourier-transform infrared spectroscopy revealed the presence of hydrogen and ester bonds in the hydrogel colorimetric films, whereas scanning electron microscopy revealed the fish scale-like and honeycomb network structure of the hydrogel colorimetric films. Mechanical testing demonstrated that the SHNC/PVA/SA/Anth-2 hydrogel colorimetric film exhibited excellent tensile properties (elongation = 261 %), viscoelasticity (storage modulus of 11.25 kPa), and mechanical strength (tensile strength = 154 kPa), and the hydrogel colorimetric film exhibited excellent mechanical properties after repeated tensile tests. Moreover, the hydrogel colorimetric film had high transparency, excellent anti-UV linearity, thermal stability and hydrophobicity, and had displayed visually discernible color response to pH buffer solution and volatile NH3 by naked eyes, which was highly correlated with the TVB-N and pH values. Notably, the release of anthocyanin in distilled water decreased from 81.23 % to 19.87 %. The designed SHNC/PVA/SA/Anth hydrogel colorimetric films exhibited potential application as smart packaging film or gas-sensing labels in monitoring the freshness of meat products.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Siyu Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ning Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Mengxi Xie
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Miao Yu
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| |
Collapse
|
18
|
Croitoru AM, Ficai D, Ficai A. Novel Photothermal Graphene-Based Hydrogels in Biomedical Applications. Polymers (Basel) 2024; 16:1098. [PMID: 38675017 PMCID: PMC11053615 DOI: 10.3390/polym16081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the last decade, photothermal therapy (PTT) has attracted tremendous attention because it is non-invasive, shows high efficiency and antibacterial activity, and minimizes drug side effects. Previous studies demonstrated that PTT can effectively inhibit the growth of bacteria and promotes cell proliferation, accelerating wound healing and tissue regeneration. Among different NIR-responsive biomaterials, graphene-based hydrogels with photothermal properties are considered as the best candidates for biomedical applications, due to their excellent properties. This review summarizes the current advances in the development of innovative graphene-based hydrogels for PTT-based biomedical applications. Also, the information about photothermal properties and the potential applications of graphene-based hydrogels in biomedical therapies are provided. These findings provide a great potential for supporting their applications in photothermal biomedicine.
Collapse
Affiliation(s)
- Alexa-Maria Croitoru
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, Spl. Independentei 91-95, 0500957 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania;
- National Centre for Food Safety, National University for Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania;
- National Centre for Food Safety, National University for Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania;
- National Centre for Micro- and Nanomaterials, National University for Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| |
Collapse
|
19
|
Rizwan M, Naseem S, Gilani SR, Durrani AI. Optimization of swelling and mechanical behavior of Acer platanoides cellulose combo hydrogel. KUWAIT JOURNAL OF SCIENCE 2024; 51:100177. [DOI: 10.1016/j.kjs.2024.100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
|
20
|
Kusjuriansah K, Rodhiyah M, Syifa NA, Luthfianti HR, Waresindo WX, Hapidin DA, Suciati T, Edikresnha D, Khairurrijal K. Composite Hydrogel of Poly(vinyl alcohol) Loaded by Citrus hystrix Leaf Extract, Chitosan, and Sodium Alginate with In Vitro Antibacterial and Release Test. ACS OMEGA 2024; 9:13306-13322. [PMID: 38524413 PMCID: PMC10955567 DOI: 10.1021/acsomega.3c10143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
Citrus hystrix leaves have been used traditionally as a spice, a traditional medicine for respiratory and digestive disorders, and a remedy for bacterial infections. This study reports on the synthesis of composite hydrogels using the freeze-thaw method with poly(vinyl alcohol) (PVA) as the building block loaded by C. hystrix leaf extract (CHLE). Additionally, chitosan (CS) and sodium alginate (SA) were also loaded, respectively, to increase the antibacterial activity and to control the extract release of the composite hydrogels. The combinations of the compositions were PVA, PVA/CHLE, PVA/CHLE/CS, PVA/CHLE/SA, and PVA/CHLE/SA/CS. The internal morphology of the hydrogels shows some changes after the PVA/CHLE hydrogel was loaded by CS, SA, and SA/CS. The analysis of the Fourier transform infrared (FTIR) spectra confirmed the presence of PVA, CHLE, CS, and SA in the composite hydrogels. From the X-ray diffraction (XRD) characterization, it was shown that the composite hydrogels maintained their semicrystalline properties with decreasing crystallinity degree after being loaded by CS, SA, and SA/CS, as also supported by differential scanning calorimetry (DSC) characterization. The compressive strength of the PVA/CHLE hydrogel decreases after the loading of CS, SA, and SA/CS, so that it becomes more elastic. Despite being loaded in the composite hydrogels, the CHLE retained its antibacterial activity, as evidenced in the in vitro antibacterial test. The loading of CS succeeded in increasing the antibacterial activity of the composite hydrogels, while the loading of SA resulted in the decrease of the antibacterial activity. The release of extract from the composite hydrogels was successfully slowed down after the loading of CS, SA, and SA/CS, resulting in a controlled release following the pseudo-Fickian diffusion. The cytotoxic activity test proved that all hydrogel samples can be used safely on normal cells up to concentrations above 1000 μg/mL.
