1
|
Ding J, Li X, Jin Z, Svensson B, Bai Y. Regulating the rate-limiting step of cyclodextrin glycosyltransferase glycosylation reaction for efficient production of glycosylated polyphenols. BIORESOURCE TECHNOLOGY 2025; 433:132727. [PMID: 40441452 DOI: 10.1016/j.biortech.2025.132727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/03/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025]
Abstract
CD complexation solubilization and enzymatic glycosylation synergistically enhance the utilization of polyphenols in biomass. In this study, a comprehensive strategy was proposed, to regulate the rate-limiting step where the efficiency of β-CD ring-opening (k1) exceeded the daidzein glycosylation (k2) catalyzed by CGTase in the efficient glycosylation system based on cyclodextrin (CD) dynamic complexation. This approach involved systematic regulation of the CD:polyphenol molar ratio and concentration, along with rational CGTase engineering, to enhance the glycosylation yield of polyphenols. Through molecular docking and sequence alignment, key residues Y195 and E264 near the acceptor subsites +1 and +3 were identified. Based on the principles of enhancing hydrophobicity and reducing steric hindrance, site-directed mutagenesis was performed on the two residues, and screening obtained seven single mutants with improved polyphenol glycosylation efficiency. The half-reaction kinetics analysis showed that mutants Y195F, E264A and E264V successfully narrowed the gap between k1 and k2. Finally, the double mutants Y195F/E264A and Y195F/E264V were constructed, which showed higher glycosylation yields than single mutants. The optimal mutant Y195F/E264V achieved the highest reported yields of daidzein 7-O-α-d-glucopyranoside (65.6 %) and rutin 4″-O-α-d-glucopyranoside (89.4 %) in water, surpassing the wild-type (WT) by 37.4 % and 8.3 %, respectively. The study presents a universal approach for the valorization of plant biomass, with the potential for scalable application in plant polyphenol utilization.
Collapse
Affiliation(s)
- Jiaqi Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Shen Y, Guo J, Xia Y, Wei L, Lin X, Liu Y, Chen Y, Bao Y, Yang H, Chen X. Production of 2-O-α-d-glucopyranosyl-l-ascorbic acid using sucrose phosphorylase by semi-rational design. Int J Biol Macromol 2025; 284:138213. [PMID: 39617240 DOI: 10.1016/j.ijbiomac.2024.138213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G) is often substituted for l-ascorbic acid (L-AA) in health- and skincare products due to its enhanced stability and comparable antioxidant. Enzymatic catalysis for AA-2G is gaining widespread interest and sucrose phosphorylases (SPase) have shown promise in achieving higher yields. To enhance AA-2G synthesis, we screened and identified the SPase from Bifidobacterium longum (BlSPase) as the starting enzyme, with an optimal pH of 5.4 and temperature of 45 °C for AA-2G synthesis. Subsequently, we conducted semi-rational design on BlSPase based on modeling and molecular docking. L-AA was docked with the BlSPase model to analyze key residues in the 'loop-door' domain and substrate-binding pocket. Through alanine scanning and saturation mutagenesis, a mutant library was created. After single-point and composite mutation, L341V/V346P was identified as the optimal variant. Ultimately, within 72 h, we achieved yield of 358.6 g/L AA-2G with a molar conversion of L-AA reaching 75.7 %.
