1
|
Liu L, Li Y, Jian C, Guo R, Wang Q. Regulation of apocarotenoids for quality improvement and biofortification of horticultural crops. J Adv Res 2025:S2090-1232(25)00281-4. [PMID: 40320168 DOI: 10.1016/j.jare.2025.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Agro-food production and consumption impact climate change and human health. Bioactive secondary metabolites in horticulture crops make them an indispensable part of environmentally sustainable and healthy diet. Among them, apocarotenoids from carotenoid degradation are promising in promoting a preference for plant-based foods over other metabolites. AIM OF REVIEW In horticulture crops, carotenoids are vital for photosynthesis and antioxidant defense, but their enzymatic or oxidative metabolites, apocarotenoids, offer greater structural diversity and biological functions. They serve as pigments, scents, signaling molecules, and growth regulators in crop growth and development and provide antioxidant, nutraceutical, and pharmaceutical benefits to human health. The carotenoids as bioactive compounds are well understood. By contrast, much less is explored and reviewed about apocarotenoids. KEY SCIENTIFIC CONCEPTS OF REVIEW Recently identified metabolic pathways and components of apocarotenoids are reviewed. Their significance for quality formation in horticulture crops, including the regulation of pigmentation, aroma, flavor, architecture, nutrition value, and broader ecological interactions is discussed. Additionally, this review specifically highlights two representative apocarotenoids, retinal and abscisic acid (ABA), that exhibit conserved yet distinct regulatory functions across plant and animal kingdoms. Comprehensive dissection of apocarotenoid metabolism and their regulatory mechanisms will enhance apocarotenoid biofortification and subsequent biotechnological exploitation in horticultural commodities. We put forward the perspective that apocarotenoids could enhance horticultural crop quality and then promote sensory- and health-driven dietary choices which will in turn increase consumption and production of horticultural plants and promote both human and ecosystem health.
Collapse
Affiliation(s)
- Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Yuening Li
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Chunxia Jian
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Rongfang Guo
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Ren C, Zhao M, Xue T, Geng T, Nie X, Han C, Wen Y, Jia L. Metagenomic and Physicochemical Analyses Reveal Microbial Community and Functional Differences Between Three Different Grades of Hongxin Low-Temperature Daqu. Foods 2025; 14:1104. [PMID: 40238191 PMCID: PMC11988444 DOI: 10.3390/foods14071104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Hongxin (HX) is an indispensable Daqu in the production of light-flavor Baijiu (LFB). However, the classification method of HX is highly subjective, and the classification and functional differences in microorganisms in different grades of HX are still unclear. In this study, metagenomics and physiochemical analysis were used to compare three grades of HX (top, first, second) and clarify their brewing functions in LFB. The results showed that a total of 1556 genera and 5367 species were detected in all samples. Bacteria and fungi are the main microorganisms in HX, and the relative abundance of bacteria and fungi is above 4.5:1. Kroppenstedtia (11.43%), Leuconostoc (10.52%), Fructilactobacillus (9.00%) were the top three genera in HX. Although the microbial community composition of the three grades of HX is highly similar, each HX has a specific microbial community structure and macrogene functional characteristics, indicating that they have different brewing functions. The dominant microorganisms in top-grade HX and first-grade HX were mainly positively correlated with energy metabolism and lipid metabolism, while the dominant microorganisms in second-grade HX were mainly positively correlated with carbohydrate metabolism and amino acid metabolism. This study revealed the different fermentation effects of different grades of HX in LFB and provided suggestions for the scientific classification and quality control of HX.
Collapse
Affiliation(s)
- Chao Ren
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Mengke Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Tinghui Xue
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Tianpei Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Xiao Nie
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Chaoyue Han
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Yuge Wen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| |
Collapse
|
3
|
Hao C, Hu K, Xie J, Tong X, Zhang X, Qi Z, Tang S. Recent Advancements in the Biomanufacturing of Crocetin and Crocins: Key Enzymes and Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6400-6415. [PMID: 40056449 DOI: 10.1021/acs.jafc.4c12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Crocetin and crocins are high-value apocarotenoids recognized for their role as food colorants as well as for their numerous industrial and therapeutic applications. Biotechnological platforms have the potential to replace traditional plant-based extraction of these compounds with a more sustainable approach. This review first introduced the catalytic characteristics of key enzymes involved in the biosynthetic pathway of crocetin and crocins, including carotenoid cleavage dioxygenases, aldehyde dehydrogenases, and uridine diphosphate glycosyltransferases. Next, we highlighted advanced metabolic engineering strategies aimed at enhancing crocetin and crocin production, such as increasing the pool of precursors and cofactors, protein mining and engineering, tuning protein expression, biosensor, genomic integration, and process optimization. Finally, the paper proposed potential strategies and tools associated with further boosting the heterologous production of crocetin and crocins to meet commercial-scale demands.
