1
|
Li B, Baima Y, De J, Wen D, Liu Y, Basang Z, Jiang N. Hypoxic stress caused apoptosis of MDBK cells by p53/BCL6-mitochondrial apoptosis pathway. Anim Biotechnol 2024; 35:2299241. [PMID: 38178593 DOI: 10.1080/10495398.2023.2299241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Hypoxia is an important characteristic of Tibetan plateau environment. It can lead to apoptosis, but the mechanism of apoptosis caused by hypoxic stress needs further clarification. Here, cattle kidney cell MDBK were used as cell model. The effect of hypoxic stress on apoptosis and its molecular mechanism were explored. MDBK cells were treated with hypoxic stress, apoptosis and mitochondrial apoptotic pathway were significantly increased, and the expression of B-cell lymphoma 6 (BCL6) was significantly decreased. Overexpressing or inhibiting BCL6 demonstrated that BCL6 inhibited the apoptosis. And the increase of apoptosis controlled by hypoxic stress was blocked by BCL6 overexpressing. MDBK cells were treated with hypoxic stress, the expression and the nuclear localization of p53 were significantly increased. Overexpressing or inhibiting p53 demonstrated that hypoxic stress suppressed the expression of BCL6 through p53. Together, these results indicated that hypoxic stress induced the apoptosis of MDBK cells, and BCL6 was an important negative factor for this regulation process. In MDBK cells, hypoxic stress suppressed the expression of BCL6 through p53/BCL6-mitochondrial apoptotic pathway. This study enhanced current understanding of the molecular mechanisms underlying the regulation of apoptosis by hypoxic stress in MDBK cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Tibet, China
| | - Yangjin Baima
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Ji De
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Yang Liu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Zhuzha Basang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Tibet, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| |
Collapse
|
2
|
Tan J, Yang B, Qiu L, He R, Wu Z, Ye M, Zan L, Yang W. Bta-miR-200a Regulates Milk Fat Biosynthesis by Targeting IRS2 to Inhibit the PI3K/Akt Signal Pathway in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16449-16460. [PMID: 38996051 DOI: 10.1021/acs.jafc.4c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Milk fat synthesis has garnered significant attention due to its influence on the quality of milk. Recently, an increasing amount of proofs have elucidated that microRNAs (miRNAs) are important post-transcriptional factor involved in regulating gene expression and play a significant role in milk fat synthesis. MiR-200a was differentially expressed in the mammary gland tissue of dairy cows during different lactation periods, which indicated that miR-200a was a candidate miRNA involved in regulating milk fat synthesis. In our research, we investigated the potential function of miR-200a in regulating milk fat biosynthesis in bovine mammary epithelial cells (BMECs). We discovered that miR-200a inhibited cellular triacylglycerol (TAG) synthesis and suppressed lipid droplet formation; at the same time, miR-200a overexpression suppressed the mRNA and protein expression of milk fat metabolism-related genes, such as fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), CCAAT enhancer binding protein alpha (CEBPα), etc. However, knocking down miR-200a displayed the opposite results. We uncovered that insulin receptor substrate 2 (IRS2) was a candidate target gene of miR-200a through the bioinformatics online program TargetScan. Subsequently, it was confirmed that miR-200a directly targeted the 3'-untranslated region (3'-UTR) of IRS2 via real-time fluorescence quantitative PCR (RT-qPCR), western blot analysis, and dual-luciferase reporter gene assay. Additionally, IRS2 knockdown in BMECs has similar effects to miR-200a overexpression. Our research set up the mechanism by which miR-200a interacted with IRS2 and discovered that miR-200a targeted IRS2 and modulated the activity of the PI3K/Akt signaling pathway, thereby taking part in regulating milk fat synthesis in BMECs. Our research results provided valuable information on the molecular mechanisms for enhancing milk quality from the view of miRNA-mRNA regulatory networks.