Collapse
Affiliation(s)
- Yujuan Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jiajing Guo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Lai Wei
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyi Lin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuqi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuanhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuhao Bao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Haiquan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
3
|
Fu C, Shen W, Li W, Wang P, Liu L, Dong Y, He J, Fan D. Engineered β-glycosidase from Hyperthermophilic Sulfolobus solfataricus with Improved Rd-hydrolyzing Activity for Ginsenoside Compound K Production. Appl Biochem Biotechnol 2024; 196:3800-3816. [PMID: 37782456 DOI: 10.1007/s12010-023-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Hyperthermophilic Sulfolobus solfataricus β-glycosidase (SS-βGly), with higher stability and activity than mesophilic enzymes, has potential for industrial ginsenosides biotransformation. However, its relatively low ginsenoside Rd-hydrolyzing activity limits the production of pharmaceutically active minor ginsenoside compound K (CK). In this study, first, we used molecular docking to predict the key enzyme residues that may hypothetically interact with ginsenoside Rd. Then, based on sequence alignment and alanine scanning mutagenesis approach, key variant sites were identified that might improve the enzyme catalytic efficiency. The enzyme catalytic efficiency (kcat/Km) and substrate affinity (Km) of the N264D variant enzyme for ginsenoside Rd increased by 60% and decreased by 17.9% compared with WT enzyme, respectively, which may be due to a decrease in the binding free energy (∆G) between the variant enzyme and substrate Rd. In addition, Markov state models (MSM) analysis during the whole 1000-ns MD simulations indicated that altering N264 to D made the variant enzyme achieve a more stable SS-βGly conformational state than the wild-type (WT) enzyme and corresponding Rd complex. Under identical conditions, the relative activities and the CK conversion rates of the N264D enzyme were 1.7 and 1.9 folds higher than those of the WT enzyme. This study identified an excellent hyperthermophilic β-glycosidase candidate for industrial biotransformation of ginsenosides.
Collapse
Affiliation(s)
- Chenchen Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China
| | - Wenfeng Shen
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China
| | - Weina Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China.
| | - Pan Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yangfang Dong
- Shaanxi Giant Biogene Co., Ltd, Xi'an, 710065, Shaanxi, China
| | - Jing He
- Xi'an Giant Biogene Co., Ltd, Xi'an, 710065, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China.
| |
Collapse
|
4
|
Rabadiya K, Pardhi D, Thaker K, Patoliya J, Rajput K, Joshi R. A review on recent upgradation and strategies to enhance cyclodextrin glucanotransferase properties for its applications. Int J Biol Macromol 2024; 259:129315. [PMID: 38211906 DOI: 10.1016/j.ijbiomac.2024.129315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Cyclodextrin glycosyltransferase (CGTase) is a significant extracellular enzyme with diverse functions. CGTase is widely used in production of cyclic α-(1,4)-linked oligosaccharides (cyclodextrins) from starch via transglycosylation reaction. Recent discoveries of novel CGTases from different microorganisms have expanded its applications but natural CGTase have lower yield, leading to heterologous expression for increased production to meet various needs. Moreover, significant advancements in directed evolution approach have been explored to alter the molecular structure of CGTase to enhance its performance. This review comprehensively summarizes the strategies employed in heterologous expression to boost CGTase production and secretion in various host. It also outlines molecular engineering approaches aimed to improving CGTase properties, including product and substrate specificity, catalytic efficiency, and thermal stability. Additionally, a considerable stability against changes in temperature and organic solvents can be obtained by immobilization.
Collapse
Affiliation(s)
- Khushbu Rabadiya
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Dimple Pardhi
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Khushali Thaker
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Jaimini Patoliya
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Kiransinh Rajput
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Rushikesh Joshi
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
5
|
Shen Y, Xia Y, Chen X. Research progress and application of enzymatic synthesis of glycosyl compounds. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12652-8. [PMID: 37428188 DOI: 10.1007/s00253-023-12652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
Glucoside compounds are widely found in nature and have garnered significant attention in the medical, cosmetics, and food industries due to their diverse pharmaceutical properties, biological activities, and stable application characteristics. Glycosides are mainly obtained by direct extraction from plants, chemical synthesis, and enzymatic synthesis. Given the challenges associated with plant extraction, such as low conversion rates and the potential for environmental pollution with chemical synthesis, our review focuses on enzymatic synthesis. Here, we reviewed the enzymatic synthesis methods of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G), 2-O-α-D-glucosyl glycerol (α-GG), arbutin and α-glucosyl hesperidin (Hsp-G), and other glucoside compounds. The types of enzymes selected in the synthesis process are comprehensively analyzed and summarized, as well as a series of enzyme transformation strategies adopted to improve the synthetic yield. KEY POINTS: • Glycosyl compounds have applications in the biomedical and food industries. • Enzymatic synthesis converts substrates into products using enzymes as catalysts. • Substrate bias and specificity are key to improving substrate conversion.