Collapse
Affiliation(s)
- Chengpeng Hao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Kefa Hu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, China
| | - Xinyi Tong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaomeng Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhipeng Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Shaoheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| |
Collapse
|
4
|
Lee Y, Hwang CY, Cho ES, Seo MJ. Water-soluble carotenoid: focused on natural carotenoid crocin. Food Sci Biotechnol 2025; 34:1119-1138. [PMID: 40093551 PMCID: PMC11904046 DOI: 10.1007/s10068-025-01832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Carotenoids are natural isoprenoid compounds with diverse health benefits, widely used in food, cosmetics, and pharmaceuticals. However, low bioavailability and chemical instability limit their effect according to their fat-soluble property. Some strategies such as nanoencapsulation, emulsions, complexation, and glycosylation have been explored to enhance carotenoid bioavailability. In addition, there is growing interest in water-soluble carotenoids in nature. This review focuses on recent advancements in improving the water solubility of carotenoids, with special attention to naturally occurring water-soluble carotenoids like crocin. Research progress on the biosynthetic pathways of crocin derived from natural plants is summarized. In addition, heterologous production using genetic and metabolic engineering in plants and microorganisms is discussed, along with its potential applications in bio-industries. Finally, the promising pharmacological properties of crocin, including antioxidant, anti-inflammatory and anticancer effects, are presented. The sustainable production of water-soluble carotenoids through biological synthesis offers a potential for improved absorption and functionality.
Collapse
Affiliation(s)
- Yosub Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|
5
|
Wang X, Zhuhuang C, He Y, Zhang X, Wang Y, Ni Q, Zhang Y, Xu G. Selective transformation of crocin-1 to crocetin-glucosyl esters by β-glucosidase (Lf18920) from Leifsonia sp. ZF2019: Insights from molecular docking and point mutations. Enzyme Microb Technol 2024; 181:110522. [PMID: 39378560 DOI: 10.1016/j.enzmictec.2024.110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Crocetin di/mono-glucosyl esters (crocin-4 and crocin-5) are rarely distributed in nature, limiting their potential applications in the food and pharmaceutical industries. In the present study, a novel GH3 family β-glucosidase Lf18920 was identified from Leifsonia sp. ZF2019, which selectively hydrolyzed crocin-1 (crocetin di-gentiobiosyl ester) to crocin-5 and crocin-4, but not to its aglycone, crocetin. Under the optimal condition of 40 °C and pH 6.0 for 120 min, Lf18920 almost completely hydrolyzed crocin-1, yielding 73.50±5.66 % crocin-4 and 16.19±1.38 % crocin-5. Molecular docking and point mutation studies revealed that Lf18920 formed a narrow binding channel that facilitated crocin-1 binding. Five single amino acid variants (D50A, D53A, W274A, G420A, and Q421A) were constructed, all of which showed reduced hydrolytic activity. Mutations at D50 and D53, located distal to the active site, increased binding energy and decreased hydrolytic activity, while mutations at W274, G420, and Q421, proximal to the active site, disrupted hydrolytic function. These findings suggest that the narrow binding channel and specific enzyme-substrate interactions are crucial for Lf18920's selective hydrolytic activity. Overall, this study is the first to report a β-glucosidase capable of selectively transforming crocin-1 to crocetin di/mono-glucosyl esters, offering potential for synthesizing crocin-4 and crocin-5.
Collapse
Affiliation(s)
- Xi Wang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Chenzhi Zhuhuang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Yi He
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Xiaolong Zhang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Yan Wang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Qinxue Ni
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China.
| | - Youzuo Zhang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Guangzhi Xu
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China.
