1
|
Jia X, Luo S, Ye X, Liu L, Wen W. Evolution of the biochemistry underpinning purine alkaloid metabolism in plants. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230366. [PMID: 39343019 PMCID: PMC11449220 DOI: 10.1098/rstb.2023.0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 10/01/2024] Open
Abstract
Purine alkaloids are naturally occurring nitrogenous methylated derivatives of purine nucleotide degradation products, having essential roles in medicine, food and various other aspects of our daily lives. They are generated through convergent evolution in different plant species. The pivotal reaction steps within the purine alkaloid metabolic pathways have been largely elucidated, and the convergent evolution of purine alkaloids has been substantiated through bioinformatic, biochemical and other research perspectives within S-adenosyl-ʟ-methionine-dependent N-methyltransferases. Currently, the biological and ecological roles of purine alkaloids, further refinement of the purine alkaloid metabolic pathways and the investigation of purine alkaloid adaptive evolutionary mechanisms continue to attract widespread research interest. The exploration of the purine alkaloid metabolic pathways also enhances our comprehension of the biochemical mechanism, providing insights into inter-species interactions and adaptive evolution and offering potential value in drug development and agricultural applications. Here, we review the progress of research in the distribution, metabolic pathway elucidation and regulation, evolutionary mechanism and ecological roles of purine alkaloids in plants. The opportunities and challenges involved in elucidating the biochemical basis and evolutionary mechanisms of the purine alkaloid metabolic pathways, as well as other research aspects, are also discussed. This article is part of the theme issue 'The evolution of plant meta-bolism'.
Collapse
Affiliation(s)
- Xinxin Jia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Shijie Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Xiali Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Lin Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| |
Collapse
|
2
|
Chen T, Ge Z, Yang X, Wang X, Zuo H, Liao Y, Chen Z, Zhang Z, Chen M, Zhao J, Luo J. Characterization of a new Camellia plant resource with low caffeine and high theobromine for production of a novel natural low-caffeine tea. Food Chem X 2024; 23:101586. [PMID: 39036481 PMCID: PMC11260029 DOI: 10.1016/j.fochx.2024.101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Yuanbaoshancha (YBSC) is characterized as a new wild tea relative morphologically and phytochemically distinguished from the closest wild tea plants Rongjiangcha (Camellia yungkiangensis, RJC) and Tulecha (Camellia costata, TLC). YBSC young leaves contain higher tea polyphenol and theobromine contents but lower caffeine and theanine as compared with RJC, TLC, and other tea landraces and modern cultivars. The major alkaloid detected in YBSC, TLC, and RJC is theobromine while caffeine is a minor; the primary catechins in YBSC leaves are non-galloylated catechins, significantly different from Camellia sinensis and other low-caffeine tea resources. The unique phytochemical profiles featured YBSC black tea with extremely lower caffeine and higher theobromine, as well as unique flavors and health benefits. This botanical characterization of YBSC and two related low-caffeine wild tea resources lays a foundation for future better utilization for the production of a highly valuable natural low-caffeine/high-theobromine tea. Chemical compounds Caffeine (PubChem CID: 2519); Theobromine (PubChem CID: 5429); Catechins (PubChem CID: 9064); Epigallocatechin gallate (PubChem CID: 65064); Theanine (PubChem CID: 439378); Jasmone (PubChem CID: 1549018); cis-3-Hexenyl hexanoate (PubChem CID: 5352543); Hexyl 2-methylbutanoate (PubChem CID: 24838).
Collapse
Affiliation(s)
- Taolin Chen
- Tea College of Guizhou University, Guiyang 550025, China
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Zhiwen Ge
- Agricultural Technology Extension Center of Liuzhou, Liuzhou 545001, China
| | - Xuemei Yang
- Agriculture and Rural Affairs Bureau of Rongshui, Liuzhou 545300, China
| | - Xifu Wang
- Forestry Research Institute of Liuzhou, Liuzhou 545300, China
| | - Hao Zuo
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Yinping Liao
- Agricultural Technology Extension Center of Liuzhou, Liuzhou 545001, China
| | - Zhiping Chen
- Agriculture and Rural Affairs Bureau of Rongshui, Liuzhou 545300, China
| | - Zheng Zhang
- Agricultural Technology Extension Center of Liuzhou, Liuzhou 545001, China
| | - Meili Chen
- Greening Construction Development Center of Liuzhou, Liuzhou 545001, China
| | - Jian Zhao
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Junwu Luo
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
An Y, Qiao D, Jing T, Li S. Extensive ICP-MS and HPLC-QQQ detections reveal the content characteristics of main metallic elements and polyphenols in the representative commercial tea on the market. Front Nutr 2024; 11:1450348. [PMID: 39188975 PMCID: PMC11345263 DOI: 10.3389/fnut.2024.1450348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The content of polyphenols and metal elements in tea has an important impact on the choice of consumers. In this study, we conducted a comparative analysis of ten elements including Fe, Mg, Al, Zn, Cu, Mn, Ni, Cr, Pb, and As in 122 representative tea samples from 20 provinces. The results showed that the difference of metal content among six tea categories was greater than that among provinces, and the overall metal content of black tea was relatively higher. The contents of all elements from high to low were: Mg > Mn > Al > Fe > Zn > Cu > Ni > Cr > Pb > As. The contents of Ni, Fe, Al, Zn and Mn showed significant differences among multiple types of tea categories. While the detection rates of Pb and As were 10.7 and 24.6%, respectively. The contents of all elements were in line with the national limit standards. Meanwhile, the relative contents of theanine, caffeine and a total of 53 polyphenolic compounds in 122 tea samples were detected. The analysis showed that the content of these compounds differed least between green and yellow tea, and the largest difference between black tea and oolong tea. This study provides important support for consumers to choose tea rationally.
