1
|
Zhang J, Tang J, Shi S, Huang H, Li Y, Liu W, Shi J, Tong C, Pang J, Wu C. Research progress on marine polysaccharide-based Pickering emulsions and their potential applications in the food industry. Food Res Int 2025; 208:116073. [PMID: 40263875 DOI: 10.1016/j.foodres.2025.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/27/2025] [Accepted: 02/22/2025] [Indexed: 04/24/2025]
Abstract
Recently, natural biopolymers have increasingly been utilized to stabilize Pickering emulsions (PEs) for food applications. The research and development of marine polysaccharides is one of the hotspots in the field of PEs due to their low-cost, non-toxicity, abundant, and sustainability. This review aims to provide a comprehensive overview of the latest advancements in marine polysaccharide-based stabilized PEs systems. We begin with an introduction to the sources of marine polysaccharides and the methods for fabricating marine polysaccharide-based PEs. Following this, we summarize the role of natural marine polysaccharides and their complexes (combined with other polysaccharides, proteins, polyphenols, fatty acids, or other particles) as particles to form and stabilize PEs. Additionally, we detail the current applications of marine polysaccharide-based PEs in food packaging films/coatings, 3D printing, encapsulation and delivery of functional food ingredients, as well as in fat substitutes. Finally, potential future developments of PEs stabilized by marine polysaccharides in the food industry are also proposed. This review will provide valuable references to promote the application of marine polysaccharide-based PEs in the food sector.
Collapse
Affiliation(s)
- Jianxi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junjie Tang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Si Shi
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyan Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanzhao Li
- Engineering University of Peoples Armed Police, Coll Equipment Management & Supportabil, Xian, Shaanxi, China
| | - Wenhao Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jie Shi
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Cailing Tong
- Xiamen Ocean Vocational College, Xiamen, Fujian, China.
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Feng Y, Xiang J, Hu X, Hu L, Chang C, Duan B. Nanofibrous Chitin Clusters Constructed via Controllable Crystalline Structure Transition for 3D Functional Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501328. [PMID: 40065748 DOI: 10.1002/smll.202501328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/24/2025] [Indexed: 04/29/2025]
Abstract
Intensively studied polymeric particle production technologies often rely on the combination of polymer self-assembly and particle processing techniques. Herein, an elegant crystallization transition-mediated strategy is proposed to confine molecular self-assembly within a limited range, avoiding the need for extra particle processing steps. This approach enables the production of the regenerated nanofibrous chitin clusters woven with the helical nanofibers. By dissolving the β-chitin in an aqueous NaOH solution and adjusting the degree of deacetylation (DD value) to 28.0-41.4%, the chitin chains self-assembly pathway is facilitated to undergo a crystalline transition from α-chitin to hydrated chitosan. This transition diminishes the chitin chains self-assembly tendency and confines the self-assembly to the submicro- and micrometer scales. The morphological parameters of these chitin clusters, including cluster size, nanofiber tentacle density, diameter, and helical pitch, can be tuned by adjusting the DD value. These nanofibrous chitin clusters are successfully employed as building blocks to create 3D structural materials for thermal insulation and functional food applications, demonstrating their potential in constructing advanced materials. It is anticipated that the crystalline structure transition-mediated concept can be applied to other polymeric particle fabrication, opening up a new avenue for designing advanced particles for various applications.