| |
Collapse
|
6
|
Xu G, Xu P, Wang N, Qi W, Pu Y, Kang N, Chu J, He B. Rare crocins ameliorate thrombus in zebrafish larvae by regulating lipid accumulation and clotting factors. Fitoterapia 2024; 179:106278. [PMID: 39471880 DOI: 10.1016/j.fitote.2024.106278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Crocin-4 is a water-soluble carotenoid that exhibits cardiovascular protection effects through anti-inflammatory and antioxidant effects. However, the pharmacodynamic effects and mechanisms of its analogues crocin-1 and crocin-2' have not been reported. In this study, we evaluated the protective effects of rare crocins on cardiovascular systems. In ox-LDL induced HUVECs model, 0.02, 0.1, 0.5, 1, 2, 3, 4, 5, 6 μg/mL crocin-1 and crocin-2' can increase cell viability by up to 80 %. Meanwhile, rare crocins at concentrations between 25-100 μg/mL crocin-1 and crocin-2' reduced the lipid accumulation by 30 % in cholesterol-induced zebrafish larvae. What's more, the therapeutic potential of rare crocins on thrombosis has also been explored. In vitro experiments, rare crocin-1 and crocin-2' at concentrations of 0.02, 0.05, 0.2, 0.5, 1, 2, 5, 10 μg/mL protected Human Umbilical Vein Endothelial Cells (HUVECs) against lipopolysaccharides-induced oxidative stress and inflammation. In vivo studies revealed that rare crocins at concentrations of 25, 50, 100, 150, 200, and 300 μg/mL exerted significant antithrombotic effect on arachidonic acid (AA)-induced zebrafish and there was nearly no potential risk for the deformity of zebrafish at 300 μg/mL dosages. In brief, rare crocins was viewed as a potentially useful candidate for the treatment of cardiovascular diseases because of its anti-inflammatory, antioxidant, and anticoagulant properties.
Collapse
Affiliation(s)
- Guo Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Penghong Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Nan Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weimin Qi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuxuan Pu
- 2011college, Nanjing Tech University, Nanjing 211816, China
| | - Nannan Kang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jianlin Chu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Xu S, Hong L, Wu T, Liu X, Ding Z, Liu L, Shao Q, Zheng Y, Xing B. Insight into saffron associated microbiota from different origins and explore the endophytes for enhancement of bioactive compounds. Food Chem 2024; 456:140006. [PMID: 38870814 DOI: 10.1016/j.foodchem.2024.140006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Crocus sativus L. is a perennial crop for its valuable active compounds. Plant-associated microbes impact on the quality and efficacy of medicinal herbs by promoting bioactive components accumulation. However, how microbes influence the accumulation of bioactive components in saffron have not been well studied. Here, the microbiome in C. sativus derived from 3 core production areas were deciphered by 16S rDNA sequencing and the relationship between endophytes and bioactive ingredients were further investigated. The main results are as follows: (1) Both Comamonadaceae and Burkholderiaceae were positively correlated with the content of bioactive components in the stigmas. (2) The synthesis of crocin was positively correlated with Xanthomonadaceae, negatively correlated with Lachnospiraceae and Prevotellaceae. Therefore, further investigation is required to determine whether Xanthomonadaceae plays an unknown function in the synthesis of crocin. These findings provide guidelines for disentangling the function of endophytes in the production of bioactive ingredients and thus for microbe-mediated breeding.
Collapse
Affiliation(s)
- Sirui Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Liang Hong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Xinting Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Zihan Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Li Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Ying Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China.
| | - Bingcong Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China.
| |
Collapse
|
8
|
Li S, Zhou Z, Li Y, Hu Y, Huang Z, Hu G, Wang Y, Wang X, Lou Q, Gao L, Shen C, Gao R, Xu Z, Song J, Pu X. Construction of a high-efficiency GjCCD4a mutant and its application for de novo biosynthesis of five crocins in Escherichia coli. Int J Biol Macromol 2024; 277:133985. [PMID: 39033887 DOI: 10.1016/j.ijbiomac.2024.133985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Crocins are bioactive natural products that rarely exist in plants. High costs and resource shortage severely limit its development and application. Synthetic biology studies on crocins are of considerable global interest. However, the lack of high-efficiency genetic tools and complex cascade biocatalytic systems have substantially hindered progress in crocin biosynthesis-related research. Based on mutagenesis, a high-efficiency GjCCD4a mutant (N212m) was constructed with a catalytic efficiency that was 25.08-fold higher than that of the wild-type. Solubilized GjCCD4a was expressed via fusion with an MBP tag. Moreover, N212m and ten other genes were introduced into Escherichia coli for the de novo biosynthesis of five crocins. The engineered E57 strain produced crocins III and V with a total yield of 11.50 mg/L, and the E579 strain produced crocins I-V with a total output of 8.43 mg/L at shake-flask level. This study identified a marvelous genetic element (N212m) for crocin biosynthesis and achieved its de novo biosynthesis in E. coli using glucose. This study provides a reference for the large-scale production of five crocins using E. coli cell factories.