Collapse
Affiliation(s)
- Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Dahe Qiao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shize Li
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
- College of Life Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Liu D, Ye Y, Tang R, Gong Y, Chen S, Zhang C, Mei P, Chen J, Chen L, Ma C. High-density genetic map construction and QTL mapping of a zigzag-shaped stem trait in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2024; 24:382. [PMID: 38724900 PMCID: PMC11080114 DOI: 10.1186/s12870-024-05082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The highly unique zigzag-shaped stem phenotype in tea plants boasts significant ornamental value and is exceptionally rare. To investigate the genetic mechanism behind this trait, we developed BC1 artificial hybrid populations. Our genetic analysis revealed the zigzag-shaped trait as a qualitative trait. Utilizing whole-genome resequencing, we constructed a high-density genetic map from the BC1 population, incorporating 5,250 SNP markers across 15 linkage groups, covering 3,328.51 cM with an average marker interval distance of 0.68 cM. A quantitative trait locus (QTL) for the zigzag-shaped trait was identified on chromosome 4, within a 61.2 to 97.2 Mb range, accounting for a phenotypic variation explained (PVE) value of 13.62%. Within this QTL, six candidate genes were pinpointed. To better understand their roles, we analyzed gene expression in various tissues and individuals with erect and zigzag-shaped stems. The results implicated CsXTH (CSS0035625) and CsCIPK14 (CSS0044366) as potential key contributors to the zigzag-shaped stem formation. These discoveries lay a robust foundation for future functional genetic mapping and tea plant genetic enhancement.
Collapse
Affiliation(s)
- Dingding Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Yuanyuan Ye
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Rongjin Tang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Yang Gong
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Chenyu Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Piao Mei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Chunlei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
5
|
Jin Q, Wang Z, Sandhu D, Chen L, Shao C, Xie S, Shang F, Wen S, Wu T, Jin H, Huang F, Liu G, Hu J, Su Q, Huang M, Zhu Q, Zhou B, Zhu L, Peng L, Liu Z, Huang J, Tian N, Liu S. miR828a-CsMYB114 Module Negatively Regulates the Biosynthesis of Theobromine in Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4464-4475. [PMID: 38376143 DOI: 10.1021/acs.jafc.3c07736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Theobromine is an important quality component in tea plants (Camellia sinensis), which is produced from 7-methylxanthine by theobromine synthase (CsTbS), the key rate-limiting enzyme in theobromine biosynthetic pathway. Our transcriptomics and widely targeted metabolomics analyses suggested that CsMYB114 acted as a potential hub gene involved in the regulation of theobromine biosynthesis. The inhibition of CsMYB114 expression using antisense oligonucleotides (ASO) led to a 70.21% reduction of theobromine level in leaves of the tea plant, which verified the involvement of CsMYB114 in theobromine biosynthesis. Furthermore, we found that CsMYB114 was located in the nucleus of the cells and showed the characteristic of a transcription factor. The dual luciferase analysis, a yeast one-hybrid assay, and an electrophoretic mobility shift assay (EMSA) showed that CsMYB114 activated the transcription of CsTbS, through binding to CsTbS promoter. In addition, a microRNA, miR828a, was identified that directly cleaved the mRNA of CsMYB114. Therefore, we conclude that CsMYB114, as a transcription factor of CsTbS, promotes the production of theobromine, which is inhibited by miR828a through cleaving the mRNA of CsMYB114.
Collapse
Affiliation(s)
- Qifang Jin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Zhong Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, California 92507, United States
| | - Lan Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Siyi Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Fanghuizi Shang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Shuai Wen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Ting Wu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Huiying Jin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Feiyi Huang
- Tea Research Institute, Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery, Changsha 410125, China
| | - Guizhi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Jinyu Hu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Qin Su
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Mengdi Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Qian Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Biao Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Lihua Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Lvwen Peng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Na Tian
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Shuoqian Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| |
Collapse
|
6
|
Zhang C, Zhou Z, Guo T, Huang X, Peng C, Lin Z, Chen M, Liu W. CFHTF2 Is Needed for Vegetative Growth, Conidial Morphogenesis and the Osmotic Stress Response in the Tea Plant Anthracnose ( Colletotrichum fructicola). Genes (Basel) 2023; 14:2235. [PMID: 38137057 PMCID: PMC10743015 DOI: 10.3390/genes14122235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Tea is an important cash crop worldwide, and its nutritional value has led to its high economic benefits. Tea anthracnose is a common disease of tea plants that seriously affects food safety and yield and has a far-reaching impact on the sustainable development of the tea industry. In this study, phenotypic analysis and pathogenicity analysis were performed on knockout and complement strains of HTF2-the transcriptional regulator of tea anthracnose homeobox-and the pathogenic mechanism of these strains was explored via RNA-seq. The MoHox1 gene sequence of the rice blast fungus was indexed, and the anthracnose genome was searched for CfHTF2. Evolutionary analysis recently reported the affinity of HTF2 for C. fructicola and C. higginsianum. The loss of CfHTF2 slowed the vegetative growth and spore-producing capacity of C. fructicola and weakened its resistance and pathogenesis to adverse conditions. The transcriptome sequencing of wild-type N425 and CfHTF2 deletion mutants was performed, and a total of 3144 differentially expressed genes (DEGs) were obtained, 1594 of which were upregulated and 1550 of which were downregulated. GO and KEGG enrichment analyses of DEGs mainly focused on signaling pathways such as the biosynthesis of secondary metabolites. In conclusion, this study lays a foundation for further study of the pathogenic mechanism of tea anthracnose and provides a molecular basis for the analysis of the pathogenic molecular mechanism of CfHTF2.