Collapse
Affiliation(s)
- Yujuan Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
- School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
- School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
6
|
Wei B, Wang L, Su L, Tao X, Chen S, Wu J, Xia W. Structural characterization of slow digestion dextrin synthesized by a combination of α-glucosidase and cyclodextrin glucosyltransferase and its prebiotic potential on the gut microbiota in vitro. Food Chem 2023; 426:136554. [PMID: 37321121 DOI: 10.1016/j.foodchem.2023.136554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Starch-based dietary fibers are at the forefront of functional ingredient research. In this study, a novel water-soluble slow digestion dextrin (SDD) was synthesized by synergy of α-glucosidase and cyclodextrin glucosyltransferase and characterized. Results showed that SDD exhibited high solubility, low viscosity, and resistance to digestive enzymes, and also showed an increased dietary fiber content of 45.7% compared with that of α-glucosidase catalysis alone. Furthermore, SDD was used as the sole carbon source to ferment selected intestinal strains and human fecal microflora in vitro to investigate its prebiotic effects. It was found that SDD could markedly enriched the abundance of Bifidobacterium, Veillonella, Dialister, and Blautia in human gut microflora and yielded higher total organic acid. The combination of α-glucosidase and cyclodextrin glucosyltransferase in this study showed valuable potential for the preparation of a novel slow digestion dextrin with good physicochemical properties and improved prebiotic effects.
Collapse
Affiliation(s)
- Beibei Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
7
|
Tao X, Kong D, Zhang H, Su L, Chen S, Rao D, Wei B, Wu J, Wang L. Enhancing 2-O-α-D-glucopyranosyl-L-ascorbic acid synthesis by weakening the acceptor specificity of CGTase toward glucose and maltose. Bioprocess Biosyst Eng 2023; 46:903-911. [PMID: 37103578 DOI: 10.1007/s00449-023-02875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) is a stable derivative of L-ascorbic acid (L-AA), which has been widely used in food and cosmetics industries. Sugar molecules, such as glucose and maltose produced by cyclodextrin glycosyltransferase (CGTase) during AA-2G synthesis may compete with L-AA as the acceptors, resulting in low AA-2G yield. Multiple sequence alignment combined with structural simulation analysis indicated that residues at positions 191 and 255 of CGTase may be responsible for the difference in substrate specificity. To investigate the effect of these two residues on the acceptor preference and the AA-2G yield, five single mutants Bs F191Y, Bs F255Y, Bc Y195F, Pm Y195F and Pm Y260F of three CGTases from Bacillus stearothermophilus NO2 (Bs), Bacillus circulans 251 (Bc) and Paenibacillus macerans (Pm) were designed for AA-2G synthesis. Under optimal conditions, the AA-2G yields of the mutants Bs F191Y and Bs F255Y AA-2G were 34.3% and 7.9% lower than that of Bs CGTase, respectively. The AA-2G yields of mutant Bc Y195F, Pm Y195F and Pm Y260F were 45.8%, 36.9% and 12.6% higher than those of wild-type CGTases, respectively. Kinetic studies revealed that the residues at positions 191 and 255 of the three CGTases were F, which decreased glucose and maltose specificity and increased L-AA specificity. This study not only proposes for the first time that the AA-2G yield can be improved by weakening the acceptor specificity of CGTase toward sugar byproducts, but also provides new insight on the modification of CGTase that catalyze the double-substrate transglycosylation reaction.