Collapse
Affiliation(s)
- Siqi Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yufang Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ziyi Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ge Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ying Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xu Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qian Lou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Longlong Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chuanpu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ranran Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiangdong Pu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
9
|
Hua Z, Liu N, Yan X. Research progress on the pharmacological activity, biosynthetic pathways, and biosynthesis of crocins. Beilstein J Org Chem 2024; 20:741-752. [PMID: 38633914 PMCID: PMC11022409 DOI: 10.3762/bjoc.20.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Crocins are water-soluble apocarotenoids isolated from the flowers of crocus and gardenia. They exhibit various pharmacological effects, including neuroprotection, anti-inflammatory properties, hepatorenal protection, and anticancer activity. They are often used as coloring and seasoning agents. Due to the limited content of crocins in plants and the high cost of chemical synthesis, the supply of crocins is insufficient to meet current demand. The biosynthetic pathways for crocins have been elucidated to date, which allows the heterologous production of these valuable compounds in microorganisms by fermentation. This review article provides a comprehensive overview of the chemistry, pharmacological activity, biosynthetic pathways, and heterologous production of crocins, aiming to lay the foundation for the large-scale production of these valuable natural products by using engineered microbial cell factories.
Collapse
Affiliation(s)
- Zhongwei Hua
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
10
|
Lee JH, Lee SR, Lee SY, Lee PC. Complete microbial synthesis of crocetin and crocins from glycerol in Escherichia coli. Microb Cell Fact 2024; 23:10. [PMID: 38178149 PMCID: PMC10765794 DOI: 10.1186/s12934-023-02287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Crocin, a glycosylated apocarotenoid pigment predominantly found in saffron, has garnered significant interest in the field of biotechnology for its bioactive properties. Traditional production of crocins and their aglycone, crocetin, typically involves extraction from crocin-producing plants. This study aimed to develop an alternative biosynthetic method for these compounds by engineering the metabolic pathways of zeaxanthin, crocetin, and crocin in Escherichia coli strains. RESULTS Employing a series of genetic modifications and the strategic overexpression of key enzymes, we successfully established a complete microbial pathway for synthesizing crocetin and four glycosylated derivatives of crocetin, utilizing glycerol as the primary carbon source. The overexpression of zeaxanthin cleavage dioxygenase and a novel variant of crocetin dialdehyde dehydrogenase resulted in a notable yield of crocetin (34.77 ± 1.03 mg/L). Further optimization involved the overexpression of new types of crocetin and crocin-2 glycosyltransferases, facilitating the production of crocin-1 (6.29 ± 0.19 mg/L), crocin-2 (5.29 ± 0.24 mg/L), crocin-3 (1.48 ± 0.10 mg/L), and crocin-4 (2.72 ± 0.13 mg/L). CONCLUSIONS This investigation introduces a pioneering and integrated microbial synthesis method for generating crocin and its derivatives, employing glycerol as a sustainable carbon feedstock. The substantial yields achieved highlight the commercial potential of microbial-derived crocins as an eco-friendly alternative to plant extraction methods. The development of these microbial processes not only broadens the scope for crocin production but also suggests significant implications for the exploitation of bioengineered compounds in pharmaceutical and food industries.
Collapse
Affiliation(s)
- Jun Ho Lee
- Department of Molecular Science and Technology, Department of Applied Chemical and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Seong-Rae Lee
- Department of Molecular Science and Technology, Department of Applied Chemical and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Department of Applied Chemical and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
11
|
Zhou J, Huang D, Liu C, Hu Z, Li H, Lou S. Research Progress in Heterologous Crocin Production. Mar Drugs 2023; 22:22. [PMID: 38248646 PMCID: PMC10820313 DOI: 10.3390/md22010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Crocin is one of the most valuable components of the Chinese medicinal plant Crocus sativus and is widely used in the food, cosmetics, and pharmaceutical industries. Traditional planting of C. sativus is unable to fulfill the increasing demand for crocin in the global market, however, such that researchers have turned their attention to the heterologous production of crocin in a variety of hosts. At present, there are reports of successful heterologous production of crocin in Escherichia coli, Saccharomyces cerevisiae, microalgae, and plants that do not naturally produce crocin. Of these, the microalga Dunaliella salina, which produces high levels of β-carotene, the substrate for crocin biosynthesis, is worthy of attention. This article describes the biosynthesis of crocin, compares the features of each heterologous host, and clarifies the requirements for efficient production of crocin in microalgae.