Collapse
Affiliation(s)
- Jianbing Tan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benshun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liang Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ruiying He
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhangqing Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Miaomiao Ye
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
3
|
Xiao M, Ruan Y, Huang J, Dai L, Xu J, Xu H. Association analysis between Acetyl-Coenzyme A Acyltransferase-1 gene polymorphism and growth traits in Xiangsu pigs. Front Genet 2024; 15:1346903. [PMID: 38756449 PMCID: PMC11096523 DOI: 10.3389/fgene.2024.1346903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Acetyl-Coenzyme A Acyltransferase-1 (ACAA1) is a peroxisomal acyltransferase involved in fatty acid metabolism. Current evidence does not precisely reveal the effect of the ACAA1 gene on pig growth performance. Methods The present study assessed the mRNA expression levels of the ACAA1 gene in the heart, liver, spleen, lung, kidney of 6-month-old Xiangsu pigs and in the longissimus dorsi muscle at different growth stages (newborn, 6 months and 12 months of age) using RT-qPCR. The relationship between single-nucleotide polymorphisms (SNPs) of ACAA1 gene and growth traits in 6-month-old and 12-month-old Xiangsu pigs was investigated on 184 healthy Xiangsu pigs using Sanger sequencing. Results The ACAA1 gene was expressed in heart, liver, spleen, lung, kidney, and longissimus dorsi muscle of 6-month-old pigs, with the highest level of expression in the liver. ACAA1 gene expression in the longissimus dorsi muscle decreased with age (p < 0.01). In addition, four SNPs were identified in the ACAA1 gene, including exon g.48810 A>G (rs343060194), intron g.51546 T>C (rs319197012), exon g.55035 T>C (rs333279910), and exon g.55088 C>T (rs322138947). Hardy-Weinberg equilibrium (p > 0.05) was found for the four SNPs, and linkage disequilibrium (LD) analysis revealed a strong LD between g.55035 T>C (rs333279910) and g.55088 C>T (rs322138947) (r 2 = 1.000). Association analysis showed that g.48810 A>G (rs343060194), g.51546 T>C (rs319197012), g.55035 T>C (rs333279910), and g.55088 C>T (rs322138947) varied in body weight, body length, body height, abdominal circumference, leg and hip circumference and living backfat thickness between 6-month-old and 12-month-old Xiangsu pigs. Conclusion These findings strongly demonstrate that the ACAA1 gene can be exploited for marker-assisted selection to improve growth-related phenotypes in Xiangsu pigs and present new candidate genes for molecular pig breeding.
Collapse
Affiliation(s)
- Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Lingang Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Yu W, Guo J, Mao L, Wang Q, Liu Y, Xu D, Ma J, Luo C. Glucose promotes cell growth and casein synthesis via ATF4/Nrf2-Sestrin2- AMPK-mTORC1 pathway in dairy cow mammary epithelial cells. Anim Biotechnol 2023; 34:3808-3818. [PMID: 37435839 DOI: 10.1080/10495398.2023.2228847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
In the dairy industry, glucose (Glu) is used as bioactive substance to increase milk yield. However, the molecular regulation underneath needs further clarification. Here, the regulation and its molecular mechanism of Glu on cell growth and casein synthesis of dairy cow mammary epithelial cells (DCMECs) were investigated. When Glu was added from DCMECs, both cell growth, β-casein expression and the mechanistic target of rapamycin complex 1 (mTORC1) pathway were increased. Overexpression and silencing of mTOR revealed that Glu promoted cell growth and β-casein expression through the mTORC1 pathway. When Glu was added from DCMECs, both Adenosine 5'-monophosphate-activated protein kinase α (AMPKα) and Sestrin2 (SESN2) expression were decreased. Overexpression and silencing of AMPKα or SESN2 uncovered that AMPKα suppressed cell growth and β-casein synthesis through inhibiting mTORC1 pathway, and SESN2 suppressed cell growth and β-casein synthesis through activating AMPK pathway. When Glu was depleted from DCMECs, both activating transcription factor 4 (ATF4) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression were increased. Overexpression or silencing of ATF4 or Nrf2 demonstrated that Glu depletion promoted SESN2 expression through ATF4 and Nrf2. Together, these results indicate that in DCMECs, Glu promoted cell growth and casein synthesis via ATF4/Nrf2-SESN2-AMPK-mTORC1 pathway.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Jinqi Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Lei Mao
- College of Life Sciences, Shihezi University, Shihezi, P. R. China
| | - Qingzhu Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
| | - Yuanyuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Dong Xu
- Harbin Weike Biotechnology Co., Ltd, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
- Harbin Weike Biotechnology Co., Ltd, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Chaochao Luo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Branch of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