Collapse
Affiliation(s)
- Xiumei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Demin Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Huihu Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Deming Rao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Beibei Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
8
|
Tao X, Su L, Chen S, Wang L, Wu J. Producing 2-O-α-D-glucopyranosyl-L-ascorbic acid by modified cyclodextrin glucosyltransferase and isoamylase. Appl Microbiol Biotechnol 2023; 107:1233-1241. [PMID: 36688952 DOI: 10.1007/s00253-023-12367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
In this study, site saturation mutagenesis was performed on the - 3 (R44, D86, S90, and D192) and - 6 subsite (Y163, G175, G176, and N189) of Bacillus stearothermophilus NO2 cyclodextrin glucosyltransferase to enhance its specificity for the donor substrate maltodextrin for 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) preparation. The AA-2G yields produced by the mutants S90D, G176H, and S90D/G176H were 181, 171, and 185 g/L, respectively. Our previous study found that the mutant K228R/M230L also increased the AA-2G yield. Therefore, the mutants S90D, G176H, S90D/G176H, and K228R/M230L were further used to generate combinatorial mutants. Among these mutants, the highest AA-2G yield (217 g/L) was produced by S90D/K228R/M230L with 500 g/L maltodextrin as the glucosyl donor, which was 56 g/L higher than that produced by wild-type CGTase. In addition, AA-2G was prepared by adding isoamylase to hydrolyze α-1,6 glucosidic linkages in maltodextrin that could not be utilized by CGTase to improve the utilization rate of maltodextrin. The addition of isoamylase reduced the concentration of maltodextrin from 500 to 350 g/L, while the AA-2G yield remained high (208 g/L). The preparation of AA-2G by complexing isoamylase with mutant S90D/K228R/M230L reduced the maltodextrin concentration by 150 g/L, while the AA-2G yield increased by 47 g/L than preparation with wild-type CGTase alone, which laid a foundation for the large-scale preparation of AA-2G. KEY POINTS: • Mutants exhibited improved maltodextrin specificity. • Mutant S90D/K228R/M230L produced high yield of AA-2G with maltodextrin as substrate. • AA-2G was first synthesized by a combination of isoamylase and CGTase.
Collapse
Affiliation(s)
- Xiumei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
9
|
Engineering of Cyclodextrin Glycosyltransferase through a Size/Polarity Guided Triple-Code Strategy with Enhanced α-Glycosyl Hesperidin Synthesis Ability. Appl Environ Microbiol 2022; 88:e0102722. [PMID: 35950845 PMCID: PMC9469708 DOI: 10.1128/aem.01027-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hesperidin, a flavonoid enriched in citrus peel, can be enzymatically glycosylated using CGTase with significantly improved water solubility. However, the reaction catalyzed by wild-type CGTase is rather inefficient, reflected in the poor production rate and yield. By focusing on the aglycon attacking step, seven residues were selected for mutagenesis in order to improve the transglycosylation efficiency. Due to the lack of high-throughput screening technology regarding to the studied reaction, we developed a size/polarity guided triple-code strategy in order to reduce the library size. The selected residues were replaced by three rationally chosen amino acids with either changed size or polarity, leading to an extremely condensed library with only 32 mutants to be screened. Twenty-five percent of the constructed mutants were proved to be positive, suggesting the high quality of the constructed library. Specific transglycosylation activity of the best mutant Y217F was assayed to be 935.7 U/g, and its kcat/KmA is 6.43 times greater than that of the wild type. Homology modeling and docking computation suggest the source of notably enhanced catalytic efficiency is resulted from the combination of ligand transfer and binding effect. IMPORTANCE Size/polarity guided triple-code strategy, a novel semirational mutagenesis strategy, was developed in this study and employed to engineer the aglycon attacking site of CGTase. Screening pressure was set as improved hesperidin glucoside synthesis ability, and eight positive mutants were obtained by screening only 32 mutants. The high quality of the designed library confirms the effectiveness of the developed strategy is potentially valuable to future mutagenesis studies. Mechanisms of positive effect were explained. The best mutant exhibits 6.43 times enhanced kcat/KmA value and confirmed to be a superior whole-cell catalyst with potential application value in synthesizing hesperidin glucosides.