Collapse
Affiliation(s)
- Yuxin Feng
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiechun Xiang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Xueqing Hu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Longting Hu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Bo Duan
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| |
Collapse
|
3
|
Qi Y, Zhong S, Pan F, Zhou J, Wang Z, Deng Z, Li H. Effects of different wall-breaking methods on the nutrient release of Ganoderma lucidum spore powder during in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6657-6666. [PMID: 38545871 DOI: 10.1002/jsfa.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The hard double-walled structure of Ganoderma lucidum spore powder (GLSP) is difficult for the human body to digest, so it is very important to break the wall of GLSP. In this study, the wall of GLSP was broken by mechanical milling at room temperature (MM-R) and ultra-fine grinding at low temperature (UFG-L), respectively. RESULTS Compared with MM-R, UFG-L could better retain the sporangium powder's morphological and structural integrity. During in vitro digestion, compared with unbroken GLSP, the released amounts of polysaccharides and triterpenes from broken GLSP were significantly increased, and they increased with the increase of specific surface area. The bioaccessibility of polysaccharide and triterpene from unbroken GLSP after the intestinal stage were 29.52% and 5.37%, respectively. The bioaccessibility of polysaccharides and triterpene from broken GLSP by MM-R after the intestinal phase were 39.73-72.45% and 16.44-24.97%, while those by UFG-L were 44.53-104.18% and 12.96-32.90%, respectively. CONCLUSION The active ingredients of broken GLSP showed better digestion and absorption abilities than unbroken GLSP. Moreover, the specific surface area of GLSP by UFG-L was lower than that by MM-R, and the bioaccessibility of GLSP by UFG-L was higher than that by MM-R. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaoyao Qi
- State Key Laboratory of Food Science and Resources, University of Nanchang, Nanchang, China
| | - Shun Zhong
- State Key Laboratory of Food Science and Resources, University of Nanchang, Nanchang, China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd, Jiujiang, China
| | - Junfu Zhou
- Jiangxi Xiankelai Biotechnology Co., Ltd, Jiujiang, China
| | - Zhiyu Wang
- Jiangxi Xiankelai Biotechnology Co., Ltd, Jiujiang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, University of Nanchang, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, University of Nanchang, Nanchang, China
| |
Collapse
|
4
|
Hao L, Li J, Mao J, Zhou Q, Deng Q, Chai Z, Zheng L, Shi J. The soybean lecithin-cyclodextrin-vitamin E complex nanoparticles stabilized Pickering emulsions for the delivery of β-carotene: Physicochemical properties and in vitro digestion. Int J Biol Macromol 2024; 265:130742. [PMID: 38492704 DOI: 10.1016/j.ijbiomac.2024.130742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
In this work, soybean lecithin (LC) was used to modify β-cyclodextrin (β-CD) with hydrophobic fat chains to become amphiphilic (LC-CD), and vitamin E (VE) was encapsulated in former modified β-CD complexes (LC-CD-VE), the new Pickering emulsions stabilized by LC-CD-VE and LC-CD complexes for the delivery of β-carotene (BC) were created. The surface tension, contact angle, zeta potential, and particle size were used to assess the changes in complexes nanoparticles at various pH values. Furthermore, LC-CD-VE has more promise as Pickering emulsion stabilizer than LC-CD because of the smaller particle size (271.11 nm), proper contact angle (58.02°), and lower surface tension (42.49 mN/m). The interactions between β-cyclodextrin, soybean lecithin, and vitamin E were confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The durability of Pickering emulsions was examined at various volume fractions of the oil phase and concentrations of nanoparticles. Compared to the emulsion stabilized by LC-CD, the one stabilized by LC-CD-VE showed superior storage stability. Moreover, for the delivery of BC, Pickering emulsions stabilized by LC-CD and LC-CD-VE can outperform bulk oil and Tween 80 stabilized emulsions in terms of UV light stability, storage stability, and bioaccessibility. This work could offer fresh perspectives on stabilizer alternatives for Pickering emulsion delivery systems.
Collapse
Affiliation(s)
- Lei Hao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junjiao Li
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jin Mao
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhaofei Chai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zheng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jie Shi
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
5
|
Zhang J, Dong F, Liu C, Nie J, Feng S, Yi T. Progress of Drug Nanocrystal Self-Stabilized Pickering Emulsions: Construction, Characteristics In Vitro, and Fate In Vivo. Pharmaceutics 2024; 16:293. [PMID: 38399347 PMCID: PMC10891687 DOI: 10.3390/pharmaceutics16020293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
A drug nanocrystal self-stabilized Pickering emulsion (DNSPE) is a novel Pickering emulsion with drug nanocrystals as the stabilizer. As a promising drug delivery system, DNSPEs have attracted increasing attention in recent years due to their high drug loading capacity and ability to reduce potential safety hazards posed by surfactants or specific solid particles. This paper comprehensively reviews the progress of research on DNSPEs, with an emphasis on the main factors influencing their construction, characteristics and measurement methods in vitro, and fate in vivo, and puts forward issues that need to be studied further. The review contributes to the advancement of DNSPE research and the promotion of their application in the field of drug delivery.
Collapse
Affiliation(s)
- Jifen Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Fangming Dong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Chuan Liu
- Chengdu Institute of Food Inspection, Chengdu 611130, China;
| | - Jinyu Nie
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Shan Feng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Tao Yi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macau 999078, China
| |
Collapse
|
6
|
Zhong W, Li D, Li L, Yu S, Pang J, Zhi Z, Wu C. pH-responsive Pickering emulsion containing citrus essential oil stabilized by zwitterionically charged chitin nanofibers: Physicochemical properties and antimicrobial activity. Food Chem 2024; 433:137388. [PMID: 37688825 DOI: 10.1016/j.foodchem.2023.137388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
In this study, zwitterionic chitin nanofibers (Z-ChNFs) were used to prepare Pickering emulsions containing citrus essential oils (CEO) and their physicochemical properties and antimicrobial activity were investigated. Results show that as-prepared Pickering emulsions exert pH-reversible properties, pH can adjust the charge of Z-ChNFs to influence the stability of the emulsion. As the concentration of Z-ChNFs increase, the droplet size of the emulsion decreases. The high concentration of Z-ChNFs (1.5 wt%) can enhance the viscosity and promote forming nano-network structures within continuous phases, and their amphiphilic nature can strengthen the capacity for adsorption on the oil/water interface, resulting in enhanced physical stability of the encapsulated CEO emulsion. Additionally, Z-ChNFs have positive effects on the improvement of antimicrobial activity of CEO. This study provides valuable implications for the development and application of essential oils as biopreservation in the food field.