Collapse
Affiliation(s)
- Junjie Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Danqiong Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Chenglong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Hui Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Sulin Lou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
12
|
Varghese R, Buragohain T, Banerjee I, Mukherjee R, Penshanwar SN, Agasti S, Ramamoorthy S. The apocarotenoid production in microbial biofactories: An overview. J Biotechnol 2023; 374:5-16. [PMID: 37499877 DOI: 10.1016/j.jbiotec.2023.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Carotenoids are a vast group of natural pigments that come in a variety of colors ranging from red to orange. Apocarotenoids are derived from these carotenoids, which are hormones, pigments, retinoids, and volatiles employed in the textiles, cosmetics, pharmaceutical, and food industries. Due to the high commercial value and poor natural host abundance, they are significantly undersupplied. Microbes like Saccharomyces cerevisiae and Escherichia coli act as heterologous hosts for apocarotenoid production. This article briefly reviews categories of apocarotenoids, their biosynthetic pathway commencing from the MVA and MEP, its significance, the tool enzymes for apocarotenoid biosynthesis like CCDs, their biotechnological production in microbial factories, and future perspectives.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Tinamoni Buragohain
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ishani Banerjee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Rishyani Mukherjee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Shraddha Naresh Penshanwar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Swapna Agasti
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
13
|
Xu Z, Tian P. Rethinking Biosynthesis of Aclacinomycin A. Molecules 2023; 28:molecules28062761. [PMID: 36985733 PMCID: PMC10054333 DOI: 10.3390/molecules28062761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Aclacinomycin A (ACM-A) is an anthracycline antitumor agent widely used in clinical practice. The current industrial production of ACM-A relies primarily on chemical synthesis and microbial fermentation. However, chemical synthesis involves multiple reactions which give rise to high production costs and environmental pollution. Microbial fermentation is a sustainable strategy, yet the current fermentation yield is too low to satisfy market demand. Hence, strain improvement is highly desirable, and tremendous endeavors have been made to decipher biosynthesis pathways and modify key enzymes. In this review, we comprehensively describe the reported biosynthesis pathways, key enzymes, and, especially, catalytic mechanisms. In addition, we come up with strategies to uncover unknown enzymes and improve the activities of rate-limiting enzymes. Overall, this review aims to provide valuable insights for complete biosynthesis of ACM-A.
Collapse
|
14
|
Guo ZL, Li MX, Li XL, Wang P, Wang WG, Du WZ, Yang ZQ, Chen SF, Wu D, Tian XY. Crocetin: A Systematic Review. Front Pharmacol 2022; 12:745683. [PMID: 35095483 PMCID: PMC8795768 DOI: 10.3389/fphar.2021.745683] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Crocetin is an aglycone of crocin naturally occurring in saffron and produced in biological systems by hydrolysis of crocin as a bioactive metabolite. It is known to exist in several medicinal plants, the desiccative ripe fruit of the cape jasmine belonging to the Rubiaceae family, and stigmas of the saffron plant of the Iridaceae family. According to modern pharmacological investigations, crocetin possesses cardioprotective, hepatoprotective, neuroprotective, antidepressant, antiviral, anticancer, atherosclerotic, antidiabetic, and memory-enhancing properties. Although poor bioavailability hinders therapeutic applications, derivatization and formulation preparation technologies have broadened the application prospects for crocetin. To promote the research and development of crocetin, we summarized the distribution, preparation and production, total synthesis and derivatization technology, pharmacological activity, pharmacokinetics, drug safety, drug formulations, and preparation of crocetin.
Collapse
Affiliation(s)
- Zi-Liang Guo
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Mao-Xing Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiao-Lin Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China
| | - Peng Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei-Gang Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei-Ze Du
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Qiang Yang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,Institute of Chemical Technology, Northwest Minzu University, Lanzhou, China
| | - Sheng-Fu Chen
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Di Wu
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiu-Yu Tian
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: a state-of-the-art review. BIORESOUR BIOPROCESS 2022; 9:8. [PMID: 38647847 PMCID: PMC10992905 DOI: 10.1186/s40643-022-00497-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In current years, natural pigments are facing a fast-growing global market due to the increase of people's awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - WeiNing Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
16
|
Strategies to meet the global demand for natural food colorant bixin: A multidisciplinary approach. J Biotechnol 2021; 338:40-51. [PMID: 34271054 DOI: 10.1016/j.jbiotec.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
Bixin is an apocarotenoid derived from Bixa orellana L. well known as a food colorant along with its numerous industrial and therapeutic applications. With the current surge in usage of natural products, bixin has contributed immensely to the world carotenoid market and showcases a spike in its requirement globally. To bridge the gap between bixin availability and utility, owed to its bioactivity and demand as a colouring agent in industries the sustainable production of bixin is critical. Therefore, to meet up this challenge effective use of multidisciplinary strategies is a promising choice to enhance bixin quantity and quality. Here we report, an optimal blend of approaches directed towards manipulation of bixin biosynthesis pathway with an insight into the impact of regulatory mechanisms and environmental dynamics, engineering carotenoid degradation in plants other than annatto, usage of tissue culture techniques supported with diverse elicitations, molecular breeding, application of in silico predictive tools, screening of microbial bio-factories as alternatives, preservation of bixin bioavailability, and promotion of eco-friendly extraction techniques to play a collaborative role in promoting sustainable bixin production.