Collapse
|
10
|
Zhou Y, Lv X, Chen L, Zhang H, Zhu L, Lu Y, Chen X. Identification of Process-Related Impurities and Corresponding Control Strategy in Biocatalytic Production of 2- O-α-d-Glucopyranosyl-l-ascorbic Acid Using Sucrose Phosphorylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5066-5076. [PMID: 35412325 DOI: 10.1021/acs.jafc.2c00881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
2-O-α-d-Glucopyranosyl-l-ascorbic acid (AA-2G) is an ideal substitute for l-ascorbic acid because of its remarkable stability and improved biological activity, which can be easily applied in cosmetic, food, and medicine fields. However, impurity identification and control are significant procedures during the manufacturing of AA-2G. This study assessed a manufacturing routine of AA-2G synthesized by sucrose phosphorylase (SPase). First, three unknown process-related impurities were observed, which were further identified as 3-O-α-d-glucopyranosyl- l-ascorbic acid (impurity I), 2-O-α-d-glucopyranosyl-l-dehydroascorbic acid (impurity II), and 13-O-α-d-glucopyranosyl-2-O-α-d-glucopyranosyl-l-ascorbic acid (impurity III), respectively. Second, a comprehensive formation pathway of impurities was elucidated, and specific strategies corresponding to controlling each impurity were also proposed. Specifically, the content of impurity I can be reduced by 50% by fine tuning reaction conditions. The impurity II-free purification process was also achieved by applying a low concentration of alkali. Finally, a semi-rational design was introduced, and a single mutant L343F was obtained by site-directed mutagenesis, which reduced impurities I and III by 63.9 and 100%, respectively, without affecting the transglycosylation activity. It is expected that the reported impurity identification and control strategies during the AA-2G production will facilitate its industrial production.
Collapse
Affiliation(s)
- Yaoyao Zhou
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Xuhao Lv
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Luyi Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Hui Zhang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Yuele Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
11
|
Engineering of cyclodextrin glycosyltransferase from Paenibacillus macerans for enhanced product specificity of long-chain glycosylated sophoricosides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Zhou Y, Gan T, Jiang R, Chen H, Ma Z, Lu Y, Zhu L, Chen X. Whole-cell catalytic synthesis of 2-O-α-glucopyranosyl-l-ascorbic acid by sucrose phosphorylase from Bifidobacterium breve via a batch-feeding strategy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Qi X, Shao J, Cheng Y, He X, Li Y, Jia H, Yan M. Biocatalytic synthesis of 2-O-α-D-glucopyranosyl-L-ascorbic acid using an extracellular expressed α-glucosidase from Oryza sativa. Biotechnol J 2021; 16:e2100199. [PMID: 34392609 DOI: 10.1002/biot.202100199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND 2-O-α-D-Glucopyranosyl-L-ascorbic acid (AA-2G) is an important derivative of L-ascorbic acid (L-AA), which has the distinct advantages of non-reducibility, antioxidation, and reproducible decomposition into L-AA and glucose. Enzymatic synthesis is a preferred method for AA-2G production over alternative chemical synthesis owing to the regioselective glycosylation reaction. α-Glucosidase, an enzyme classed into O-glycoside hydrolases, might be used in glycosylation reactions to synthesize AA-2G. MAIN METHODS AND MAJOR RESULTS Here, an α-glucosidase from Oryza sativa was heterologously produced in Pichia pastoris GS115 and used for biosynthesis of AA-2G with few intermediates and byproducts. The extracellular recombinant α-glucosidase (rAGL) reached 9.11 U mL-1 after fed-batch cultivation for 102 h in a 5 L fermenter. The specific activity of purified rAGL is 49.83 U mg-1 at 37°C and pH 4.0. The optimal temperature of rAGL was 65°C, and it was stable below 55°C. rAGL was active over the range of pH 3.0-7.0, with the maximal activity at pH 4.0. Under the condition of 37°C, pH 4.0, equimolar maltose and ascorbic acid sodium salt, 8.7 ± 0.4 g L-1 of AA-2G was synthesized by rAGL. CONCLUSIONS AND IMPLICATIONS The production of rAGL in P. pastoris was proved to be beneficial in providing enough enzyme and promoting biocatalytic synthesis of AA-2G. These studies lay the basis for the industrial application of α-glucosidase. GRAPHICAL ABSTRACT LAY SUMMARY 2-O-α-D-Glucopyranosyl-L-ascorbic acid (AA-2G) is an important industrial derivative of L-ascorbic acid (L-AA), which has the distinct advantages of non-reducibility, antioxidation, and reproducible decomposition into L-AA and glucose. In this study, the authors characterized an α-glucosidase from Oryza sativa, which was recombinantly produced in Pichia pastoris GS115, and its potential for AA-2G production via transglycosylation of L-AA was investigated. These studies lay the basis for the industrial application of recombinant α-glucosidase.