Collapse
Affiliation(s)
- Kusjuriansah Kusjuriansah
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Marathur Rodhiyah
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Nabila Asy Syifa
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Halida Rahmi Luthfianti
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - William Xaveriano Waresindo
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Dian Ahmad Hapidin
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Tri Suciati
- Department
of Pharmaceutics, School of Pharmacy, Institut
Teknologi Bandung, Jalan
Ganesa 10, Bandung 40132, Indonesia
| | - Dhewa Edikresnha
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- University
Center of Excellence—Nutraceutical, Bioscience and Biotechnology
Research Center, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Khairurrijal Khairurrijal
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- University
Center of Excellence—Nutraceutical, Bioscience and Biotechnology
Research Center, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- Department
of Physics, Faculty of Sciences, Institut
Teknologi Sumatera, Jl.
Terusan Ryacudu, Lampung 35365, Indonesia
| |
Collapse
|
21
|
Niu C, Lin Z, Fu Q, Xu Y, Chen Y, Lu L. An eco-friendly versatile superabsorbent hydrogel based on sodium alginate and urea for soil improvement with a synchronous chemical loading strategy. Carbohydr Polym 2024; 327:121676. [PMID: 38171662 DOI: 10.1016/j.carbpol.2023.121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
In this paper, an eco-friendly versatile superabsorbent material was designed for soil improvement, and a synchronous chemical loading strategy was proposed. In this strategy, urea not only acted as fertilizer but also acted as a crosslinker to construct an alginate network. The microstructure, chemical structure, thermal stability and composition of the obtained SA/urea hydrogel were characterized in detail. Adsorption behavior and application performance in agriculture were evaluated. The results demonstrated that urea had two different conformations in the network. The SA/urea hydrogel had abundant pore structures with excellent water absorption performance. It could not only improve the water retention capacity of soil but also release nitrogen, phosphorus and potassium elements with degradation for as long as 9 weeks. Moreover, the hydrogel could promote plant growth, increase the nutritional composition of plants and inhibit the accumulation of harmful nitrate in plants. With advantages, including biodegradability, high water absorption, controllable degradation, excellent water retention, sustained NPK release and improved plant nutrition value, the SA/urea hydrogel has great potential for soil improvement in agriculture as an eco-friendly versatile water retention agent and can be expected to extend to more fields as a novel superabsorbent material.
Collapse
Affiliation(s)
- Chenxi Niu
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhibo Lin
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Qian Fu
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yutao Xu
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Youhui Chen
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Lingbin Lu
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
22
|
Babangida AA, Uddin A, Stephen KT, Yusuf BA, Zhang L, Ge D. A Roadmap from Functional Materials to Plant Health Monitoring (PHM). Macromol Biosci 2024; 24:e2300283. [PMID: 37815087 DOI: 10.1002/mabi.202300283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Soft bioelectronics have great potential for the early diagnosis of plant diseases and the mitigation of adverse outcomes such as reduced crop yields and stunted growth. Over the past decade, bioelectronic interfaces have evolved into miniaturized conformal electronic devices that integrate flexible monitoring systems with advanced electronic functionality. This development is largely attributable to advances in materials science, and micro/nanofabrication technology. The approach uses the mechanical and electronic properties of functional materials (polymer substrates and sensing elements) to create interfaces for plant monitoring. In addition to ensuring biocompatibility, several other factors need to be considered when developing these interfaces. These include the choice of materials, fabrication techniques, precision, electrical performance, and mechanical stability. In this review, some of the benefits plants can derive from several of the materials used to develop soft bioelectronic interfaces are discussed. The article describes how they can be used to create biocompatible monitoring devices that can enhance plant growth and health. Evaluation of these devices also takes into account features that ensure their long-term durability, sensitivity, and reliability. This article concludes with a discussion of the development of reliable soft bioelectronic systems for plants, which has the potential to advance the field of bioelectronics.
Collapse
Affiliation(s)
- Abubakar A Babangida
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Azim Uddin
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Kukwi Tissan Stephen
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bashir Adegbemiga Yusuf
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Liqiang Zhang
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214126, China
| | - Daohan Ge
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
23
|
Rahman S, Gogoi J, Dubey S, Chowdhury D. Animal derived biopolymers for food packaging applications: A review. Int J Biol Macromol 2024; 255:128197. [PMID: 37979757 DOI: 10.1016/j.ijbiomac.2023.128197] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
It is essential to use environment-friendly, non-toxic, biodegradable and sustainable materials for various applications. Biopolymers are derived from renewable sources like plants, microorganisms, and agricultural wastes. Unlike conventional polymers, biopolymer has a lower carbon footprint and contributes less to greenhouse gas emission. All biopolymers are biodegradable, meaning natural processes can break them down into harmless products such as water and biomass. This property is of utmost importance for various sustainable applications. This review discusses different classifications of biopolymers based on origin, including plant-based, animal-based and micro-organism-based biopolymers. The review also discusses the desirable properties that are required in materials for their use as packaging material. It also discusses the different processes used in modifying the biopolymer to improve its properties. Finally, this review shows the recent developments taking place in using specifically animal origin-based biopolymer and its use in packaging material. It was observed that animal-origin-based biopolymers, although they possess unique properties however, are less explored than plant-origin biopolymers. The animal-origin-based biopolymers covered in this review are chitosan, gelatin, collagen, keratin, casein, whey, hyaluronic acid and silk fibroin. This review will help in renewing research interest in animal-origin biopolymers. In summary, biopolymer offers a sustainable and environment-friendly alternative to conventional polymers. Their versatility, biocompatibility will help create a more sustainable future.