Collapse
Affiliation(s)
- Weiquan Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Danjie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liang Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
7
|
Hu S, Li W, Cai Z, Tang C, Li B, Liu S, Li Y. Research progress on chitin/chitosan-based emulsion delivery systems and their application in lipid digestion regulation. Crit Rev Food Sci Nutr 2023; 64:13275-13297. [PMID: 37811646 DOI: 10.1080/10408398.2023.2264392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Excessive lipid intake is linked to an elevated risk of health problems. However, reducing lipid contents may influence food structure and flavor. Some alternatives are needed to control the lipid absorption. Emulsions are common carriers for lipids, which can control the hydrolysis and absorption of lipids. Chitin (Ch) and chitosan (CS) are natural polysaccharides with good biodegradability, biocompatibility, and unique cationic properties. They have been reported to be able to delay lipolysis, which can be regarded as one of the most promising agents that regulates lipid digestion (LiD). The application of Ch/CS and their derivatives in emulsions are summarized in this review with a focus on their performances and mechanisms for LiD regulation, aiming to provide theoretical guidance for the development of novel Ch/CS emulsions, and the regulation of LiD. A reasonable design of emulsion interface can provide its resistance to the external environment and then control LiD. The properties of emulsion interface are the key factors affecting LiD. Therefore, systematic study on the relationship between Ch/CS-based emulsion structure and LiD can not only instruct the reasonable design of emulsion interface to accurately regulate LiD, but also provide scientific guidelines for applying Ch/CS in functional food, medicine and other fields.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenbo Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Cai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Cuie Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| |
Collapse
|
8
|
Ji C, Wang Y. Nanocellulose-stabilized Pickering emulsions: Fabrication, stabilization, and food applications. Adv Colloid Interface Sci 2023; 318:102970. [PMID: 37523998 DOI: 10.1016/j.cis.2023.102970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Pickering emulsions have been widely studied due to their good stability and potential applications. Nanocellulose including cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial cellulose nanofibrils (BCNFs) has emerged as sustainable stabilizers/emulsifiers in food-related Pickering emulsions due to their favorable properties such as renewability, low toxicity, amphiphilicity, biocompatibility, and high aspect ratio. Nanocellulose can be widely obtained from different sources and extraction methods and can effectively stabilize Pickering emulsions via the irreversible adsorption onto oil-water interface. The synergistic effects of nanocellulose and other substances can further enhance the interfacial networks. The nanocellulose-based Pickering emulsions have potential food-related applications in delivery systems, food packaging materials, and fat substitutes. Nanocellulose-based Pickering emulsions as 3D printing inks exhibit good injectable and gelling properties and are promising to print spatial architectures. In the future, the utilization of biomass waste and the development of "green" and facile extraction methods for nanocellulose production deserve more attention. The stability of nanocellulose-based Pickering emulsions in multi-component food systems and at various conditions is an utmost challenge. Moreover, the case-by-case studies on the potential safety issues of nanocellulose-based Pickering emulsions need to be carried out with the standardized assessment procedures. In this review, we highlight key fundamental work and recent reports on nanocellulose-based Pickering emulsion systems. The sources and extraction of nanocellulose and the fabrication of nanocellulose-based Pickering emulsions are briefly summarized. Furthermore, the synergistic stability and food-related applications of nanocellulose-stabilized Pickering emulsions are spotlighted.