Collapse
|
17
|
A thermostable glycosyltransferase from Paenibacillus polymyxa NJPI29: recombinant expression, characterization, and application in synthesis of glycosides. 3 Biotech 2021; 11:314. [PMID: 34109099 DOI: 10.1007/s13205-021-02855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022] Open
Abstract
Glycosylation is a prominent biological mechanism, affecting the structural and functional diversity of many natural products. In this study, a novel thermostable uridine diphosphate-dependent glycosyltransferase gene PpGT1 was cloned from Paenibacillus polymyxa NJPI29 and recombinantly expressed in B. subtilis WB600. The purified PpGT1 had a molecular weight of 45 kDa, as estimated using SDS-PAGE. The PpGT1 could catalyze the glycosylation of vanillic acid, methyl vanillate, caffeic acid, cinnamic alcohol, and ferulic acid. Moreover, PpGT1 possessed good thermostability and retained 80% of its original activity even after 12 h of incubation at 45 °C. In addition, PpGT1 remained stable within a neutral to alkaline pH range as well as in the presence of metal ions. The synthesis of methyl vanillate 4-O-β-D-glucoside by purified PpGT1 reached a yield 3.58 mM in a system with pH 8.0, 45 °C, 12 mM UDP-Glc, and 4 mM methyl vanillate. 3D-structure-based amino acid sequence alignments revealed that the catalytic residues and C-terminated PSPG motif were conserved. These unusual properties indicated that PpGT1 is a candidate UGT for valuable natural product industrial applications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02855-z.
Collapse
|
18
|
Liang MH, He YJ, Liu DM, Jiang JG. Regulation of carotenoid degradation and production of apocarotenoids in natural and engineered organisms. Crit Rev Biotechnol 2021; 41:513-534. [PMID: 33541157 DOI: 10.1080/07388551.2021.1873242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carotenoids are important precursors of a wide range of apocarotenoids with their functions including: hormones, pigments, retinoids, volatiles, and signals, which can be used in the food, flavors, fragrances, cosmetics, and pharmaceutical industries. This article focuses on the formation of these multifaceted apocarotenoids and their diverse biological roles in all living systems. Carotenoid degradation pathways include: enzymatic oxidation by specific carotenoid cleavage oxygenases (CCOs) or nonspecific enzymes such as lipoxygenases and peroxidases and non-enzymatic oxidation by reactive oxygen species. Recent advances in the regulation of carotenoid cleavage genes and the biotechnological production of multiple apocarotenoids are also covered. It is suggested that different developmental stages and environmental stresses can influence both the expression of carotenoid cleavage genes and the formation of apocarotenoids at multiple levels of regulation including: transcriptional, transcription factors, posttranscriptional, posttranslational, and epigenetic modification. Regarding the biotechnological production of apocarotenoids especially: crocins, retinoids, and ionones, enzymatic biocatalysis and metabolically engineered microorganisms have been a promising alternative route. New substrates, carotenoid cleavage enzymes, biosynthetic pathways for apocarotenoids, and new biological functions of apocarotenoids will be discussed with the improvement of our understanding of apocarotenoid biology, biochemistry, function, and formation from different organisms.
Collapse
Affiliation(s)
- Ming-Hua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yu-Jing He
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dong-Mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
19
|
Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases. Curr Opin Chem Biol 2020; 61:81-95. [PMID: 33310623 DOI: 10.1016/j.cbpa.2020.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Sugar nucleotide-dependent glycosyltransferases (GTs) are key enzymes that catalyze the formation of glycosidic bonds in nature. They have been increasingly applied in the synthesis of complex carbohydrates and glycoconjugates with or without in situ generation of sugar nucleotides. Human GTs are becoming more accessible and new bacterial GTs have been identified and characterized. An increasing number of crystal structures elucidated for GTs from mammalian and bacterial sources facilitate structure-based design of mutants as improved catalysts for synthesis. Automated platforms have also been developed for chemoenzymatic synthesis of carbohydrates. Recent progress in applying sugar nucleotide-dependent GTs in enzymatic and chemoenzymatic synthesis of mammalian glycans and glycoconjugates, bacterial surface glycans, and glycosylated natural products from bacteria and plants are reviewed.