Collapse
Affiliation(s)
- Chengkang Zhang
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- Key Laboratory of Bio-Pesticide and Chemistry Biology, Fujian Agricultural and Forestry University, Ministry of Education, Fuzhou 350002, China
| | - Ziwen Zhou
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianlong Guo
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- Key Laboratory of Bio-Pesticide and Chemistry Biology, Fujian Agricultural and Forestry University, Ministry of Education, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Huang
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- Key Laboratory of Bio-Pesticide and Chemistry Biology, Fujian Agricultural and Forestry University, Ministry of Education, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengbin Peng
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| | - Zhideng Lin
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| | - Meixia Chen
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| | - Wei Liu
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| |
Collapse
|
7
|
Jin JQ, Qu FR, Huang H, Liu QS, Wei MY, Zhou Y, Huang KL, Cui Z, Chen JD, Dai WD, Zhu L, Yao MZ, Zhang ZM, Chen L. Characterization of two O-methyltransferases involved in the biosynthesis of O-methylated catechins in tea plant. Nat Commun 2023; 14:5075. [PMID: 37604798 PMCID: PMC10442441 DOI: 10.1038/s41467-023-40868-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Tea is known for having a high catechin content, with the main component being (-)-epigallocatechin gallate (EGCG), which has significant bioactivities, including potential anti-cancer and anti-inflammatory activity. The poor intestinal stability and permeability of EGCG, however, undermine these health-improving benefits. O-methylated EGCG derivatives, found in a few tea cultivars in low levels, have attracted considerable interest due to their increased bioavailability. Here, we identify two O-methyltransferases from tea plant: CsFAOMT1 that has a specific O-methyltransferase activity on the 3''-position of EGCG to generate EGCG3''Me, and CsFAOMT2 that predominantly catalyzes the formation of EGCG4″Me. In different tea tissues and germplasms, the transcript levels of CsFAOMT1 and CsFAOMT2 are strongly correlated with the amounts of EGCG3''Me and EGCG4''Me, respectively. Furthermore, the crystal structures of CsFAOMT1 and CsFAOMT2 reveal the key residues necessary for 3''- and 4''-O-methylation. These findings may provide guidance for the future development of tea cultivars with high O-methylated catechin content.
Collapse
Affiliation(s)
- Ji-Qiang Jin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Fu-Rong Qu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Huisi Huang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qing-Shuai Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Meng-Yuan Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Yuee Zhou
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ke-Lin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Zhibo Cui
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jie-Dan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Wei-Dong Dai
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Li Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Ming-Zhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Zhi-Min Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
8
|
Mi X, Yang C, Qiao D, Tang M, Guo Y, Liang S, Li Y, Chen Z, Chen J. De novo full length transcriptome analysis of a naturally caffeine-free tea plant reveals specificity in secondary metabolic regulation. Sci Rep 2023; 13:6015. [PMID: 37045909 PMCID: PMC10097665 DOI: 10.1038/s41598-023-32435-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Tea plants are crops with economic, health and cultural value. Catechin, caffeine and theanine are the main secondary metabolites of taste. In the process of germplasm collection, we found a resource in the Sandu Aquatic Autonomous County of Guizhou (SDT) that possessed significantly different characteristic metabolites compared with the cultivar 'Qiancha 1'. SDT is rich in theobromine and theophylline, possesses low levels of (-)-epicatechin-3-gallate, (-)-epigallocatechin-3-gallate, and theanine content, and is almost free of caffeine. However, research on this tea resource is limited. Full-length transcriptome analysis was performed to investigate the transcriptome and gene expression of these metabolites. In total, 78,809 unique transcripts were obtained, of which 65,263 were complete coding sequences. RNA-seq revealed 3415 differentially expressed transcripts in the tender leaves of 'Qiancha 1' and 'SDT'. Furthermore, 2665, 6231, and 2687 differentially expressed transcripts were found in different SDT tissues. These differentially expressed transcripts were enriched in flavonoid and amino acid metabolism processes. Co-expression network analysis identified five modules associated with metabolites and found that genes of caffeine synthase (TCS) may be responsible for the low caffeine content in SDT. Phenylalanine ammonia lyase (PAL), glutamine synthetase (GS), glutamate synthase (GOGAT), and arginine decarboxylase (ADC) play important roles in the synthesis of catechin and theanine. In addition, we identified that ethylene resposive factor (ERF) and WRKY transcription factors may be involved in theanine biosynthesis. Overall, our study provides candidate genes to improve understanding of the synthesis mechanisms of these metabolites and provides a basis for molecular breeding of tea plant.
Collapse
Affiliation(s)
- Xiaozeng Mi
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Chun Yang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Dahe Qiao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Mengsha Tang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Yan Guo
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Sihui Liang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Yan Li
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Zhengwu Chen
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Juan Chen
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China.
| |
Collapse
|
9
|
Yang G, Meng Q, Shi J, Zhou M, Zhu Y, You Q, Xu P, Wu W, Lin Z, Lv H. Special tea products featuring functional components: Health benefits and processing strategies. Compr Rev Food Sci Food Saf 2023; 22:1686-1721. [PMID: 36856036 DOI: 10.1111/1541-4337.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
The functional components in tea confer various potential health benefits to humans. To date, several special tea products featuring functional components (STPFCs) have been successfully developed, such as O-methylated catechin-rich tea, γ-aminobutyric acid-rich tea, low-caffeine tea, and selenium-rich tea products. STPFCs have some unique and enhanced health benefits when compared with conventional tea products, which can meet the specific needs and preferences of different groups and have huge market potential. The processing strategies to improve the health benefits of tea products by regulating the functional component content have been an active area of research in food science. The fresh leaves of some specific tea varieties rich in functional components are used as raw materials, and special processing technologies are employed to prepare STPFCs. Huge progress has been achieved in the research and development of these STPFCs. However, the current status of these STPFCs has not yet been systematically reviewed. Here, studies on STPFCs have been comprehensively reviewed with a focus on their potential health benefits and processing strategies. Additionally, other chemical components with the potential to be developed into special teas and the application of tea functional components in the food industry have been discussed. Finally, suggestions on the promises and challenges for the future study of these STPFCs have been provided. This paper might shed light on the current status of the research and development of these STPFCs. Future studies on STPFCs should focus on screening specific tea varieties, identifying new functional components, evaluating health-promoting effects, improving flavor quality, and elucidating the interactions between functional components.