Collapse
Affiliation(s)
- Chuye Ji
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
9
|
Li Z, Yu D. Controlled ibuprofen release from Pickering emulsions stabilized by pH-responsive cellulose-based nanofibrils. Int J Biol Macromol 2023; 242:124942. [PMID: 37210059 DOI: 10.1016/j.ijbiomac.2023.124942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Pickering emulsions represent a promising avenue in the field of controlled drug delivery systems. Recently, cellulose nanofibers (CNFs) and chitosan nanofibers (ChNFs) have gained interest as eco-friendly stabilizers for Pickering emulsions, yet their application in pH-responsive drug delivery systems remains unexplored. However, the potential of these biopolymer complexes in formulating stable, pH-responsive emulsions for controlled drug release is of significant interest. Here, we show the development of a highly stable, pH-responsive fish oil-in-water Pickering emulsion stabilized by ChNF/CNF complexes, with optimal stability achieved at a 0.2 wt% ChNF concentration and an average emulsion particle size of approximately 4 μm. Our results demonstrate long-term stability (16 days of storage) for ChNF/CNF-stabilized emulsions, with the interfacial membrane's pH modulation facilitating controlled, sustained ibuprofen (IBU) release. Furthermore, we observed a remarkable release of approximately 95 % of the embedded IBU within the pH range of 5-9, while the drug loading and encapsulation efficiency of the drug-loaded microspheres reached their peak at a 1 % IBU dosage, with values of 1 % and 87 %, respectively. This study highlights the potential of using ChNF/CNF complexes in designing versatile, stable, and entirely renewable Pickering systems for controlled drug delivery, with potential applications in food and eco-friendly products.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Huatai Group Corp. Ltd., Dongying, Shandong Province 257335, China.
| |
Collapse
|
10
|
Li X, Liu Y, Chen F, Liu L, Fan Y. Facile modification of nanochitin in aqueous media for stabilizing tea tree oil based Pickering emulsion with prolonged antibacterial performance. Int J Biol Macromol 2023; 242:124873. [PMID: 37196712 DOI: 10.1016/j.ijbiomac.2023.124873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Nanochitins have been explored for preparing Pickering Emulsions, however its application is restricted by its simplex disperse nature. It was hypothesized that zwitterionic nanochitins should be capable of stabilizing oil/water (O/W) interfaces in wider pH range. Furthermore, the control of their size, disperse nature and self-assembly performance suggest the formulation of tunable emulsions. Zwitterionic nanochitins were prepared via Schiff base reaction. A systematic study was performed analyzing the disperse nature, fibril morphology, surface characteristic of modified nanochitins. Oil-in-Water Pickering Emulsions stabilized by modified nanochitins were formulated and emulsion stability was analyzed as function of concentration, pH and self-assembly property and further applied for prolonged antibacterial applications. Comparing freshly prepared nanochitins, neutral/alkaline stably dispersed nanochitins can be prepared while maintaining fibril characteristics such as fibril size, crystallinity, thermal stability and so on. Better suspension stability of modified nanochitins under alkaline conditon together with the self assembly performance resulting from amino groups and carboxyl groups benefit the enhanced emulsion stability under nanochitins concentreation of 0.2 %. Encapsulation of tea tree oil in Pickering Emulsions prolongs the diffusion rate oil in the aqueous environment, thus resulting prolongs its antibacterial performance against E. coli and B. subtilis.
Collapse
Affiliation(s)
- Xinxia Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Ying Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Feier Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
11
|
He X, Wang B, Xue Y, Li Y, Hu M, He X, Chen J, Meng Y. Effects of high acyl gellan gum on the rheological properties, stability, and salt ion stress of sodium caseinate emulsion. Int J Biol Macromol 2023; 234:123675. [PMID: 36801230 DOI: 10.1016/j.ijbiomac.2023.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Sodium caseinate (SC) is widely used as a biological macromolecular emulsifier in oil-in-water (O/W) emulsions. However, the SC-stabilized emulsions were unstable. High-acyl gellan gum (HA) is an anionic macromolecular polysaccharide that improves emulsion stability. This study aimed to investigate the effects of HA addition on the stability and rheological properties of SC-stabilized emulsions. Study results revealed that HA concentrations >0.1 % could increase Turbiscan stability, reduce the volume average particle size, and increase the zeta-potential absolute value of the SC-stabilized emulsions. In addition, HA increased the triple-phase contact angle of SC, transformed SC-stabilized emulsions into non-Newtonian fluids, and effectively inhibited the movement of emulsion droplets. The effect of 0.125 % HA concentration was the most effective, allowing SC-stabilized emulsions to maintain good kinetic stability over a 30-d period. NaCl destabilized SC-stabilized emulsions but had no significant effect on HA-SC emulsions. In summary, HA concentration had a significant effect on the stability of SC-stabilized emulsions. HA altered the rheological properties and reduced creaming and coalescence by forming a three-dimensional network structure, increasing the electrostatic repulsion of the emulsion and the adsorption capacity of SC at the oil-water interface, and thereby improving the stability of SC-stabilized emulsions during storage and in the presence of NaCl.