Collapse
Affiliation(s)
- Sazzadur Rahman
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India
| | - Jahnabi Gogoi
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Sonali Dubey
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India.
| |
Collapse
|
24
|
Saleem S, Sharma K, Sharma V, Kumar V, Sehgal R, Kumar V. Polysaccharide-based super moisture-absorbent hydrogels for sustainable agriculture applications. POLYSACCHARIDES-BASED HYDROGELS 2024:515-559. [DOI: 10.1016/b978-0-323-99341-8.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Pantić M, Maver U, Rožanc J, Vihar B, Andrejč DC, Knez Ž, Novak Z. Evaluation of ethanol-induced chitosan aerogels with human osteoblast cells. Int J Biol Macromol 2023; 253:126694. [PMID: 37673150 DOI: 10.1016/j.ijbiomac.2023.126694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The following article provides an insight into the production of chitosan aerogels as potential materials for tissue engineering. Chitosan aerogels were prepared following two different protocols: formation in ethanol and formation in sodium hydroxide in an ethanol solution. The main objective was to apply a new route to obtain chitosan aerogels with no external cross-linkers and compare the mentioned preparation approaches. Forming chitosan aerogels in ethanol implies a simple, environmentally friendly, and efficient method. The prepared materials showed specific surface areas of up to 450 m2/g, highly porous networks and great mechanical properties. In vitro degradation studies revealed high stability for up to 10 weeks. The differences between the samples were significant. While the chitosan aerogels prepared in ethanol showed superior textural, morphological and mechanical properties, the chitosan aerogels prepared in the sodium hydroxide solution proved that a considerable influence on end properties could be made simply by adjusting the ageing medium. In vitro cell analysis with primary human osteoblasts showed good biocompatibility and pointed towards the potential use of these aerogels for orthopedic applications. This testing showed further that adjustments in structural properties by sodium hydroxide also come with a cost regarding their suitability to host bone cells.
Collapse
Affiliation(s)
- Milica Pantić
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Uroš Maver
- University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Jan Rožanc
- University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Boštjan Vihar
- University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Darija Cör Andrejč
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Zoran Novak
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
26
|
Ali A, Bairagi S, Ganie SA, Ahmed S. Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review. Int J Biol Macromol 2023; 252:126534. [PMID: 37640181 DOI: 10.1016/j.ijbiomac.2023.126534] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Food industry is the biggest and rapidly growing industries all over the world. This sector consumes around 40 % of the total plastic produced worldwide as packaging material. The conventional packaging material is mainly petrochemical based. However, these petrochemical based materials impose serious concerns towards environment after its disposal as they are nondegradable. Thus, in search of an appropriate replacement for conventional plastics, biopolymers such as polysaccharides (starch, cellulose, chitosan, natural gums, etc.), proteins (gelatin, collagen, soy protein, etc.), and fatty acids find as an option but again limited by its inherent properties. Attention on the initiatives towards the development of more sustainable, useful, and biodegradable packaging materials, leading the way towards a new and revolutionary green era in the food sector. Eco-friendly packaging materials are now growing dramatically, at a pace of about 10-20 % annually. The recombination of biopolymers and nanomaterials through intercalation composite technology at the nanoscale demonstrated some mesmerizing characteristics pertaining to both biopolymer and nanomaterials such as rigidity, thermal stability, sensing and bioactive property inherent to nanomaterials as well as biopolymers properties such as flexibility, processability and biodegradability. The dramatic increase of scientific research in the last one decade in the area of bionanocomposites in food packaging had reflected its potential as a much-required and important alternative to conventional petroleum-based material. This review presents a comprehensive overview on the importance and recent advances in the field of bionanocomposite and its application in food packaging. Different methods for the fabrication of bionanocomposite are also discussed briefly. Finally, a clear perspective and future prospects of bionanocomposites in food packaging were presented.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Kargil Campus, University of Ladakh, Kargil 194103, India.
| | - Satyaranjan Bairagi
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Showkat Ali Ganie
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile of Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Jammu & Kashmir 185211, India; Higher Education Department, Government of Jammu & Kashmir, Jammu 180001, India; University Centre of Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
27
|
Kaur A, Madhvi, Sud D. Gel‐Type Natural Polymers as Electroconductive Materials. SUSTAINABLE MATERIALS FOR ELECTROCHEMICAL CAPACITORS 2023:133-166. [DOI: 10.1002/9781394167104.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Siddiqui SA, Alvi T, Biswas A, Shityakov S, Gusinskaia T, Lavrentev F, Dutta K, Khan MKI, Stephen J, Radhakrishnan M. Food gels: principles, interaction mechanisms and its microstructure. Crit Rev Food Sci Nutr 2023; 63:12530-12551. [PMID: 35916765 DOI: 10.1080/10408398.2022.2103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Food hydrogels are important materials having great scientific interest due to biocompatibility, safety and environment-friendly characteristics. In the food industry, hydrogels are widely used due to their three-dimensional crosslinked networks. Furthermore, they have attracted great attention due to their wide range of applications in the food industry, such as fat replacers, encapsulating agents, target delivery vehicles, and many more. In addition to basic and recent knowledge on food hydrogels, this review exclusively focuses on sensorial perceptions, nutritional significance, body interactions, network structures, mechanical properties, and potential hydrogel applications in food and food-based matrices. Additionally, this review highlights the structural design of hydrogels, which provide the forward-looking idea for future applications of food hydrogels (e.g., 3D or 4D printing).