Collapse
Affiliation(s)
- Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiushuang You
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Wang Y, Liu YF, Wei MY, Zhang CY, Chen JD, Yao MZ, Chen L, Jin JQ. Deeply functional identification of TCS1 alleles provides efficient technical paths for low-caffeine breeding of tea plants. HORTICULTURE RESEARCH 2023; 10:uhac279. [PMID: 36793757 PMCID: PMC9926157 DOI: 10.1093/hr/uhac279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Caffeine is an important functional component in tea, which has the effect of excitement and nerve stimulation, but excessive intake can cause insomnia and dysphoria. Therefore, the production of tea with low-caffeine content can meet the consumption needs of certain people. Here, in addition to the previous alleles of the tea caffeine synthase (TCS1) gene, a new allele (TCS1h) from tea germplasms was identified. Results of in vitro activity analysis showed that TCS1h had both theobromine synthase (TS) and caffeine synthase (CS) activities. Site-directed mutagenesis experiments of TCS1a, TCS1c, and TCS1h demonstrated that apart from the 225th amino acid residue, the 269th amino acid also determined the CS activity. GUS histochemical analysis and dual-luciferase assay indicated the low promoter activity of TCS1e and TCS1f. In parallel, insertion and deletion mutations in large fragments of alleles and experiments of site-directed mutagenesis identified a key cis-acting element (G-box). Furthermore, it was found that the contents of purine alkaloids were related to the expression of corresponding functional genes and alleles, and the absence or presence and level of gene expression determined the content of purine alkaloids in tea plants to a certain extent. In summary, we concluded TCS1 alleles into three types with different functions and proposed a strategy to effectively enhance low-caffeine tea germplasms in breeding practices. This research provided an applicable technical avenue for accelerating the cultivation of specific low-caffeine tea plants.
Collapse
Affiliation(s)
| | | | - Meng-Yuan Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chen-Yu Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jie-Dan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ming-Zhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | | | | |
Collapse
|
11
|
Ye Y, Yan W, Peng L, He J, Zhang N, Zhou J, Cheng S, Cai J. Minerals and bioactive components profiling in Se-enriched green tea and the pearson correlation with Se. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Zheng XQ, Dong SL, Li ZY, Lu JL, Ye JH, Tao SK, Hu YP, Liang YR. Variation of Major Chemical Composition in Seed-Propagated Population of Wild Cocoa Tea Plant Camellia ptilophylla Chang. Foods 2022; 12:foods12010123. [PMID: 36613339 PMCID: PMC9818582 DOI: 10.3390/foods12010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Excessive intake of high-caffeine tea will induce health-related risk. Therefore, breeding and cultivating tea cultivars with less caffeine is a feasible way to control daily caffeine intake. Cocoa tea (Camellia ptilophylla Chang) is a wild tea plant which grows leaves with little or no caffeine. However, the vegetative propagation of cocoa tea plants is difficult due to challenges with rooting. Whether natural seeds collected from wild cocoa tea plants can be used to produce less-caffeinated tea remains unknown, because research on the separation of traits among the seed progeny population is lacking. The present study was set to investigate the variation of caffeine and other chemical compositions in seed-propagated plant individuals using colorimetric and HPLC methods. It shows that there were great differences in chemical composition among the seed-propagated population of wild cocoa tea plants, among which some individuals possessed caffeine contents as high as those of normal cultivated tea cultivars (C. sinensis), suggesting that the naturally seed-propagated cocoa tea seedlings are not suitable for directly cultivating leaf materials to produce low-caffeine tea. Therefore, the cocoa tea plants used for harvesting seeds for growing low-caffeine tea plants should be isolated in order to prevent their hybridization with normal cultivated C. sinensis plants. Interestingly, the leaves of cocoa tea seedlings contained high levels of gallocatechin gallate (GCG) and would be a good source of leaf materials for extracting more stable antioxidant, because GCG is a more stable antioxidant than epigallocatechin gallate (EGCG), the dominant component of catechins in normal cultivated tea cultivars. Some plant individuals which contained low levels of caffeine along with high levels of amino acids and medium levels of catechins, are considered to be promising for further screening of less-caffeinated green tea cultivars.
Collapse
Affiliation(s)
- Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shu-Ling Dong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ze-Yu Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shi-Ke Tao
- Tea Research Institute of Pu’er City, Pu’er 665000, China
| | - Yan-Ping Hu
- Tea Research Institute of Pu’er City, Pu’er 665000, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
13
|
Li J, Xiao Y, Zhou X, Liao Y, Wu S, Chen J, Qian J, Yan Y, Tang J, Zeng L. Characterizing the cultivar-specific mechanisms underlying the accumulation of quality-related metabolites in specific Chinese tea (Camellia sinensis) germplasms to diversify tea products. Food Res Int 2022; 161:111824. [DOI: 10.1016/j.foodres.2022.111824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022]
|
14
|
Zhou MZ, O'Neill Rothenberg D, Zeng W, Luo L, Yan CY, Zeng Z, Huang YH. Discovery and Biochemical Characterization of N-methyltransferase Genes Involved in Purine Alkaloid Biosynthetic Pathway of Camellia gymnogyna Hung T.Chang (Theaceae) from Dayao Mountain. PHYTOCHEMISTRY 2022; 199:113167. [PMID: 35378107 DOI: 10.1016/j.phytochem.2022.113167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
In the present study, purine alkaloid analysis and transcriptome of Camellia gymnogyna Hung T. Chang (Theaceae) from Dayao Mountain were performed by high-performance liquid chromatography (HPLC) and RNA-Seq, respectively. The results showed that the major purine alkaloids accumulated in Camellia gymnogyna Hung T. Chang (Theaceae) were theobromine together with a small amount of theacrine and caffeine. Through polymerase chain reaction (PCR), three types of cDNA encoding N-methyltransferases were isolated from the leaves of Camellia gymnogyna Hung T. Chang (Theaceae) and designated GCS1, GCS2, and GCS3. We subsequently expressed GCS1, GCS2, and GCS3 in Escherichia coli and incubated lysates of the bacterial cells with a variety of xanthine substrates in the presence of S-adenosyl-L-methionine as the methyl donor. We found that the recombinant GCS1 proteins catalyzed 1,3,7-trimethyluric acid to produce theacrine, the recombinant GCS3 proteins catalyzed 7-methylxanthine to produce theobromine, while the recombinant GCS2 proteins did not catalyze any xanthine derivatives. Simultaneous analysis of the expressions of GCS1, GCS2, GCS3, and a caffeine synthase gene (TCS1) in Camellia gymnogyna Hung T. Chang (Theaceae) and other tea plants provided a reference for further research on the functions of these genes.