Collapse
Affiliation(s)
- Xingfen He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Yuhang Xue
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yanhua Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Mingxiang Hu
- Zhejiang Tech-way Biotechnology Co., Ltd., Shaoxing 311811, People's Republic of China
| | - Xingwang He
- Zhejiang Tech-way Biotechnology Co., Ltd., Shaoxing 311811, People's Republic of China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Yuecheng Meng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
12
|
Chomchoey S, Klongdee S, Peanparkdee M, Klinkesorn U. Fabrication and characterization of nanoemulsions for encapsulation and delivery of vitexin: antioxidant activity, storage stability and in vitro digestibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2532-2543. [PMID: 36478565 DOI: 10.1002/jsfa.12375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nanoemulsions were prepared as an encapsulation and delivery system for vitexin, a poorly water-soluble antioxidant. This study evaluated how the type and concentration of the dispersed oil phase and vitexin loading impacted droplet characteristics and nanoemulsion stability. The influences of storage temperature on antioxidant activity and in vitro gastrointestinal digestion on nanoemulsion stability were also investigated. RESULTS Nanoemulsions prepared at different dispersed oil concentrations showed diverse characteristics and stability. Highest stability against droplet aggregation and phase separation with small oil droplets (< 150 nm) was observed for nanoemulsions prepared using 300 g kg-1 medium-chain triglyceride oil. These nanoemulsions are able to entrap and deliver vitexin with high encapsulation efficiency (88-90%) with no significant effect on emulsion stability. Vitexin-loaded nanoemulsions were stable during storage when refrigerated (4 °C) and at room temperature (25 °C) for up to 45 days with no effect on their antioxidant activity. Significantly delayed lipolysis rate and decreased extent of lipid digestion were observed in vitexin-loaded nanoemulsions. CONCLUSIONS Stable vitexin-loaded nanoemulsions were successfully produced by high-pressure homogenization using a mixture of Tween 80 and lecithin as emulsifiers. Vitexin-loaded nanoemulsions stabilized with a mixture of these two emulsifiers were effective in retaining antioxidant activity during storage and protecting vitexin from changes during gastrointestinal digestion. Our results suggested that nanoemulsions were effective vitexin delivery systems for food applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sornsawan Chomchoey
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Supakchon Klongdee
- Department of Food Processing and Preservation, Institute of Food Research and Product Development, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Methavee Peanparkdee
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Utai Klinkesorn
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
13
|
Development of Stable Pickering Emulsions with TEMPO-Oxidized Chitin Nanocrystals for Encapsulation of Quercetin. Foods 2023; 12:foods12020367. [PMID: 36673458 PMCID: PMC9857725 DOI: 10.3390/foods12020367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Pickering emulsions stabilized by TEMPO-oxidized chitin nanocrystals (T-ChNCs) were developed for quercetin delivery. T-ChNCs were synthesized by TEMPO oxidation chitin and systematically characterized in terms of their physicochemical properties. T-ChNCs were rod-like with a length of 279.7 ± 11.5 nm and zeta potential around -56.1 ± 1.6 mV. The Pickering emulsions were analyzed through an optical microscope and CLSM. The results showed that the emulsion had a small droplet size (972.9 ± 86.0 to 1322.3 ± 447.7 nm), a high absolute zeta potential value (-48.2 ± 0.8 to -52.9 ± 1.9 mV) and a high encapsulation efficiency (quercetin: 79.6%). The emulsion stability was measured at different levels of T-ChNCs and pH values. The droplet size and zeta potential decreased with longer storage periods. The emulsions formed by T-ChNCs retarded the release of quercetin at half rate of that of the quercetin ethanol solution. These findings indicated that T-ChNCs are a promising candidate for effectively stabilizing Pickering emulsions and controlling release of quercetin.
Collapse
|
14
|
Nanochitin: An update review on advances in preparation methods and food applications. Carbohydr Polym 2022; 291:119627. [DOI: 10.1016/j.carbpol.2022.119627] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
|
15
|
Impact of Oil Phase Solubility on Droplet Ripening when Nanoemulsions are Mixed with Emulsions. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Cao X, Xiong C, Zhao X, Yang S, Wen Q, Tang H, Zeng Q, Feng Y, Li J. Tuning self-assembly of amphiphilic sodium alginate-decorated selenium nanoparticle surfactants for antioxidant Pickering emulsion. Int J Biol Macromol 2022; 210:600-613. [PMID: 35513095 DOI: 10.1016/j.ijbiomac.2022.04.214] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Delivering effectively zero-valent selenium nanoparticles (SeNPs) and develop its functions in more fields is still a challenge. Herein, a novel template for the preparation and stabilization of SeNP-based surfactants was developed, amphiphilic sodium alginate (APSA), which can self-assemble into micelles in an aqueous solution. Primarily, physicochemical properties of SeNPs stabilized by APSA with different molecular weights were compared and the interaction mechanism of APSA/SeNPs was investigated. Moreover, a functional Pickering emulsion (PE) was presented using the SeNP-based surfactants. Results showed that high molecular weight-stabilized SeNPs had small particle size (54.72 nm) and great stability due to the hydrogen bonding between Se atoms and APSA. The "soft" particle-decorated SeNPs with interface activity formed a dense interfacial layer on the oil-water interface, which exhibited excellent antioxidant properties. The contents of lipid hydrogen peroxide (LH) and malondialdehyde (MDA) were significantly reduced by 88.7% and 63.4%. Overall, SeNPs stabilized by APSA have great application potential as an emulsifier and antioxidant in industrial field.