Collapse
Affiliation(s)
- Xuelian Qi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Junlan Shao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yinchu Cheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaoying He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
14
|
2-O-D-glucopyranosyl-L-ascorbic acid: Properties, production, and potential application as a substitute for L-ascorbic acid. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Song K, Sun J, Wang W, Hao J. Heterologous Expression of Cyclodextrin Glycosyltransferase my20 in Escherichia coli and Its Application in 2- O-α-D-Glucopyranosyl-L-Ascorbic Acid Production. Front Microbiol 2021; 12:664339. [PMID: 34122378 PMCID: PMC8195388 DOI: 10.3389/fmicb.2021.664339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, the cgt gene my20, which encodes cyclodextrin glycosyltransferase (CGTase) and was obtained by the metagenome sequencing of marine microorganisms from the Mariana Trench, was codon optimized and connected to pET-24a for heterologous expression in Escherichia coli BL21(DE3). Through shaking flask fermentation, the optimized condition for recombinant CGTase expression was identified as 20°C for 18 h with 0.4 mM of isopropyl β-D-L-thiogalactopyranoside. The recombinant CGTase was purified by Ni2+-NTA resin, and the optimum pH and temperature were identified as pH 7 and 80°C, respectively. Activity was stable over wide temperature and pH ranges. After purification by Ni2+-NTA resin, the specific activity of the CGTase was 63.3 U/mg after 67.3-fold purification, with a final yield of 43.7%. In addition, the enzyme was used to transform L-ascorbic acid into 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G). The maximal AA-2G production reached 28 g/L, at 40°C, pH 4, 24 h reaction time, 50 g/L donor concentration, and 50 U/g enzyme dosage. The superior properties of recombinant CGTase strongly facilitate the industrial production of AA-2G.
Collapse
Affiliation(s)
- Kai Song
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingjing Sun
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang, China
| | - Wei Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang, China
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang, China
| |
Collapse
|
16
|
Effect of Leu 277 on Disproportionation and Hydrolysis Activity in Bacillus stearothermophilus NO2 Cyclodextrin Glucosyltransferase. Appl Environ Microbiol 2021; 87:e0315120. [PMID: 33837009 DOI: 10.1128/aem.03151-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The disproportionation activity of cyclodextrin glucosyltransferase (CGTase; EC 2.4.1.19) can be used to convert small molecules into glycosides, thereby enhancing their solubility and stability. However, CGTases also exhibit a competing hydrolysis activity. The +2 subsite of the substrate binding cleft plays an important role in both the disproportionation and hydrolysis activities, but almost all known mutations at this site decrease disproportionation activity. In this study, Leu277 of the CGTase from Bacillus stearothermophilus NO2, located near both the +2 subsite and the catalytic acid/base Glu253, was modified to assess the effect of side chain size at this position on disproportionation and hydrolysis activities. The best mutant, L277M, exhibited a reduced Km for the acceptor substrate maltose (0.48 mM versus 0.945 mM) and an increased kcat/Km (1,175 s-1 mM-1 versus 686.1 s-1 mM-1), compared with those of the wild-type enzyme. The disproportionation-to-hydrolysis ratio of L277M was 2.4-fold greater than that of the wild type. Existing structural data were combined with a multiple-sequence alignment and Gly282 mutations to examine the mechanism behind the effects of the Leu277mutations. The Gly282 mutations were included to aid a molecular dynamics (MD) analysis and the comparison of crystal structures. They reveal that changes to a hydrophobic cluster near Glu253 and the hydrophobicity of the +2 subsite combine to produce the observed effects. IMPORTANCE In this study, mutations that enhance the disproportionation to hydrolysis ratio of a CGTase have been discovered. For example, the disproportionation-to-hydrolysis ratio of the L277M mutant of Bacillus stearothermophilus NO2 CGTase was 2.4-fold greater than that of the wild type. The mechanism behind the effects of these mutations is explained. This paper opens up other avenues for future research into the disproportionation and hydrolysis activities of CGTases. Productive mutations are no longer limited to the acceptor subsite, since mutations that indirectly affect the acceptor subsite also enhance enzymatic activity.