Collapse
Affiliation(s)
- Meng-Zhen Zhou
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China; Tea Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, 514071, China
| | - Dylan O'Neill Rothenberg
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Zeng
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Li Luo
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chang-Yu Yan
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Zeng
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Hui Huang
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Zhao S, Cheng H, Xu P, Wang Y. Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant ( Camellia sinensis): A review. Crit Rev Food Sci Nutr 2022; 63:10520-10535. [PMID: 35608014 DOI: 10.1080/10408398.2022.2078787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the process of adapting to the environment, tea plants (Camellia sinensis) endow tea with unique flavor and health functions, which should be attributed to secondary metabolites, including catechins, L-theanine, caffeine and terpene volatiles. Since the content of these flavor-contributing metabolites are mainly determined by the growth of tea plant, it is very important to understand their alteration and regulation mechanisms. In the present work, we first summarize the distribution, change characteristics of the main flavor-contributing metabolites in different cultivars, organs and under environmental stresses of tea plant. Subsequently, we discuss the regulating mechanisms involved in the biosynthesis of these metabolites based on the existing evidence. Finally, we propose the remarks and perspectives on the future study relating flavor-contributing metabolites. This review would contribute to the acceleration of research on the characteristic secondary metabolites and the breeding programs in tea plants.
Collapse
Affiliation(s)
- Shiqi Zhao
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Haiyan Cheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Li P, Fu J, Xu Y, Shen Y, Zhang Y, Ye Z, Tong W, Zeng X, Yang J, Tang D, Li P, Zuo H, Wu Q, Xia E, Wang S, Zhao J. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. THE NEW PHYTOLOGIST 2022; 234:902-917. [PMID: 35167117 PMCID: PMC9311817 DOI: 10.1111/nph.18026] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/02/2022] [Indexed: 05/09/2023]
Abstract
Tea trichomes synthesize numerous specialized metabolites to protect plants from environmental stresses and contribute to tea flavours, but little is known about the regulation of trichome development. Here, we showed that CsMYB1 is involved in the regulation of trichome formation and galloylated cis-catechins biosynthesis in tea plants. The variations in CsMYB1 expression levels are closely correlated with trichome indexes and galloylated cis-catechins contents in tea plant populations. Genome resequencing showed that CsMYB1 may be selected in modern tea cultivars, since a 192-bp insertion in CsMYB1 promoter was found exclusively in modern tea cultivars but not in the glabrous wild tea Camellia taliensis. Several enhancers in the 192-bp insertion increased CsMYB1 transcription in modern tea cultivars that coincided with their higher galloylated cis-catechins contents and trichome indexes. Biochemical analyses and transgenic data showed that CsMYB1 interacted with CsGL3 and CsWD40 and formed a MYB-bHLH-WD40 (MBW) transcriptional complex to activate the trichome regulator genes CsGL2 and CsCPC, and the galloylated cis-catechins biosynthesis genes anthocyanidin reductase and serine carboxypeptidase-like 1A. CsMYB1 integratively regulated trichome formation and galloylated cis-catechins biosynthesis. Results suggest that CsMYB1, trichome and galloylated cis-catechins are coincidently selected during tea domestication by harsh environments for improved adaption and by breeders for better tea flavours.
Collapse
Affiliation(s)
- Penghui Li
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Yihua Shen
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Zhili Ye
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Xiangsheng Zeng
- College of AgronomyAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Dingkun Tang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene EditingSchool of Life SciencesLinyi UniversityShuangling RoadLinyi276000China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| |
Collapse
|
17
|
Genetic, morphological, and chemical discrepancies between Camellia sinensis (L.) O. Kuntze and its close relatives. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Shi J, Yang G, You Q, Sun S, Chen R, Lin Z, Simal-Gandara J, Lv H. Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34898343 DOI: 10.1080/10408398.2021.2007353] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tea flavonoids are widely recognized as critical flavor contributors and crucial health-promoting bioactive compounds, and have long been the focus of research worldwide in food science. The aim of this review paper is to summarize the major progress in tea flavonoid chemistry, their dynamics of constituents and concentrations during tea processing as well as storage, and their health functions studied between 2001 and 2021. Moreover, the utilization of tea flavonoids in the human body has also been discussed for a detailed understanding of their uptake, metabolism, and interaction with the gut microbiota. Many novel tea flavonoids have been identified, including novel A- and B-ring substituted flavan-3-ol derivatives, condensed and oxidized flavan-3-ol derivatives, and glycosylated and methylated flavonoids, and are found to be closely associated with the characteristic color, flavor, and health benefits of tea. Flavoalkaloids exist widely in various teas, particularly 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols. Tea flavonoids behave significantly difference in constituents and concentrations depending on tea cultivars, plantation conditions, multiple stresses, the tea-specified manufacturing steps, and even the long-term storage period. Tea flavonoids exhibit multiple health-promoting effects, particularly their anti-inflammatory in alleviating metabolic syndromes. Interaction of tea flavonoids with the gut microbiota plays vital roles in their health function.
Collapse
Affiliation(s)
- Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Gaozhong Yang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiushuang You
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shili Sun
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
19
|
Raharimalala N, Rombauts S, McCarthy A, Garavito A, Orozco-Arias S, Bellanger L, Morales-Correa AY, Froger S, Michaux S, Berry V, Metairon S, Fournier C, Lepelley M, Mueller L, Couturon E, Hamon P, Rakotomalala JJ, Descombes P, Guyot R, Crouzillat D. The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro archipelago. Sci Rep 2021; 11:8119. [PMID: 33854089 PMCID: PMC8046976 DOI: 10.1038/s41598-021-87419-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
Caffeine is the most consumed alkaloid stimulant in the world. It is synthesized through the activity of three known N-methyltransferase proteins. Here we are reporting on the 422-Mb chromosome-level assembly of the Coffea humblotiana genome, a wild and endangered, naturally caffeine-free, species from the Comoro archipelago. We predicted 32,874 genes and anchored 88.7% of the sequence onto the 11 chromosomes. Comparative analyses with the African Robusta coffee genome (C. canephora) revealed an extensive genome conservation, despite an estimated 11 million years of divergence and a broad diversity of genome sizes within the Coffea genus. In this genome, the absence of caffeine is likely due to the absence of the caffeine synthase gene which converts theobromine into caffeine through an illegitimate recombination mechanism. These findings pave the way for further characterization of caffeine-free species in the Coffea genus and will guide research towards naturally-decaffeinated coffee drinks for consumers.