Collapse
|
20
|
Liu T, Yu S, Xu Z, Tan J, Wang B, Liu YG, Zhu Q. Prospects and progress on crocin biosynthetic pathway and metabolic engineering. Comput Struct Biotechnol J 2020; 18:3278-3286. [PMID: 33209212 PMCID: PMC7653203 DOI: 10.1016/j.csbj.2020.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/22/2022] Open
Abstract
Crocins are a group of highly valuable apocarotenoid-derived pigments mainly produced in Crocus sativus stigmas and Gardenia jasminoides fruits, which display great pharmacological activities for human health, such as anticancer, reducing the risk of atherosclerosis, and preventing Alzheimer's disease. However, traditional sources of crocins are no longer sufficient to meet current demands. The recent clarification of the crocin biosynthetic pathway opens up the possibility of large-scale production of crocins by synthetic metabolic engineering methods. In this review, we mainly introduce the crocin biosynthetic pathway, subcellular route, related key enzymes, and its synthetic metabolic engineering, as well as its challenges and prospects, with a view to providing useful references for further studies on the synthetic metabolic engineering of crocins.
Collapse
Affiliation(s)
- Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Suize Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
21
|
Enhanced Heterologous Production of Glycosyltransferase UGT76G1 by Co-Expression of Endogenous prpD and malK in Escherichia coli and Its Transglycosylation Application in Production of Rebaudioside. Int J Mol Sci 2020; 21:ijms21165752. [PMID: 32796599 PMCID: PMC7460871 DOI: 10.3390/ijms21165752] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Steviol glycosides (SGs) with zero calories and high-intensity sweetness are the best substitutes of sugar for the human diet. Uridine diphosphate dependent glycosyltransferase (UGT) UGT76G1, as a key enzyme for the biosynthesis of SGs with a low heterologous expression level, hinders its application. In this study, a suitable fusion partner, Smt3, was found to enhance the soluble expression of UGT76G1 by 60%. Additionally, a novel strategy to improve the expression of Smt3-UGT76G1 was performed, which co-expressed endogenous genes prpD and malK in Escherichia coli. Notably, this is the first report of constructing an efficient E. coli expression system by regulating prpD and malK expression, which remarkably improved the expression of Smt3-UGT76G1 by 200% as a consequence. Using the high-expression strain E. coli BL21 (DE3) M/P-3-S32U produced 1.97 g/L of Smt3-UGT76G1 with a yield rate of 61.6 mg/L/h by fed-batch fermentation in a 10 L fermenter. The final yield of rebadioside A (Reb A) and rebadioside M (Reb M) reached 4.8 g/L and 1.8 g/L, respectively, when catalyzed by Smt3-UGT76G1 in the practical UDP-glucose regeneration transformation system in vitro. This study not only carried out low-cost biotransformation of SGs but also provided a novel strategy for improving expression of heterologous proteins in E. coli.
Collapse
|
22
|
Pu X, He C, Yang Y, Wang W, Hu K, Xu Z, Song J. In Vivo Production of Five Crocins in the Engineered Escherichia coli. ACS Synth Biol 2020; 9:1160-1168. [PMID: 32216376 DOI: 10.1021/acssynbio.0c00039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crocins are highly valuable medicinal compounds for treating human disorders, and they also serve as spices and coloring agents. However, the supply of crocins from plant extractions is insufficient for current demands, and using synthetic biology to produce crocins remains a big challenge. Here, we report the in vivo production of five types of crocins in E. coli with GjUGT94E13 and GjUGT74F8, which are responsible for the glycosylation of crocetin, from the crocin-producing plant Gardenia jasminoides. Subsequently, native UDP-glucose biosynthesis in E. coli is strengthened by the overexpression of pgm and galU. The optimization of catalytic reactions has demonstrated that 50 mM NaH2PO4-Na2HPO4 buffer (pH 8.0) plus 5% glucose is the best medium to use for the efficient glycosylation of crocetin. In engineered E. coli, the conversion rate of crocin III and crocin V from crocetin (50 mg/L) by the catalysis of GjUGT74F8 was increased to 66.1%, and the conversion rate of five types of crocins from crocetin (50 mg/L) via GjUGT94E13 and GjUGT74F8 was 59.6%, much higher than the catalytic activity of the reported microbial UGTs. This study not only sheds light on the in vivo biosynthesis of crocins in E. coli, but also provides important genetic tools for the de novo synthesis of crocins.