Collapse
Affiliation(s)
- Xinyu Cao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Chuang Xiong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qiyan Wen
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Haiyun Tang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qu Zeng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
17
|
Klojdová I, Stathopoulos C. The Potential Application of Pickering Multiple Emulsions in Food. Foods 2022; 11:foods11111558. [PMID: 35681307 PMCID: PMC9180460 DOI: 10.3390/foods11111558] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Emulsions stabilized by adsorbed particles—Pickering particles (PPs) instead of surfactants and emulsifiers are called Pickering emulsions. Here, we review the possible uses of Pickering multiple emulsions (PMEs) in the food industry. Food-grade PMEs are very complex systems with high potential for application in food technology. They can be prepared by traditional two-step emulsification processes but also using complex techniques, e.g., microfluidic devices. Compared to those stabilized with an emulsifier, PMEs provide more benefits such as lower susceptibility to coalescence, possible encapsulation of functional compounds in PMEs or even PPs with controlled release, etc. Additionally, the PPs can be made from food-grade by-products. Naturally, w/o/w emulsions in the Pickering form can also provide benefits such as fat reduction by partial replacement of fat phase with internal water phase and encapsulation of sensitive compounds in the internal water phase. A possible advanced type of PMEs may be stabilized by Janus particles, which can change their physicochemical properties and control properties of the whole emulsion systems. These emulsions have big potential as biosensors. In this paper, recent advances in the application of PPs in food emulsions are highlighted with emphasis on the potential application in food-grade PMEs.
Collapse
|
18
|
High yield production of chitin nanocrystals via hydrochloric acid vapor pre-treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Sun S, Deng Y, Sun F, Mao Z, Feng X, Sui X, Liu F, Zhou X, Wang B. Engineering regenerated nanosilk to efficiently stabilize pickering emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Wei Y, Wang C, Liu X, Mackie A, Zhang M, Dai L, Liu J, Mao L, Yuan F, Gao Y. Co-encapsulation of curcumin and β-carotene in Pickering emulsions stabilized by complex nanoparticles: Effects of microfluidization and thermal treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107064] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
DENG W, LI Y, WU L, CHEN S. Pickering emulsions stabilized by polysaccharides particles and their applications: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.24722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Wei DENG
- Fujian Agriculture and Forestry University, China
| | - Yibin LI
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Li WU
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | | |
Collapse
|
22
|
Valoppi F, Agustin M, Abik F, Morais de Carvalho D, Sithole J, Bhattarai M, Varis JJ, Arzami ANAB, Pulkkinen E, Mikkonen KS. Insight on Current Advances in Food Science and Technology for Feeding the World Population. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.626227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While the world population is steadily increasing, the capacity of Earth to renew its resources is continuously declining. Consequently, the bioresources required for food production are diminishing and new approaches are needed to feed the current and future global population. In the last decades, scientists have developed novel strategies to reduce food loss and waste, improve food production, and find new ingredients, design and build new food structures, and introduce digitalization in the food system. In this work, we provide a general overview on circular economy, alternative technologies for food production such as cellular agriculture, and new sources of ingredients like microalgae, insects, and wood-derived fibers. We present a summary of the whole process of food design using creative problem-solving that fosters food innovation, and digitalization in the food sector such as artificial intelligence, augmented and virtual reality, and blockchain technology. Finally, we briefly discuss the effect of COVID-19 on the food system. This review has been written for a broad audience, covering a wide spectrum and giving insights on the most recent advances in the food science and technology area, presenting examples from both academic and industrial sides, in terms of concepts, technologies, and tools which will possibly help the world to achieve food security in the next 30 years.