Collapse
Affiliation(s)
- Nathalie Raharimalala
- grid.433118.c0000 0001 2302 6762Centre National de Recherche Appliquée au Développement Rural, BP 1444, 101 Ambatobe, Antananarivo Madagascar
| | - Stephane Rombauts
- grid.5342.00000 0001 2069 7798Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium ,grid.11486.3a0000000104788040VIB Center for Plant Systems Biology, 9052 Gent, Belgium
| | - Andrew McCarthy
- grid.418923.50000 0004 0638 528XEuropean Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Andréa Garavito
- grid.7779.e0000 0001 2290 6370Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Colombia ,Centro de Bioinformática y biología computacional de Colombia – BIOS, Ecoparque los Yarumos, Manizales, Caldas, Colombia
| | - Simon Orozco-Arias
- grid.7779.e0000 0001 2290 6370Department of Systems and Informatics, Universidad de Caldas, Manizales, Colombia ,grid.441739.c0000 0004 0486 2919Universidad Autónoma de Manizales, Manizales, Colombia
| | - Laurence Bellanger
- Nestle Research-Plant Science Research Unit, BP 49716, 37097 Tours Cedex 2, France
| | - Alexa Yadira Morales-Correa
- grid.7779.e0000 0001 2290 6370Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Colombia
| | - Solène Froger
- Nestle Research-Plant Science Research Unit, BP 49716, 37097 Tours Cedex 2, France
| | - Stéphane Michaux
- Nestle Research-Plant Science Research Unit, BP 49716, 37097 Tours Cedex 2, France
| | - Victoria Berry
- Nestle Research-Plant Science Research Unit, BP 49716, 37097 Tours Cedex 2, France
| | - Sylviane Metairon
- grid.419905.00000 0001 0066 4948Nestle Research, Société des Produits Nestlé SA, 1015 Lausanne, Switzerland
| | - Coralie Fournier
- grid.419905.00000 0001 0066 4948Nestle Research, Société des Produits Nestlé SA, 1015 Lausanne, Switzerland ,grid.8591.50000 0001 2322 4988Present Address: University of Geneva, CMU-Décanat, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Maud Lepelley
- Nestle Research-Plant Science Research Unit, BP 49716, 37097 Tours Cedex 2, France
| | - Lukas Mueller
- grid.5386.8000000041936877XBoyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853 USA
| | - Emmanuel Couturon
- grid.121334.60000 0001 2097 0141Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France
| | - Perla Hamon
- grid.121334.60000 0001 2097 0141Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France
| | - Jean-Jacques Rakotomalala
- grid.433118.c0000 0001 2302 6762Centre National de Recherche Appliquée au Développement Rural, BP 1444, 101 Ambatobe, Antananarivo Madagascar
| | - Patrick Descombes
- grid.419905.00000 0001 0066 4948Nestle Research, Société des Produits Nestlé SA, 1015 Lausanne, Switzerland
| | - Romain Guyot
- grid.441739.c0000 0004 0486 2919Universidad Autónoma de Manizales, Manizales, Colombia ,grid.121334.60000 0001 2097 0141Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France
| | - Dominique Crouzillat
- Nestle Research-Plant Science Research Unit, BP 49716, 37097 Tours Cedex 2, France
| |
Collapse
|
20
|
Abstract
Herbal Teas prepared from leaves, roots, fruits, and flowers of different herbs contain
many useful nutrients that may be a good replacement for medicating certain diseases. These herbal
teas are very rich in poly-phenols, therefore are significant for their antioxidant, anti-inflammation,
anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Medical
chronic conditions, such as cardiovascular diseases, cancer, Alzheimer’s disease, Parkinson’s disease,
constipation, diabetes, and bed wetting in children can be easily cured by the use of these herbal
teas in regular and moderate amounts. This review focuses on the diverse constituents of herbal teas
due to which these can be an attractive alternative towards promoting human health.
Collapse
Affiliation(s)
- Tabinda Sattar
- Department of Chemistry, ICS, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
21
|
Yu X, Xiao J, Chen S, Yu Y, Ma J, Lin Y, Li R, Lin J, Fu Z, Zhou Q, Chao Q, Chen L, Yang Z, Liu R. Metabolite signatures of diverse Camellia sinensis tea populations. Nat Commun 2020; 11:5586. [PMID: 33149146 PMCID: PMC7642434 DOI: 10.1038/s41467-020-19441-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 10/14/2020] [Indexed: 01/12/2023] Open
Abstract
The tea plant (Camellia sinensis) presents an excellent system to study evolution and diversification of the numerous classes, types and variable contents of specialized metabolites. Here, we investigate the relationship among C. sinensis phylogenetic groups and specialized metabolites using transcriptomic and metabolomic data on the fresh leaves collected from 136 representative tea accessions in China. We obtain 925,854 high-quality single-nucleotide polymorphisms (SNPs) enabling the refined grouping of the sampled tea accessions into five major clades. Untargeted metabolomic analyses detect 129 and 199 annotated metabolites that are differentially accumulated in different tea groups in positive and negative ionization modes, respectively. Each phylogenetic group contains signature metabolites. In particular, CSA tea accessions are featured with high accumulation of diverse classes of flavonoid compounds, such as flavanols, flavonol mono-/di-glycosides, proanthocyanidin dimers, and phenolic acids. Our results provide insights into the genetic and metabolite diversity and are useful for accelerated tea plant breeding.