Collapse
Affiliation(s)
- Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chunnian He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Kaizhi Hu
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, 666100, China
| |
Collapse
|
23
|
Feng Y, Yao M, Wang Y, Ding M, Zha J, Xiao W, Yuan Y. Advances in engineering UDP-sugar supply for recombinant biosynthesis of glycosides in microbes. Biotechnol Adv 2020; 41:107538. [PMID: 32222423 DOI: 10.1016/j.biotechadv.2020.107538] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Plant glycosides are of great interest for industries. Glycosylation of plant secondary metabolites can greatly improve their solubility, biological activity, or stability. This allows some plant glycosides to be used as food additives, cosmetic products, health products, antisepsis and anti-cancer drugs. With the continuous expansion of market demand, a variety of biological fermentation technologies has emerged. This review focuses on recombinant microbial biosynthesis of plant glycosides, which uses UDP-sugars as precursors, and summarizes various strategies to increase the yield of glycosides with a key concentration on UDP-sugar supply based on four aspects, i.e., gene overexpression, UDP-sugar recycling, mixed fermentation, and carbon co-utilization. Meanwhile, the application potential and advantages of various techniques are introduced, which provide guidance to the development of high-yield strains for recombinant microbial production of plant glycosides. Finally, the technical challenges of glycoside biosynthesis are pointed out with discussions on future directions of improving the yield of recombinantly synthesized glycosides.
Collapse
Affiliation(s)
- Yueyang Feng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
24
|
Liu F, Ding F, Shao W, He B, Wang G. Regulated preparation of Crocin-1 or Crocin-2' Triggered by the Cosolvent DMSO Using Bs-GT/At-SuSy One-Pot Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12496-12501. [PMID: 31623438 DOI: 10.1021/acs.jafc.9b05000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Crocins are the primary coloring ingredients of saffron. The low-glycosylated members of this compound family, such as crocin-1 (crocetin mono-glucosyl ester) and crocin-2' (crocetin di-glucosyl ester), are rarely distributed in nature and attracting interest for their therapeutic uses. In the present study, a one-pot reaction system was used for efficient preparation of crocin-1 and crocin-2' with in situ regeneration of UDP-Glc by coupling Bs-GT with At-SuSy, a sucrose synthase from Arabidopsis thaliana. Noticeably, DMSO was used as a cosolvent and resulted in improvement of the solubility of the substrate crocetin and regulation of the selectivity of glycosylation. With periodic addition of crocetin, the biosynthesis of crocin-2' was performed with a high yield of 3.25 g/L in 2% DMSO aqueous solution, whereas crocin-1 (2.12 g/L) was selectively obtained in a 10% DMSO aqueous solution. The present study provided a simple approach for the biosynthesis of crocin-1 and crocin-2'.
Collapse
Affiliation(s)
| | | | | | | | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics , China Pharmaceutical University , Tongjiaxiang 24 , Nanjing 210009 , China
| |
Collapse
|
25
|
Li B, Chang S, Jin D, Zhang S, Chen T, Pan X, Fan B, Lv K, He X. Ca 2+ assisted glycosylation of phenolic compounds by phenolic-UDP-glycosyltransferase from Bacillus subtilis PI18. Int J Biol Macromol 2019; 135:373-378. [PMID: 31108143 DOI: 10.1016/j.ijbiomac.2019.05.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/27/2022]
Abstract
A phenolic-UDP-glycosyltransferase Bs-PUGT from Bacillus subtilis PI18 was cloned and expressed in Escherichia coli BL21 (DE3). The purified Bs-PUGT could catalyze the glycosylation of tyrosol, 4-hydroxybenzyl alcohol, 2-hydroxybenzyl alcohol, caffeic acid, cinnamic alcohol, ferulic acid, and so on. This enzyme showed a high activity and stability over a broad pH range and was sensitive to temperature. Studies on the kinetic parameters indicated that the affinity of Bs-PUGT to UDP-G (Km) and its catalytic efficiency (Kcat) increased by 1.5-fold and 1.7-fold, respectively, with the addition of 10 mM Ca2+. The most effective glycosylation of caffeic acid catalyzed by whole-cell E. coli/Bs-PUGT was achieved with a molar yield of 78.3% in a system with pH 8.0, 30 °C, 25 g/L sucrose, 10 mM Ca2+, and 0.5 g/L substrate concentration. The addition of Ca2+ increased the molar yield of caffeic acid glucosides and shortened the reaction. This work proposes a strategy for the efficient glycosylation of phenolic compounds by microbe-derived glycosyltransferase assisted by metal ions.
Collapse
Affiliation(s)
- Bingfeng Li
- School of Biology and Environment, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing 210048, Jiangsu, China
| | - Siyuan Chang
- School of Biology and Environment, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing 210048, Jiangsu, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Di Jin
- School of Biology and Environment, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing 210048, Jiangsu, China
| | - Sen Zhang
- Jiangsu Collaboration Innovation Center of Chinese Medical Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Tianyi Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Xin Pan
- Department of Cardiology, The Second Affiliated Hospital of Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Bo Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Kemin Lv
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Xuejun He
- School of Biology and Environment, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing 210048, Jiangsu, China.
| |
Collapse
|