5
|
Yuan S, Tian S, Meng C, Ji F, Zhou B, Rushdi HE, Ye M. The Identification of Functional Genes Affecting Fat-Related Meat Traits in Meat-Type Pigeons Using Double-Digest Restriction-Associated DNA Sequencing and Molecular Docking Analysis. Animals (Basel) 2023; 13:3256. [PMID: 37893980 PMCID: PMC10603692 DOI: 10.3390/ani13203256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The Chinese indigenous Shiqi (SQ) pigeon and the imported White King (WK) pigeon are two meat-type pigeon breeds of economical and nutritional importance in China. They displayed significant differences in such meat quality traits as intramuscular fat (IMF) content and fatty acid (FA) compositions in the breast muscles. In this study, we aimed to screen candidate genes that could affect fat-related meat quality traits in meat-type pigeons. We investigated the polymorphic variations at the genomic level using double-digest restriction-associated DNA (ddRAD) sequencing in 12 squabs of SQ and WK pigeons that exhibited significant inter-breed differences in IMF content as well as FA and amino acid compositions in the breast muscles, and screened candidate genes influencing fat-related traits in squabs through gene ontology analysis and pathway analysis. By focusing on 6019 SNPs, which were located in genes with correct annotations and had the potential to induce changes in the encoded proteins, we identified 19 genes (ACAA1, ACAA2, ACACB, ACADS, ACAT1, ACOX3, ACSBG1, ACSBG2, ACSL1, ACSL4, ELOVL6, FADS1, FADS2, HACD4, HADH, HADHA, HADHB, MECR, OXSM) as candidate genes that could affect fat-related traits in squabs. They were significantly enriched in the pathways of FA metabolism, degradation, and biosynthesis (p < 0.05). Results from molecular docking analysis further revealed that three non-synonymous amino acid alterations, ACAA1(S357N), ACAA2(T234I), and ACACB(H1418N), could alter the non-bonding interactions between the enzymatic proteins and their substrates. Since ACAA1, ACAA2, and ACACB encode rate-limiting enzymes in FA synthesis and degradation, alterations in the enzyme-substrate binding affinity may subsequently affect the catalytic efficiency of enzymes. We suggested that SNPs in these three genes were worthy of further investigation into their roles in explaining the disparities in fat-related traits in squabs.
Collapse
Affiliation(s)
- Siyu Yuan
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (S.Y.); (S.T.); (C.M.)
| | - Shaoqi Tian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (S.Y.); (S.T.); (C.M.)
| | - Chuang Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (S.Y.); (S.T.); (C.M.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China;
| | - Bin Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Hossam E. Rushdi
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Manhong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (S.Y.); (S.T.); (C.M.)
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Deng T, Wu J, Abdel-Shafy H, Wang X, Lv H, Shaukat A, Zhou X, Zhou Y, Sun H, Wei P, Sun N, Huang Q, Xu L, Liu M, Lin Y, Yang L, Hua G. Comparative Genomic Analysis of the Thiolase Family and Functional Characterization of the Acetyl-Coenzyme A Acyltransferase-1 Gene for Milk Biosynthesis and Production of Buffalo and Cattle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3325-3337. [PMID: 36780201 DOI: 10.1021/acs.jafc.2c07763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cattle and buffalo served as the first and second largest dairy animals, respectively, providing 96% milk products worldwide. Understanding the mechanisms underlying milk synthesis is critical to develop the technique to improve milk production. Thiolases, also known as acetyl-coenzyme A acetyltransferases (ACAT), are an enzyme family that plays vital roles in lipid metabolism, including ACAT1, ACAT2, ACAA1, ACAA2, and HADHB. Our present study showed that these five members were orthologous in six livestock species including buffalo and cattle. Transcriptomic data analyses derived from different lactations stages showed that ACAA1 displayed different expression patterns between buffalo and cattle. Immunohistochemistry staining revealed that ACAA1 were dominantly located in the mammary epithelial cells of these two dairy animals. Knockdown of ACAA1 inhibited mammary epithelial cell proliferation and triglyceride and β-casein secretion by regulating related gene expressions in cattle and buffalo. In contrast, ACAA1 overexpression promoted cell proliferation and triglyceride secretion. Finally, three novel SNPs (g.-681A>T, g.-23117C>T, and g.-24348G>T) were detected and showed significant association with milk production traits of Mediterranean buffaloes. In addition, g.-681A>T mutation located in the promoter region changed transcriptional activity significantly. Our findings suggested that ACAA1 play a key role in regulating buffalo and cattle milk synthesis and provided basic information to further understand the dairy animal lactation physiology.