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Tayyaba Alvi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abhishek Biswas
- Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Tatiana Gusinskaia
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Filipp Lavrentev
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Jaspin Stephen
- Centre of Excellence in Nonthermal Processing, NIFTEM-Thanjavur, Tamil Nadu, India
| | | |
Collapse
|
29
|
Atia GA, Shalaby HK, Roomi AB, Ghobashy MM, Attia HA, Mohamed SZ, Abdeen A, Abdo M, Fericean L, Bănățean Dunea I, Atwa AM, Hasan T, Mady W, Abdelkader A, Ali SA, Habotta OA, Azouz RA, Malhat F, Shukry M, Foda T, Dinu S. Macro, Micro, and Nano-Inspired Bioactive Polymeric Biomaterials in Therapeutic, and Regenerative Orofacial Applications. Drug Des Devel Ther 2023; 17:2985-3021. [PMID: 37789970 PMCID: PMC10543943 DOI: 10.2147/dddt.s419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/12/2023] [Indexed: 10/05/2023] Open
Abstract
Introducing dental polymers has accelerated biotechnological research, advancing tissue engineering, biomaterials development, and drug delivery. Polymers have been utilized effectively in dentistry to build dentures and orthodontic equipment and are key components in the composition of numerous restorative materials. Furthermore, dental polymers have the potential to be employed for medication administration and tissue regeneration. To analyze the influence of polymer-based investigations on practical medical trials, it is required to evaluate the research undertaken in this sector. The present review aims to gather evidence on polymer applications in dental, oral, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, Egypt
| | - Ali B Roomi
- Department of Quality Assurance, University of Thi-Qar, Thi-Qar, Iraq
- Department of Medical Laboratory, College of Health and Medical Technology, National University of Science and Technology, Thi-Qar, Iraq
| | - Mohamed M Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Hager A Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sara Z Mohamed
- Department of Removable Prosthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ioan Bănățean Dunea
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Tabinda Hasan
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wessam Mady
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Susan A Ali
- Department of Radiodiagnosis, Faculty of Medicine, Ain Shams University, Abbassia, 1181, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab A Azouz
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Farag Malhat
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
| |
Collapse
|
30
|
Chen L, Lin S, Sun N. Food gel-based systems for efficient delivery of bioactive ingredients: design to application. Crit Rev Food Sci Nutr 2023; 64:13193-13211. [PMID: 37753779 DOI: 10.1080/10408398.2023.2262578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Food gels derived from natural biopolymers are valuable materials with significant scientific merit in the food industry because of their biocompatibility, safety, and environmental friendliness compared to synthetic gels. These gels serve as crucial delivery systems for bioactive ingredients. This review focuses on the selection, formulation, characterization, and behavior in gastrointestinal of hydrogels, oleogels, and bigels as delivery systems for bioactive ingredients. These three gel delivery systems exhibit certain differences in composition and can achieve the delivery of different bioactive ingredients. Hydrogels are suitable for delivering hydrophilic ingredients. Oleogels are an excellent choice for delivering lipophilic ingredients. Bigels contain both aqueous and oil phases, whose gelation makes their structure more stable, demonstrating the advantages of the above two types of gels. Besides, the formation and properties of the gel system are confirmed using different characterization methods. Furthermore, the changing behavior (e.g., swelling, disintegration, collapse, erosion) of the gel structure in the gastrointestinal is also analyzed, providing an opportunity to formulate soft substances that offer better protection or controlled release of bioactive components. This can further improve the transmissibility and utilization of bioactive substances, which is of great significance.
Collapse
Affiliation(s)
- Lei Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
31
|
Su CY, Xia T, Li D, Wang LJ, Wang Y. Hybrid biodegradable materials from starch and hydrocolloid: fabrication, properties and applications of starch-hydrocolloid film, gel and bead. Crit Rev Food Sci Nutr 2023; 64:12841-12859. [PMID: 37707437 DOI: 10.1080/10408398.2023.2257786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The potential for utilizing starch and hydrocolloids as sustainable biomaterials has garnered significant attention among researchers. The biodegradability and functional properties of composite films, gels, and beads, as well as their environmental friendliness, make them attractive options for a variety of applications. However, the hydrophilicity, brittleness, and regeneration limitations of starch materials can be addressed through the incorporation of non-starch hydrocolloids. This article summarizes the formation mechanisms and interactions of starch-hydrocolloid films, gels, and gel beads, evaluates the factors that affect their structural and functional properties, and presents an overview of the progress made in their physicochemical and functional applications. The structure of starch-hydrocolloid composites is primarily formed through hydrogen bond interactions, and the source, proportion, and preparation conditions of the components are critical factors that affect the properties of the biomaterials. Starch-hydrocolloid films are primarily used for extending the shelf life of food products and detecting food freshness. Starch-hydrocolloid gels are utilized as adsorption materials, wound dressings, and flexible sensors, and starch-hydrocolloid beads are primarily employed for the controlled release of bioactive substances. It is clear that starch-hydrocolloid composites have the potential to develop novel advanced materials for various applications in the food, biological, and materials industries.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Tong Xia
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
32
|
Sudheer S, Bandyopadhyay S, Bhat R. Sustainable polysaccharide and protein hydrogel-based packaging materials for food products: A review. Int J Biol Macromol 2023; 248:125845. [PMID: 37473880 DOI: 10.1016/j.ijbiomac.2023.125845] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sustainable food packaging is a necessary element to ensure the success of a food system, the accomplishment of which is weighed in terms of quality retention and ensured products safety. Irrespective of the raised environmental concerns regarding petroleum-based packaging materials, a sustainable analysis and a lab to land assessment should be a priority to eliminate similar fates of new material. Functionalized bio-based hydrogels are one of the smartest packaging inventions that are expected to revolutionize the food packaging industry. Although in this review, the focus relies on recent developments in the sustainable bio-based hydrogel packaging materials, natural biopolymers such as proteins and polysaccharides from which hydrogels could be obtained, the challenges encountered in hydrogel-based packaging materials and the future prospects of hydrogel-based food packaging materials are also discussed. Moreover, the need for 'Life Cycle Assessment' (LCA), stress on certifications and a sustainable waste management system is also suggested which can bring both food and packaging into the same recycling bins.