Collapse
|
23
|
Huang Y, Sun Y, Liu H. Fabrication of chitin nanofiber-PDMS composite aerogels from Pickering emulsion templates with potential application in hydrophobic organic contaminant removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126475. [PMID: 34323711 DOI: 10.1016/j.jhazmat.2021.126475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Natural polymers have aroused increasing attention in water treatment but their application in removing hydrophobic organic contaminants (HOCs) was limited due to their hydrophilicity. Herein, hydrophobic aerogels were successfully fabricated from Pickering emulsions stabilized by chitin nanofibers (ChNF) with polydimethylsiloxane (PDMS) as dispersed phase and glutaraldehyde as a crosslinking agent, and their performance in HOCs removal were evaluated. The Pickering emulsions with PDMS ratios of 2.5-20% v/v showed high stability, demonstrating great potential as aerogel templates. The solidified PDMS droplets were evenly distributed within the matrix, contributing to homogeneous and permanent hydrophobicity. The composite aerogels with water contact angles of over 130° could selectively remove non-aqueous phase HOCs from water. The CCl4 adsorption capacity was 521-2820 wt%, depending on PDMS contents. Meanwhile, the mechanical resilience of the composite aerogels was significantly improved, facilitating the adsorbent regeneration by simple mechanical squeezing. The adsorption capacity remained above 85% for 24 cycles. Moreover, the aerogels could also remove dissolved HOCs from water with a maximum adsorption capacity of 1.34 mg/g for 10 mg/L TCE. This work reveals the potential of Pickering emulsions in the fabrication of composite hydrophobic materials from natural biopolymers with promising application in HOCs related water treatment.
Collapse
Affiliation(s)
- Yao Huang
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
| | - Yunfang Sun
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
| | - Hui Liu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
24
|
Cui F, Zhao S, Guan X, McClements DJ, Liu X, Liu F, Ngai T. Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106812] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Baraki SY, Liu L, Li X, Debeli DK, Wang B, Feng X, Mao Z, Sui X. Re-dispersible dry sunflower oil emulsions enabled by regenerated chitin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Bertsch P, Bergfreund J, Windhab EJ, Fischer P. Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomater 2021; 130:32-53. [PMID: 34077806 DOI: 10.1016/j.actbio.2021.05.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Fluid interfaces, i.e. the boundary layer of two liquids or a liquid and a gas, play a vital role in physiological processes as diverse as visual perception, oral health and taste, lipid metabolism, and pulmonary breathing. These fluid interfaces exhibit a complex composition, structure, and rheology tailored to their individual physiological functions. Advances in interfacial thin film techniques have facilitated the analysis of such complex interfaces under physiologically relevant conditions. This allowed new insights on the origin of their physiological functionality, how deviations may cause disease, and has revealed new therapy strategies. Furthermore, the interactions of physiological fluid interfaces with exogenous substances is crucial for understanding certain disorders and exploiting drug delivery routes to or across fluid interfaces. Here, we provide an overview on fluid interfaces with physiological relevance, namely tear films, interfacial aspects of saliva, lipid droplet digestion and storage in the cell, and the functioning of lung surfactant. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe therapies and drug delivery approaches targeted at fluid interfaces. STATEMENT OF SIGNIFICANCE: Fluid interfaces are inherent to all living organisms and play a vital role in various physiological processes. Examples are the eye tear film, saliva, lipid digestion & storage in cells, and pulmonary breathing. These fluid interfaces exhibit complex interfacial compositions and structures to meet their specific physiological function. We provide an overview on physiological fluid interfaces with a focus on interfacial phenomena. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe novel therapies and drug delivery approaches targeted at fluid interfaces. This sets the scene for ocular, oral, or pulmonary surface engineering and drug delivery approaches.
Collapse
|
27
|
Murray BS, Ettelaie R, Sarkar A, Mackie AR, Dickinson E. The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Pickering emulsions as a platform for structures design: cutting-edge strategies to engineer digestibility. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Baraki SY, Jiang Y, Li X, Debeli DK, Wang B, Feng X, Mao Z, Sui X. Stable sunflower oil oleogel from oil/water pickering emulsion with regenerated chitin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Zhou H, Dai T, Liu J, Tan Y, Bai L, Rojas OJ, McClements DJ. Chitin nanocrystals reduce lipid digestion and β-carotene bioaccessibility: An in-vitro INFOGEST gastrointestinal study. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106494] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
In vitro gastrointestinal digestion and fermentation properties of Ganoderma lucidum spore powders and their extracts. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Huang Y, Liu H, Liu S, Li S. Cinnamon Cassia Oil Emulsions Stabilized by Chitin Nanofibrils: Physicochemical Properties and Antibacterial Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14620-14631. [PMID: 33226223 DOI: 10.1021/acs.jafc.0c03971] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nowadays consumers are increasingly demanding food with fewer synthetic preservatives, which makes antimicrobial essential oils (EOs) from plants promising alternatives. In this work, surfactant-free emulsions were successfully fabricated from Cinnamon cassia oil (C. cassia oil) with partially deacetylated chitin nanofiber (ChNF) adopted as a Pickering stabilizer. The storage stability and microstructures of the emulsions with different concentrations of ChNF were studied in detail. As ChNF concentration increased, the emulsion droplet size decreased while the emulsion stability increased with stable periods as long as 90 days. This could be attributed to the Pickering stabilization realized by irreversible adsorption of the ChNF at the oil-water interface (revealed by fluorescent microscopy) and subsequent formation of an interdroplet ChNF network in the continuous phase, which was further strengthened in the presence of the aldehyde moiety in the C. cassia oil (verified by FTIR spectra). The rheological data and SEM images provided further evidence for network formation in the emulsions with increased ChNF concentration. Furthermore, the antimicrobial activity of the emulsion against Escherichia coli and the release patterns of EOs from emulsions were also investigated. The emulsions showed prolonged antibacterial activities but enhanced diffusion efficiency with the introduction of ChNF, which turned out to be a good encapsulation system for the controlled release of EOs. This work evidences the promising advantages of ChNF-stabilized Pickering emulsions as a facile EOs delivery system for application in food preservation and related fields.