Collapse
Affiliation(s)
- Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jiajing Xiao
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, 3888 Chenhua Road, 201602, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Si Chen
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yuan Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jianqiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China
| | - Yuzhen Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Ruizi Li
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jun Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhijun Fu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Qiongqiong Zhou
- College of Horticulture, Henan Agricultural University, 450000, Zhengzhou, China
| | - Qianlin Chao
- Wuyi Star Tea Industry Co., Ltd, 354300, Wuyishan, China
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
| | - Zhenbiao Yang
- Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA. .,Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA, 92521, USA.
| | - Renyi Liu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China. .,Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| |
Collapse
|
22
|
Comparative analysis of phenolic compound metabolism among tea plants in the section Thea of the genus Camellia. Food Res Int 2020; 135:109276. [DOI: 10.1016/j.foodres.2020.109276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 11/23/2022]
|
23
|
Baiyacha, a wild tea plant naturally occurring high contents of theacrine and 3″-methyl-epigallocatechin gallate from Fujian, China. Sci Rep 2020; 10:9715. [PMID: 32546720 PMCID: PMC7297968 DOI: 10.1038/s41598-020-66808-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023] Open
Abstract
Baiyacha (BYC) is a kind of wild tea plant growing and utilizing in the remote mountain area of Fujian province, Southeastern China. However, scientific studies on this plant remain limited. Our results showed that BYC exhibits the typical morphological characteristics of Camellia gymnogyna Chang, a closely related species of C. sinensis (L.) O. Kuntze, which was not found in Fujian before. Chemical profiling revealed that parts of BYC plants are rich in purine alkaloids and catechins, especially featuring high levels of theacrine and 3″-methyl-epigallocatechin gallate (EGCG3″Me), chemical compounds with multiple biological activities that are rarely observed in regular tea plants. The contents of EGCG3″Me and theacrine in BYC both increased with the leaf maturity of tea shoots, whereas the caffeine content decreased significantly. The obtained results provide abundant information about the morphology and chemical compounds of BYC and may be used for tea production, breeding, and scientific research in the future.
Collapse
|
24
|
Novel insight into theacrine metabolism revealed by transcriptome analysis in bitter tea (Kucha, Camellia sinensis). Sci Rep 2020; 10:6286. [PMID: 32286351 PMCID: PMC7156766 DOI: 10.1038/s41598-020-62859-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
Kucha (Camellia sinensis) is a kind of unique wild tea resources in southwest China, containing sizeable amounts of theacrine (1,3,7,9-tetramethyluric acid) and having a special bitter taste both in fresh leaves and made tea. Theacrine has good healthy function locally. But the molecular mechanism of theacrine metabolism in Kucha was still unclear. In order to illuminate the biosynthesis and catabolism of theacrine in Kucha plants, three tea cultivars, C. sinensis ‘Shangyou Zhongye’ (SY) with low-theacrine, ‘Niedu Kucha 2’ (ND2) with middle-theacrine and, ‘Niedu Kucha 3’ (ND3) with high-theacrine, were used for our research. Purine alkaloid analysis and transcriptome of those samples were performed by High Performance Liquid Chromatography (HPLC) and RNA-Seq, respectively. The related gene expression levels of purine alkaloid were correlated with the content of purine alkaloid, and the results of quantitative real-time (qRT) PCR were also confirmed the reliability of transcriptome. Based on the data, we found that theacrine biosynthesis is a relatively complex process, N-methyltransferase (NMT) encoded by TEA024443 may catalyze the methylation at 9-N position in Kucha plant. Our finding will assist to reveal the molecular mechanism of theacrine biosynthesis, and be applied to selection and breeding of Kucha tea cultivars in the future.
Collapse
|
25
|
Niu S, Koiwa H, Song Q, Qiao D, Chen J, Zhao D, Chen Z, Wang Y, Zhang T. Development of core-collections for Guizhou tea genetic resources and GWAS of leaf size using SNP developed by genotyping-by-sequencing. PeerJ 2020; 8:e8572. [PMID: 32206447 PMCID: PMC7075365 DOI: 10.7717/peerj.8572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/15/2020] [Indexed: 11/20/2022] Open
Abstract
An accurate depiction of the genetic relationship, the development of core collection, and genome-wide association analysis (GWAS) are key for the effective exploitation and utilization of genetic resources. Here, genotyping-by-sequencing (GBS) was used to characterize 415 tea accessions mostly collected from the Guizhou region in China. A total of 30,282 high-quality SNPs was used to estimate the genetic relationships, develop core collections, and perform GWAS. We suggest 198 and 148 accessions to represent the core set and mini-core set, which consist of 47% and 37% of the whole collection, respectively, and contain 93–95% of the total SNPs. Furthermore, the frequencies of all alleles and genotypes in the whole set were very well retained in the core set and mini-core set. The 415 accessions were clustered into 14 groups and the core and the mini-core collections contain accessions from each group, species, cultivation status and growth habit. By analyzing the significant SNP markers associated with multiple traits, nine SNPs were found to be significantly associated with four leaf size traits, namely MLL, MLW, MLA and MLSI (P < 1.655E−06). This study characterized the genetic distance and relationship of tea collections, suggested the core collections, and established an efficient GWAS analysis of GBS result.
Collapse
Affiliation(s)
- Suzhen Niu
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China.,The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, China
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, Texas, USA
| | - Qinfei Song
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, China
| | - Dahe Qiao
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Juan Chen
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Degang Zhao
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhengwu Chen
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Ying Wang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Tianyuan Zhang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| |
Collapse
|
26
|
An Y, Mi X, Zhao S, Guo R, Xia X, Liu S, Wei C. Revealing Distinctions in Genetic Diversity and Adaptive Evolution Between Two Varieties of Camellia sinensis by Whole-Genome Resequencing. FRONTIERS IN PLANT SCIENCE 2020; 11:603819. [PMID: 33329675 PMCID: PMC7732639 DOI: 10.3389/fpls.2020.603819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/03/2020] [Indexed: 05/07/2023]
Abstract
Camellia sinensis var. sinensis (CSS) and C. sinensis var. assamica (CSA) are the two most economically important tea varieties. They have different characteristics and geographical distribution. Their genetic diversity and differentiation are unclear. Here, we identified 18,903,625 single nucleotide polymorphisms (SNPs) and 7,314,133 insertion-deletion mutations (indels) by whole-genome resequencing of 30 cultivated and three wild related species. Population structure and phylogenetic tree analyses divided the cultivated accessions into CSS and CSA containing 6,440,419 and 6,176,510 unique variations, respectively. The CSS subgroup possessed higher genetic diversity and was enriched for rare alleles. The CSA subgroup had more non-synonymous mutations and might have experienced a greater degree of balancing selection. The evolution rate (dN/dS) and KEGG enrichment indicated that genes involved in the synthesis and metabolism of flavor substances were positively selected in both CSS and CSA subpopulations. However, there are extensive genome differentiation regions (2959 bins and approximately 148 M in size) between the two subgroups. Compared with CSA (141 selected regions containing 124 genes), the CSS subgroup (830 selected regions containing 687 genes) displayed more selection regions potentially related to environmental adaptability. Fifty-three pairs of polymorphic indel markers were developed. Some markers were located in hormone-related genes with distinct alleles in the two cultivated subgroups. These identified variations and selected regions provide clues for the differentiation and adaptive evolution of tea varieties. The newly developed indel markers will be valuable in further genetic research on tea plants.