Collapse
Affiliation(s)
- Surya Sudheer
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 510014, Estonia.
| | - Smarak Bandyopadhyay
- Centre of Polymeric Systems, University Institute, Tomas Bata University in Zlin, Tř. T. Bati 5678, Zlin 76001, Czech Republic
| | - Rajeev Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 510014, Estonia.
| |
Collapse
|
33
|
Jaime-Rodríguez M, Cadena-Hernández AL, Rosales-Valencia LD, Padilla-Sánchez JM, Chavez-Santoscoy RA. Are genetic drift and stem cell adherence in laboratory culture issues for cultivated meat production? Front Nutr 2023; 10:1189664. [PMID: 37701376 PMCID: PMC10493286 DOI: 10.3389/fnut.2023.1189664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Mesenchymal stem cell-based cultivated meat is a promising solution to the ecological and ethical problems posed by traditional meat production, since it exhibits a protein content and composition that is more comparable to original meat proteins than any other source of cultivated meat products, including plants, bacteria, and fungi. Nonetheless, the nature and laboratory behavior of mesenchymal stem cells pose two significant challenges for large-scale production: genetic drift and adherent growth in culture. Culture conditions used in the laboratory expose the cells to a selective pressure that causes genetic drift, which may give rise to oncogene activation and the loss of "stemness." This is why genetic and functional analysis of the cells during culture is required to determine the maximum number of passages within the laboratory where no significant mutations or loss of function are detected. Moreover, the adherent growth of mesenchymal stem cells can be an obstacle for their large-scale production since volume to surface ratio is limited for high volume containers. Multi-tray systems, roller bottles, and microcarriers have been proposed as potential solutions to scale-up the production of adherent cells required for cultivated meat. The most promising solutions for the safety problems and large-scale obstacles for cultivated meat production are the determination of a limit number of passages based on a genetic analysis and the use of microcarriers from edible materials to maximize the volume to surface proportion and decrease the downstream operations needed for cultivated meat production.
Collapse
|
34
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
35
|
Yadav S. Advanced therapeutics avenues in hepatocellular carcinoma: a novel paradigm. Med Oncol 2023; 40:239. [PMID: 37442842 DOI: 10.1007/s12032-023-02104-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and it poses a significant risk to patients health and longevity due to its high morbidity and fatality rates. Surgical ablation, radiotherapy, chemotherapy, and, most recently, immunotherapy have all been investigated for HCC, but none have yielded the desired outcomes. Several unique nanocarrier drug delivery techniques have been studied for their potential therapeutic implications in the treatment of HCC. Nanoparticle-based imaging could be effective for more accurate HCC diagnosis. Since its inception, nanomedicine has significantly transformed the approach to both the treatment and diagnostics of liver cancer. Nanoparticles (NPs) are being studied as a potential treatment for liver cancer because of their ability to carry small substances, such as treatment with chemotherapy, microRNA, and therapeutic genes. The primary focus of this study is on the most current discoveries and practical uses of nanomedicine-based diagnostic and therapeutic techniques for liver cancer. In this section, we had gone over what we know about metabolic dysfunction in HCC and the treatment options that attempt to fix it by targeting metabolic pathways. Furthermore, we propose a multi-target metabolic strategy as a viable HCC treatment option. Based on the findings given here, the scientists believe that smart nanomaterials have great promise for improving cancer theranostics and opening up new avenues for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No.2, Sector 17-A, Yamuna Expressway, Gautam Buddhnagar, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
36
|
Yu S, Huang Y, Shen B, Zhang W, Xie Y, Gao Q, Zhao D, Wu Z, Liu Y. Peptide hydrogels: Synthesis, properties, and applications in food science. Compr Rev Food Sci Food Saf 2023; 22:3053-3083. [PMID: 37194927 DOI: 10.1111/1541-4337.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/26/2023] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Due to the unique and excellent biological, physical, and chemical properties of peptide hydrogels, their application in the biomedical field is extremely wide. The applications of peptide hydrogels are closely related to their unique responsiveness and excellent properties. However, its defects in mechanical properties, stability, and toxicity limit its application in the food field. In this review, we focus on the fabrication methods of peptide hydrogels through the physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by the incorporation with materials is discussed. Meanwhile, the excellent properties of peptide hydrogels such as the stimulus responsiveness, biocompatibility, antimicrobial properties, rheology, and stability are reviewed. Finally, the application of peptide hydrogel in the food field is summarized and prospected.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yueying Huang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Biao Shen
- Zhoushan Customs District, Zhoushan, P. R. China
| | - Wang Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yan Xie
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Qi Gao
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Dan Zhao
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
37
|