Collapse
Affiliation(s)
- Yao Huang
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
| | - Hui Liu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shan Liu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
| | - Sheng Li
- Hubei Gedian Humanwell Pharmaceutical Excipients Company, Limited, Ezhou 436070, China
| |
Collapse
|
33
|
Nanochitin-stabilized pickering emulsions: Influence of nanochitin on lipid digestibility and vitamin bioaccessibility. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105878] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Influence of interfacial compositions on the microstructure, physiochemical stability, lipid digestion and β-carotene bioaccessibility of Pickering emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105738] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Hong S, Yuan Y, Zhang K, Lian H, Liimatainen H. Efficient Hydrolysis of Chitin in a Deep Eutectic Solvent Synergism for Production of Chitin Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E869. [PMID: 32365931 PMCID: PMC7279284 DOI: 10.3390/nano10050869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
A deep eutectic solvent (DES) derived from ferric chloride hexahydrate and betaine chloride (molar ratio of 1:1) was used as hydrolytic media for production of chitin nanocrystals (ChNCs) with a high yield (up to 88.5%). The synergistic effect of Lewis acid and released Brønsted acid from betaine hydrochloride enabled the efficient hydrolysis of chitin for production of ChNCs coupled with ultrasonication with low energy consumption. The obtained ChNCs were with an average diameter of 10 nm and length of 268 nm, and a crystallinity of 89.2% with optimal synthesis conditions (at 100 °C for 1 h with chitin-to-DES mass ratio of 1:20). The ChNCs were further investigated as efficient emulsion stabilizers, and they resulted in stable o/w emulsions even at a high oil content of 50% with a low ChNC dosage of 1 mg/g. Therefore, a potential approach based on a DES on the production of chitin-based nanoparticles as emulsifiers is introduced.
Collapse
Affiliation(s)
- Shu Hong
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland; (Y.Y.); (K.Z.)
| | - Yang Yuan
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland; (Y.Y.); (K.Z.)
| | - Kaitao Zhang
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland; (Y.Y.); (K.Z.)
| | - Hailan Lian
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Henrikki Liimatainen
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland; (Y.Y.); (K.Z.)
| |
Collapse
|
36
|
Wei Y, Tong Z, Dai L, Ma P, Zhang M, Liu J, Mao L, Yuan F, Gao Y. Novel colloidal particles and natural small molecular surfactants co-stabilized Pickering emulsions with hierarchical interfacial structure: Enhanced stability and controllable lipolysis. J Colloid Interface Sci 2020; 563:291-307. [DOI: 10.1016/j.jcis.2019.12.085] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022]
|
37
|
Zhang X, Liu Y, Wang Y, Luo X, Li Y, Li B, Wang J, Liu S. Surface modification of cellulose nanofibrils with protein nanoparticles for enhancing the stabilization of O/W pickering emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105180] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Munyazesa FX, Zhang Y, Wang B, Wang C, Feng X, Mao Z, Chen Y, Sui X. Pickering emulsion process assisted construction of regenerated chitin reinforced poly (lactic acid) blends. Int J Biol Macromol 2019; 140:10-16. [DOI: 10.1016/j.ijbiomac.2019.08.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 11/28/2022]
|
39
|
|
40
|
Wang Q, Li W, Liu P, Hu Z, Qin X, Liu G. A glycated whey protein isolate–epigallocatechin gallate nanocomplex enhances the stability of emulsion delivery of β-carotene during simulated digestion. Food Funct 2019; 10:6829-6839. [DOI: 10.1039/c9fo01605h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A glycated whey protein isolate–epigallocatechin gallate (EGCG) nanocomplex-stabilized emulsion was used to encapsulate β-carotene.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Wanrong Li
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Pei Liu
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Zhongze Hu
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Xinguang Qin
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Gang Liu
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| |
Collapse
|