Collapse
Affiliation(s)
- Tingxian Deng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Guangxi Key Laboratory of Buffalo Genetic, Breeding and Reproduction, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Jiyun Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Xiaojie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aftab Shaukat
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Pengfei Wei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianzhi Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linghua Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Miaoyu Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Lin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Guohua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Luo C, Li N, Wang Q, Li C. Sodium acetate promotes fat synthesis by suppressing TATA element modulatory factor 1 in bovine mammary epithelial cells. ANIMAL NUTRITION 2023; 13:126-136. [PMID: 37123620 PMCID: PMC10130354 DOI: 10.1016/j.aninu.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Short-chain fatty acids are important nutrients that regulate milk fat synthesis. They regulate milk synthesis via the sterol regulatory element binding protein 1 (SREBP1) pathway; however, the details are still unknown. Here, the regulation and mechanism of sodium acetate (SA) in milk fat synthesis in bovine mammary epithelial cells (BMECs) were assessed. BMECs were treated with SA supplementation (SA+) or without SA supplementation (SA-), and milk fat synthesis and activation of the SREBP1 pathway were increased (P = 0.0045; P = 0.0042) by SA+ and decreased (P = 0.0068; P = 0.0031) by SA-, respectively. Overexpression or inhibition of SREBP1 demonstrated that SA promoted milk fat synthesis (P = 0.0045) via the SREBP1 pathway. Overexpression or inhibition of TATA element modulatory factor 1 (TMF1) demonstrated that TMF1 suppressed activation of the SREBP1 pathway (P = 0.0001) and milk fat synthesis (P = 0.0022) activated by SA+. Overexpression or inhibition of TMF1 and SREBP1 showed that TMF1 suppressed milk fat synthesis (P = 0.0073) through the SREBP1 pathway. Coimmunoprecipitation analysis revealed that TMF1 interacted with SREBP1 in the cytoplasm and suppressed the nuclear localization of SREBP1 (P = 0.0066). The absence or presence of SA demonstrated that SA inhibited the expression of TMF1 (P = 0.0002) and the interaction between TMF1 and SREBP1 (P = 0.0001). Collectively, our research suggested that TMF1 was a new negative regulator of milk fat synthesis. In BMECs, SA promoted the SREBP1 pathway and milk fat synthesis by suppressing TMF1. This study enhances the current understanding of the regulation of milk fat synthesis and provides new scientific data for the regulation of milk fat synthesis.
Collapse
|
8
|
Morani F, Doccini S, Galatolo D, Pezzini F, Soliymani R, Simonati A, Lalowski MM, Gemignani F, Santorelli FM. Integrative Organelle-Based Functional Proteomics: In Silico Prediction of Impaired Functional Annotations in SACS KO Cell Model. Biomolecules 2022; 12:biom12081024. [PMID: 35892334 PMCID: PMC9331974 DOI: 10.3390/biom12081024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/07/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an inherited neurodegenerative disease characterized by early-onset spasticity in the lower limbs, axonal-demyelinating sensorimotor peripheral neuropathy, and cerebellar ataxia. Our understanding of ARSACS (genetic basis, protein function, and disease mechanisms) remains partial. The integrative use of organelle-based quantitative proteomics and whole-genome analysis proposed in the present study allowed identifying the affected disease-specific pathways, upstream regulators, and biological functions related to ARSACS, which exemplify a rationale for the development of improved early diagnostic strategies and alternative treatment options in this rare condition that currently lacks a cure. Our integrated results strengthen the evidence for disease-specific defects related to bioenergetics and protein quality control systems and reinforce the role of dysregulated cytoskeletal organization in the pathogenesis of ARSACS.
Collapse
Affiliation(s)
- Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (F.G.)
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit—IRCCS Stella Maris, 56128 Pisa, Italy; (S.D.); (D.G.)
| | - Daniele Galatolo
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit—IRCCS Stella Maris, 56128 Pisa, Italy; (S.D.); (D.G.)
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (F.P.); (A.S.)
| | - Rabah Soliymani
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland; (R.S.); (M.M.L.)
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (F.P.); (A.S.)
| | - Maciej M. Lalowski
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland; (R.S.); (M.M.L.)
- Institute of Bioorganic Chemistry, PAS, Department of Biomedical Proteomics, 61-704 Poznań, Poland
| | - Federica Gemignani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (F.G.)
| | - Filippo M. Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit—IRCCS Stella Maris, 56128 Pisa, Italy; (S.D.); (D.G.)