Rao KM, Choi SM, Han SS. A review on directional muscle cell growth in scaffolding biomaterials with aligned porous structures for cultivated meat production. Food Res Int 2023; 168:112755. [PMID: 37120206 DOI: 10.1016/j.foodres.2023.112755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Scaffolds suitable for use in food products are essential in cultured meat production. Simultaneously, efforts are being undertaken to strengthen the scaffolding to improve cell proliferation, differentiation, and tissue formation. Muscle cells proliferate and differentiate according to the directional patterns of the scaffold, similar to natural tissue and native muscle tissue. Therefore, establishing an aligned pattern in the scaffolding architecture is vital for cultured meat applications. Recent studies on the fabrication of scaffolds with aligned porosity structures and their utility in manufacturing cultured meat are highlighted in this review. In addition, the directional growth of muscle cells in terms of proliferation and differentiation has also been explored, along with the aligned scaffolding architectures. The aligned porosity architecture of the scaffolds supports the texture and quality of meat-like structures. Although it is difficult to build adequate scaffolds for culturing meat manufactured from diverse biopolymers, it is necessary to develop novel methods to create aligned scaffolding structures. Furthermore, to avoid animal slaughter in the future, it will be imperative to adopt non-animal-based biomaterials, growth factors, and serum-free media conditions for quality meat production.
Collapse
Affiliation(s)
- Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea.
| | - Soon Mo Choi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea.
| |
Collapse
|
38
|
Singh AK, Itkor P, Lee YS. State-of-the-Art Insights and Potential Applications of Cellulose-Based Hydrogels in Food Packaging: Advances towards Sustainable Trends. Gels 2023; 9:433. [PMID: 37367104 DOI: 10.3390/gels9060433] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Leveraging sustainable packaging resources in the circular economy framework has gained significant attention in recent years as a means of minimizing waste and mitigating the negative environmental impact of packaging materials. In line with this progression, bio-based hydrogels are being explored for their potential application in a variety of fields including food packaging. Hydrogels are three-dimensional, hydrophilic networks composed of a variety of polymeric materials linked by chemical (covalent bonds) or physical (non-covalent interactions) cross-linking. The unique hydrophilic nature of hydrogels provides a promising solution for food packaging systems, specifically in regulating moisture levels and serving as carriers for bioactive substances, which can greatly affect the shelf life of food products. In essence, the synthesis of cellulose-based hydrogels (CBHs) from cellulose and its derivatives has resulted in hydrogels with several appealing features such as flexibility, water absorption, swelling capacity, biocompatibility, biodegradability, stimuli sensitivity, and cost-effectiveness. Therefore, this review provides an overview of the most recent trends and applications of CBHs in the food packaging sector including CBH sources, processing methods, and crosslinking methods for developing hydrogels through physical, chemical, and polymerization. Finally, the recent advancements in CBHs, which are being utilized as hydrogel films, coatings, and indicators for food packaging applications, are discussed in detail. These developments have great potential in creating sustainable packaging systems.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Department of Packaging, Yonsei University, Wonju 26393, Republic of Korea
| | - Pontree Itkor
- Department of Packaging, Yonsei University, Wonju 26393, Republic of Korea
| | - Youn Suk Lee
- Department of Packaging, Yonsei University, Wonju 26393, Republic of Korea
| |
Collapse
|
39
|
Han Z, Liu S, Cao J, Yue X, Shao JH. A review of oil and water retention in emulsified meat products: The mechanisms of gelation and emulsification, the application of multi-layer hydrogels. Crit Rev Food Sci Nutr 2023; 64:8308-8324. [PMID: 37039082 DOI: 10.1080/10408398.2023.2199069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Emulsified meat products are key deep-processing products due to unique flavor and high nutritional value. Myosin dissolves, and protein aggregation and heat-induced gelation occur after myosin unfolds and hydrophobic groups are exposed. Myosin could form interfacial protein membranes and wrap fat globules. Emulsified fat globules may be filled in heat-induced gel networks. Therefore, this review intends to discuss the influences of heat-induced gelation and interfacial adsorption behavior on oil and water retention. Firstly, the mechanism of heat-induced gelation was clarified from the perspective of protein conformation and micro-structure. Secondly, the mechanism of emulsification stability and its factors affecting interfacial adsorption were demonstrated as well as limitations and challenges. Finally, the structure characteristics and application of multi-layer hydrogels in the gelation and emulsification were clarified. It could conclude that the characteristic morphology, spatial conformation and structure adjustment affected heat-induced gelation and interfacial adsorption behavior. Spatial conformation and microstructure were adjusted to improve the oil and water retention by pH, ionic strength, amino acid, oil phase characteristic and protein interaction. Multi-layer hydrogels facilitated oil and water retention. The comprehensive review of gelation and emulsification mechanisms could promote the development of meat products and improvement of meat processing technology.