Collapse
|
27
|
Teng J, Yan C, Zeng W, Zhang Y, Zeng Z, Huang Y. Purification and characterization of theobromine synthase in a Theobromine-Enriched wild tea plant (Camellia gymnogyna Chang) from Dayao Mountain, China. Food Chem 2019; 311:125875. [PMID: 31753680 DOI: 10.1016/j.foodchem.2019.125875] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023]
Abstract
Camellia gymnogyna Chang (CgC), a wild tea plant, was discovered on Dayao Mountain, China. However, research regarding this tea plant is limited. Our study found that CgC contains theobromine, caffeine, and theacrine, among which theobromine content was the highest (14.37-39.72 mg/g). In addition, theobromine synthase (TS) was partially purified from CgC leaves, up to 35.87-fold, with consecutive chromatography, and its molecular weight was found to be approximately 62 kDa. The optimum reaction time, pH, and temperature for theobromine synthase from 7-methylxanthine was found to be 6 h, 4, and 45 °C, respectively. TS expression at both mRNA and protein stages was higher in the first than in the fourth leaf (P < 0.05). Subcellular localization of TS indicated that it was localized in the nucleus. These results indicate that CgC can be of scientific value and could lead to efficient utilization of this rare wild tea germplasm.
Collapse
Affiliation(s)
- Jie Teng
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Department of Tea Science, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Changyu Yan
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wen Zeng
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuqian Zhang
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Zeng
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yahui Huang
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China.
| |
Collapse
|
28
|
Zhang L, Ho CT, Zhou J, Santos JS, Armstrong L, Granato D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1474-1495. [PMID: 33336903 DOI: 10.1111/1541-4337.12479] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
Tea is a typical processed beverage from the fresh leaves of Camellia sinensis [Camellia sinensis (L.) O. Kuntze] or Camellia assamica [Camellia sinensis var. assamica (Mast.) Kitamura] through different manufacturing techniques. The secondary metabolites of fresh tea leaves are mainly flavan-3-ols, phenolic acids, purine alkaloids, condensed tannins, hydrolysable tannins, saponins, flavonols, and their glycoside forms. During the processing, tea leaves go through several steps, such as withering, rolling, fermentation, postfermentation, and roasting (drying) to produce different types of tea. After processing, theaflavins, thearubigins, and flavan-3-ols derivatives emerge as the newly formed compounds with a corresponding decrease in concentrations of catechins. Each type of tea has its own critical process and presents unique chemical composition and flavor. The components among different teas also cause significant changes in their biological activities both in vitro and in vivo. In the present review, the progress of tea chemistry and the effects of individual unit operation on components were comprehensively described. The health benefits of tea were also reviewed based on the human epidemiological and clinical studies. Although there have been multiple studies about the tea chemistry and biological activities, most of existing results are related to tea polyphenols, especially (-)-epigallocatechin gallate. Other compounds, including the novel compounds, as well as isomers of amino acids and catechins, have not been explored in depth.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Chi-Tang Ho
- Dept. of Food Science, Rutgers Univ., New Brunswick, 08901-8554, NJ, U.S.A
| | - Jie Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Jânio Sousa Santos
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Lorene Armstrong
- Graduation Program in Chemistry, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Daniel Granato
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil.,Innovative Food System Unit, Natural Resources Inst. Finland (LUKE), FI-02150, Espoo, Finland
| |
Collapse
|
29
|
Zhu B, Chen LB, Lu M, Zhang J, Han J, Deng WW, Zhang ZZ. Caffeine Content and Related Gene Expression: Novel Insight into Caffeine Metabolism in Camellia Plants Containing Low, Normal, and High Caffeine Concentrations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3400-3411. [PMID: 30830771 DOI: 10.1021/acs.jafc.9b00240] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Caffeine is a crucial secondary metabolic product in tea plants. Although the presence of caffeine in tea plants has been identified, the molecular mechanisms regulating relevant caffeine metabolism remain unclear. For the elucidation of the caffeine biosynthesis and catabolism in Camellia plants, fresh, germinated leaves from four Camellia plants with low (2), normal (1), and high (1) caffeine concentrations, namely, low-caffeine tea 1 (LCT1, Camellia crassicolumna), low-caffeine tea 2 (LCT2, C. crassicolumna), Shuchazao (SCZ, C. sinensis), and Yunkang 43 (YK43, C. sinensis) were used in this research. Transcriptome and purine alkaloids analyses of these Camellia leaves were performed using RNA-Seq and liquid chromatography-mass spectrometry (LC-MS). Moreover, 15N-caffeine tracing was performed to determine the metabolic fate of caffeine in leaves of these plants. Caffeine content was correlated with related gene expression levels, and a quantitative real-time (qRT) PCR analysis of specific genes showed a consistent tendency with the obtained transcriptomic analysis. On the basis of the results of stable isotope-labeled tracer experiments, we discovered a degradation pathway of caffeine to theobromine. These findings could assist researchers in understanding the caffeine-related mechanisms in Camellia plants containing low, normal, and high caffeine content and be applied to caffeine regulation and breeding improvement in future research.
Collapse
Affiliation(s)
- Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Lin-Bo Chen
- Tea Research Institute , Yunnan Academy of Agricultural Sciences , Menghai , Yunnan 666201 , China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Jing Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Jieyun Han
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China
| |
Collapse
|
30
|
|