Collapse
|
17
|
Su L, Li Y, Wu J. Efficient secretory expression of Bacillus stearothermophilus α/β-cyclodextrin glycosyltransferase in Bacillus subtilis. J Biotechnol 2021; 331:74-82. [PMID: 33741407 DOI: 10.1016/j.jbiotec.2021.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Bacillus stearothermophilus α/β-cyclodextrin glycosyltransferase (α/β-CGTase) is an excellent transglycosylase with broad potential for food application, but its expression level is low in Bacillus subtilis. In this study, the optimal signal peptide for α/β-CGTase expression was screened from 173 signal peptides in B. subtilis WS11. The α/β-CGTase activity in a 3-L fermentor reached 151.93 U⋅ mL-1, but substantial amounts of inclusion bodies were produced. The N-terminal 12 amino acids of α/β-CGTase were then replaced with the N-terminal 15 amino acids of a β-CGTase from the same family that has a high percentage of disorder-promoting amino acids. As a result, the inclusion bodies were significantly reduced, and the enzyme activity increased to 249.35 U mL-1, 2.3 times that of the strain constructed previously. Finally, the ppsE and sfp genes of B. subtilis WS11, which are related to lipopeptide biosurfactant synthesis, were knocked out to produce B. subtilis WS13. When B. subtilis WS13 was used to produce α/β-CGTase in a 3-L fermentor, 70 % less defoaming agent was required than with B. subtilis WS11. Furthermore, enzyme production and growth of WS13 were equivalent to those of WS11. This study is of great significance for future research to efficiently scale-up production of α/β-CGTase.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Yunfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
18
|
Site-saturation mutagenesis of proline 176 in Cyclodextrin Glucosyltransferase from Bacillus sp. Y112 effects product specificity and enzymatic properties. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Huang W, He Q, Zhou ZR, He HB, Jiang RW. Enzymatic Synthesis of Puerarin Glucosides Using Cyclodextrin Glucanotransferase with Enhanced Antiosteoporosis Activity. ACS OMEGA 2020; 5:12251-12258. [PMID: 32548408 PMCID: PMC7271355 DOI: 10.1021/acsomega.0c00950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Puerarin (PU) is the most abundant isoflavone from the root of Pueraria lobata and exhibits a broad range of pharmacological activities. However, poor water solubility and low bioavailability limit its use. Enzymatic transglycosylation is emerging as a new strategy to improve the pharmacodynamic and pharmacokinetic properties of natural products for drug development. In this study, three PU glucosides (PU-G, PU-2G, and PU-3G) were synthesized by using a cyclodextrin glucanotransferase from Bacillus licheniformis with PU as the acceptor and α-cyclodextrin as the sugar donor. The transglycosylation products were isolated and structurally identified by mass spectrometry and nuclear magnetic resonance. The water solubilities of PU-G, PU-2G, and PU-3G were 15.6, 100.9, and 179.1 times higher than that of PU, respectively. Moreover, the antiosteoporosis activities of these glucosides were tested, and PU-G was found to show much more potent antiosteoporosis activity as compared to the original PU.
Collapse
|
20
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. Die zentrale Rolle der Methodenentwicklung in der gerichteten Evolution selektiver Enzyme. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201901491] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Deutschland
- Department of Chemistry, Hans-Meerwein-Straße 4 Philipps-Universität 35032 Marburg Deutschland
| |
Collapse
|
21
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. Angew Chem Int Ed Engl 2020; 59:13204-13231. [PMID: 31267627 DOI: 10.1002/anie.201901491] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Department of Chemistry, Hans-Meerwein-Strasse 4 Philipps-University 35032 Marburg Germany
| |
Collapse
|
22
|
Engineering of Cyclodextrin Glycosyltransferase Reveals pH-Regulated Mechanism of Enhanced Long-Chain Glycosylated Sophoricoside Specificity. Appl Environ Microbiol 2020; 86:AEM.00004-20. [PMID: 32005733 DOI: 10.1128/aem.00004-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 01/22/2020] [Indexed: 11/20/2022] Open
Abstract