Collapse
Affiliation(s)
- Zongyuan Han
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jinxuan Cao
- College of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
40
|
A pH-sensitive hydrogel based on carboxymethylated konjac glucomannan crosslinked by sodium trimetaphosphate: Synthesis, characterization, swelling behavior and controlled drug release. Int J Biol Macromol 2023; 232:123392. [PMID: 36702219 DOI: 10.1016/j.ijbiomac.2023.123392] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
The pH-sensitive hydrogel consisting of carboxymethylated konjac glucomannan (CMKGM) and sodium trimetaphosphate (STMP) was prepared for a potential intestinal targeted delivery system. Both the CMKGM and the CMKGM hydrogel were characterized by FT-IR spectra, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The Congo red and atomic force microscope (AFM) results showed a coil-to-helix transition of CMKGM in alkaline conditions with the degree of substitution (DS) increased from 0.20 to 0.49. Rheological measurements indicated that the DS and the STMP content collectively influence the mechanical stiffness and swelling properties of the obtained hydrogels. In addition, the swelling behavior of the hydrogels revealed that they were sensitive to pH value changes and were following a Korsmeyer-Peppas gastrointestinal release behavior, indicating that the release was controlled by non-Fickian diffusion. Furthermore, all the results suggested that the prepared pH-sensitive hydrogel may serve as a potential biomaterial for the intestine-targeted delivery system.
Collapse
|
41
|
Richa, Roy Choudhury A. Self-assembled pH-stable gellan/κ-carrageenan bigel: Rheological studies and viscosity prediction by neural network. Int J Biol Macromol 2023; 237:124057. [PMID: 36933592 DOI: 10.1016/j.ijbiomac.2023.124057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The current study focused on analysing and predicting the effect of physicochemical parameters on the rheological properties of the novel polysaccharide-based bigel. This is the first study to report a bigel fabricated entirely from polysaccharides and develop a neural network to predict the modulation in its rheology. This bi-phasic gel had gellan and κ-carrageenan as the constitutive elements in the aqueous and the organic phase, respectively. Physicochemical studies revealed the influence of organogel in eliciting high mechanical strength and smooth surface morphology to the bigel. Furthermore, variation in physiochemical parameters indicated the bigel's inertness towards change in pH of the system. However, variation in temperature led to a noticeable change in the rheology of the bigel. It was observed that after gradual decline, the bigel regained its original viscosity as the temperature increased beyond 80 °C. Insights from this study can pave way for the development of highly-stable polysaccharide bigels.
Collapse
Affiliation(s)
- Richa
- Biochemical Engineering Research & Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector 39A, Chandigarh 160036, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector 39A, Chandigarh 160036, India.
| |
Collapse
|
42
|
Leyva-Jiménez FJ, Oliver-Simancas R, Castangia I, Rodríguez-García AM, Alañón ME. Comprehensive review of natural based hydrogels as an upcoming trend for food packing. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Rai P, Verma S, Mehrotra S, Priya S, Sharma SK. Sensor-integrated biocomposite membrane for food quality assessment. Food Chem 2023; 401:134180. [DOI: 10.1016/j.foodchem.2022.134180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
|
44
|
The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm 2023; 631:122484. [PMID: 36509221 DOI: 10.1016/j.ijpharm.2022.122484] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
To date, hydrogels have opened new prospects for potential applications for drug delivery. The thermo-sensitive hydrogels have the great potential to provide more effective and controllable release of therapeutic/bioactive agents in response to changes in temperature. PLGA is a safe FDA-approved copolymer with good biocompatibility and biodegradability. Recently, PLGA-based formulation have attracted a lot of interest for thermo-sensitive hydrogels. Thermo-sensitive PLGA-based hydrogels provide the delivery system with good spatial and temporal control, and have been widely applied in drug delivery. This review is focused on the recent progression of the thermo-sensitive and biodegradable PLGA-based hydrogels that have been reported for smart drug delivery to the different organs. Eventually, future perspectives and challenges of thermo-sensitive PLGA-based hydrogels are discussed briefly.
Collapse
|
45
|
|
46
|
A Comprehensive Review of Food Hydrogels: Principles, Formation Mechanisms, Microstructure, and Its Applications. Gels 2022; 9:gels9010001. [PMID: 36661769 PMCID: PMC9858572 DOI: 10.3390/gels9010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Food hydrogels are effective materials of great interest to scientists because they are safe and beneficial to the environment. Hydrogels are widely used in the food industry due to their three-dimensional crosslinked networks. They have also attracted a considerable amount of attention because they can be used in many different ways in the food industry, for example, as fat replacers, target delivery vehicles, encapsulating agents, etc. Gels-particularly proteins and polysaccharides-have attracted the attention of food scientists due to their excellent biocompatibility, biodegradability, nutritional properties, and edibility. Thus, this review is focused on the nutritional importance, microstructure, mechanical characteristics, and food hydrogel applications of gels. This review also focuses on the structural configuration of hydrogels, which implies future potential applications in the food industry. The findings of this review confirm the application of different plant- and animal-based polysaccharide and protein sources as gelling agents. Gel network structure is improved by incorporating polysaccharides for encapsulation of bioactive compounds. Different hydrogel-based formulations are widely used for the encapsulation of bioactive compounds, food texture perception, risk monitoring, and food packaging applications.
Collapse
|
47
|
Syed MH, Zahari MAKM, Khan MMR, Beg MDH, Abdullah N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Sung CJ, Wang HH, Sun KH, Hsieh CC, Huang R, Sun GH, Tang SJ. Fucoidan from Sargassum hemiphyllum inhibits the stemness of cancer stem cells and epithelial-mesenchymal transitions in bladder cancer cells. Int J Biol Macromol 2022; 221:623-633. [PMID: 36099992 DOI: 10.1016/j.ijbiomac.2022.09.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
A variety of anticancer activities have been established for fucoidan from brown algae, whereas whether cancer stem cells (CSCs) are inhibited by sulfated polysaccharides is unexplored. In this study, fucoidan extracted from Sargassum hemiphyllum was showed heat stable and might tolerate 140 °C treatment. Fucoidan did not exhibit cytotoxicity in 5637 and T24 bladder cancer cells. After fucoidan treatment, the stress fibers were aggregated into thick and abundant underneath the plasma membrane and getting around the cells, and the structure of F-actin showed a remarkable change in the filopodial protrusion in T24 and 5637 cells. Using culture inserts, transwell assays and time lapse recordings showed that fucoidan inhibited cell migration. In the epithelial-mesenchymal transition (EMT), fucoidan downregulated the expression of vimentin, a mesenchymal marker, and upregulated the expression of E-cadherin, an epithelial marker. Additionally, the transcription levels of Snail, Slug, Twist1, Twist2, MMP2 and MMP9 were significantly decreased by fucoidan, indicating EMT suppression. CSCs are implicated in tumor initiation, metastatic spread, drug resistance and tumor recurrence. Our results showed that fucoidan inhibited stemness gene expression and sphere formation in bladder CSCs. For the first time, our findings demonstrated that fucoidan inhibits CSC formation and provides evidence as potential anticancer therapy.
Collapse
Affiliation(s)
- Chun-Ju Sung
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hsiao-Hsien Wang
- Section of Urology, Cheng-Hsin Rehabilitation Medical Center, Taipei 112, Taiwan
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Chii-Cheng Hsieh
- Section of Urology, Cheng-Hsin Rehabilitation Medical Center, Taipei 112, Taiwan
| | - Roger Huang
- Taiwan International Algae Fund, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guang-Huan Sun
- Department of Urology and Surgery, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Shye-Jye Tang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; Taiwan International Algae Fund, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
49
|
Jeong D, Seo JW, Lee H, Jung WK, Park YH, Bae H. Efficient Myogenic/Adipogenic Transdifferentiation of Bovine Fibroblasts in a 3D Bioprinting System for Steak-Type Cultured Meat Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202877. [PMID: 36192168 PMCID: PMC9631076 DOI: 10.1002/advs.202202877] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The interest in cultured meat is increasing because of the problems with conventional livestock industry. Recently, many studies related to cultured meat have been conducted, but producing large-sized cultured meat remains a challenge. It is aimed to introduce 3D bioprinting for producing large cell aggregates for cultured meat production. A hydrogel scaffold is produced at the centimeter scale using a bioink consisting of photocrosslinkable materials for digital light processing-based (DLP) printing, which has high printing accuracy and can produce geometrically complex structures. The light exposure time for hydrogel photopolymerization by DLP bioprinting is optimized based on photorheometry and cell viability assays. Naturally immortalized bovine embryonic fibroblast cells transformed with MyoD and PPARγ2 instead of primary cells are used as the latter have difficulties in maintaining stemness and are associated with animal ethics issues. The cells are mixed into the hydrogel for printing. Myogenesis and adipogenesis are induced simply by changing the medium after printing. Scaffolds are obtained successfully with living cells and large microchannels. The cooked cultured meat maintains its size and shape upon cutting. The overall dimensions are 3.43 cm × 5.53 cm × 0.96 cm. This study provides proof-of-concept for producing 3D cultured meat using bioinks.
Collapse
Affiliation(s)
- Dayi Jeong
- Department of Stem Cell and Regenerative BiotechnologyKU Convergence Science and Technology InstituteKonkuk UniversitySeoul05029Republic of Korea
| | - Jeong Wook Seo
- Department of Stem Cell and Regenerative BiotechnologyKU Convergence Science and Technology InstituteKonkuk UniversitySeoul05029Republic of Korea
| | - Hong‐Gu Lee
- Department of Animal Science and TechnologySanghuh College of Life SciencesKonkuk UniversitySeoul05029Republic of Korea
| | - Woo Kyung Jung
- NoAH Biotech Co., Ltd.Suwon‐siGyeonggi‐do16614Republic of Korea
| | - Yong Ho Park
- NoAH Biotech Co., Ltd.Suwon‐siGyeonggi‐do16614Republic of Korea
- Department of MicrobiologyCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Hojae Bae
- Department of Stem Cell and Regenerative BiotechnologyKU Convergence Science and Technology InstituteKonkuk UniversitySeoul05029Republic of Korea
- Institute of Advanced Regenerative ScienceKonkuk University120 Neungdong‐ro, Gwangjin‐guSeoul05029Republic of Korea
| |
Collapse
|
50
|
Alsakhawy SA, Baghdadi HH, El-Shenawy MA, Sabra SA, El-Hosseiny LS. Encapsulation of thymus vulgaris essential oil in caseinate/gelatin nanocomposite hydrogel: In vitro antibacterial activity and in vivo wound healing potential. Int J Pharm 2022; 628:122280. [DOI: 10.1016/j.ijpharm.2022.122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|