Sophoricoside glycosylated derivatives, especially long-chain glycosylated sophoricosides (LCGS), have greatly improved water solubility compared with sophoricoside. Here, cyclodextrin glycosyltransferase from Paenibacillus macerans (PmCGTase) was employed for sophoricoside glycosylation. Saturation mutagenesis of alanine 156, alanine 166, glycine 173, and leucine 174 was performed due to their nonconservative properties among α-, β-, and γ-CGTases with different product specificities. Variants L174P, A156V/L174P, and A156V/L174P/A166Y greatly improved the product specificity for LCGS. pH significantly affected the extent of glycosylation catalyzed by the variants. Further investigations revealed that the pH-regulated mechanism for LCGS synthesis mainly depends on a disproportionation route at a lower pH (pH 4) and a cyclization-coupling route at a higher pH (pH 8) and equivalent effects of cyclization-coupling and disproportionation routes at pH 5. Whereas short-chain glycosylated sophoricosides (SCGS) are primarily produced via disproportionation of maltodextrin at pH 4 and secondary disproportionation of LCGS at pH 8. At pH 5, SCGS synthesis mainly depends on a hydrolysis route by the wild type (WT) and a secondary disproportionation route by variant A156V/L174P/A166Y. Kinetics analysis showed a decreased Km value of variant A156V/L174P/A166Y. Dynamics simulation results demonstrated that the improved LCGS specificity of the variant is possibly attributed to the enhanced affinity to long-chain substrates, which may be caused by the changes of hydrogen bond interactions at the -5, -6, and -7 subsites. Our results reveal a pH-regulated mechanism for product specificity of CGTase and provide guidance for engineering CGTase toward products with different sugar chain lengths.IMPORTANCE The low water solubility of sophoricoside seriously limits its applications in the food and pharmaceutical industries. Long-chain glycosylated sophoricosides show greatly improved water solubility. Here, the product specificity of cyclodextrin glycosyltransferase (CGTase) for long-chain glycosylated sophoricosides was significantly affected by pH. Our results reveal the pH-regulated mechanism of the glycosylated product specificity of CGTase. This work adds to our understanding of the synthesis of long-chain glycosylated sophoricosides and provides guidance for exploring related product specificity of CGTase based on pH regulation.
Collapse
|
23
|
Unbiased libraries in protein directed evolution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140321. [DOI: 10.1016/j.bbapap.2019.140321] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
|
24
|
Tao X, Su L, Wang L, Chen X, Wu J. Improved production of cyclodextrin glycosyltransferase from Bacillus stearothermophilus NO2 in Escherichia coli via directed evolution. Appl Microbiol Biotechnol 2019; 104:173-185. [DOI: 10.1007/s00253-019-10249-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
|
25
|
Li Y, Li Z, He X, Chen L, Cheng Y, Jia H, Yan M, Chen K. Characterisation of a Thermobacillus sucrose phosphorylase and its utility in enzymatic synthesis of 2-O-α-d-glucopyranosyl-l- ascorbic acid. J Biotechnol 2019; 305:27-34. [DOI: 10.1016/j.jbiotec.2019.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 02/01/2023]
|
26
|
|
27
|
Tao X, Su L, Wu J. Current studies on the enzymatic preparation 2-O-α-d-glucopyranosyl-l-ascorbic acid with cyclodextrin glycosyltransferase. Crit Rev Biotechnol 2018; 39:249-257. [PMID: 30563366 DOI: 10.1080/07388551.2018.1531823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G) is one of the most important l-ascorbic acid derivatives because of its resistance to reduction and oxidation and its easy degradation by α-glucosidase to release l-ascorbic acid and glucose. Thus, AA-2G has commercial uses in food, medicines and cosmetics. This article presents a review of recent studies on the enzymatic production of AA-2G using cyclodextrin glycosyltransferase. Reaction mechanisms with different donor substrates are discussed. Protein engineering, physical and biological studies of cyclodextrin glycosyltransferase are introduced from the viewpoint of effective AA-2G production. Future prospects for the production of AA-2G using cyclodextrin glycosyltransferase are reviewed.
Collapse
Affiliation(s)
- Xiumei Tao
- a State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , China.,b School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education , Jiangnan University , Wuxi , China.,c International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , China
| | - Lingqia Su
- a State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , China.,b School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education , Jiangnan University , Wuxi , China.,c International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , China
| | - Jing Wu
- a State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , China.,b School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education , Jiangnan University , Wuxi , China.,c International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , China
| |
Collapse
|