- Correspondence: ; Tel.: +39-050-886311
| |
Collapse
|
9
|
Doccini S, Marchese M, Morani F, Gammaldi N, Mero S, Pezzini F, Soliymani R, Santi M, Signore G, Ogi A, Rocchiccioli S, Kanninen KM, Simonati A, Lalowski MM, Santorelli FM. Lysosomal Proteomics Links Disturbances in Lipid Homeostasis and Sphingolipid Metabolism to CLN5 Disease. Cells 2022; 11:1840. [PMID: 35681535 PMCID: PMC9180748 DOI: 10.3390/cells11111840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
CLN5 disease (MIM: 256731) represents a rare late-infantile form of neuronal ceroid lipofuscinosis (NCL), caused by mutations in the CLN5 gene that encodes the CLN5 protein (CLN5p), whose physiological roles stay unanswered. No cure is currently available for CLN5 patients and the opportunities for therapies are lagging. The role of lysosomes in the neuro-pathophysiology of CLN5 disease represents an important topic since lysosomal proteins are directly involved in the primary mechanisms of neuronal injury occurring in various NCL forms. We developed and implemented a lysosome-focused, label-free quantitative proteomics approach, followed by functional validations in both CLN5-knockout neuronal-like cell lines and Cln5-/- mice, to unravel affected pathways and modifying factors involved in this disease scenario. Our results revealed a key role of CLN5p in lipid homeostasis and sphingolipid metabolism and highlighted mutual NCL biomarkers scored with high lysosomal confidence. A newly generated cln5 knockdown zebrafish model recapitulated most of the pathological features seen in NCL disease. To translate the findings from in-vitro and preclinical models to patients, we evaluated whether two FDA-approved drugs promoting autophagy via TFEB activation or inhibition of the glucosylceramide synthase could modulate in-vitro ROS and lipid overproduction, as well as alter the locomotor phenotype in zebrafish. In summary, our data advance the general understanding of disease mechanisms and modifying factors in CLN5 disease, which are recurring in other NCL forms, also stimulating new pharmacological treatments.
Collapse
Affiliation(s)
- Stefano Doccini
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| | - Maria Marchese
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| | - Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Nicola Gammaldi
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
- Ph.D. Program in Neuroscience, University of Florence, 50121 Florence, Italy
| | - Serena Mero
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (F.P.); (A.S.)
| | - Rabah Soliymani
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Melissa Santi
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127 Pisa, Italy;
| | | | - Asahi Ogi
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| | | | - Katja M. Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (F.P.); (A.S.)
| | - Maciej M. Lalowski
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Institute of Bioorganic Chemistry, PAS, Department of Biomedical Proteomics, 61-704 Poznan, Poland
| | - Filippo M. Santorelli
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| |
Collapse
|
10
|
Ghodasara P, Satake N, Sadowski P, Kopp S, Mills PC. Investigation of cattle plasma proteome in response to pain and inflammation using next generation proteomics technique, SWATH-MS. Mol Omics 2021; 18:133-142. [PMID: 34860232 DOI: 10.1039/d1mo00354b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pain assessment in farm animals has primarily relied on a combination of behavioral and physiological responses, although these are relatively subjective and difficult to quantify. It is essential to develop more effective biomarkers of pain in production animals since they are frequently exposed to routine surgical husbandry procedures. More effective biomarkers of pain would improve welfare, limit the loss of productivity associated with pain and permit better assessment of analgesics. This study aimed to investigate the use of a modern mass spectrometry data independent acquisition strategy, termed Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS), to detect candidate protein biomarkers that are known to associate with nociceptive and inflammatory processes in cattle, which could then be used to assess the efficacy of potential analgesics. Calves were randomly divided into two groups that were either surgically dehorned or subjected to restraint stress, without provision of anaesthesia or analgesia in accordance with current industry standards. Samples were analysed before and after dehorning at multiple timepoints. Significant changes in protein concentrations were detected predominantly at 24 and 96 h following dehorning, including kininogens, proteins associated with the coagulation and complement cascades and serine protease inhibitors. Gene ontology analysis revealed that the identified candidate biomarkers were associated with stress, wound healing, immune response, blood coagulation and the inflammatory and acute phase responses, which could be expected following surgical damage to tissues, but can now be more objectively assessed. These results offer more definitive and quantitative monitoring of response to tissue injury induced pain and inflammation.
Collapse
Affiliation(s)
- Priya Ghodasara
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia.,VIDO-InterVac, University of Saskatchewan, Saskatoon, Canada
| | - Nana Satake
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia.,School of Agriculture and Food Sciences, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Steven Kopp
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| | - Paul C Mills
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| |
Collapse
|
11
|
Fan RF, Tang KK, Wang ZY, Wang L. Persistent activation of Nrf2 promotes a vicious cycle of oxidative stress and autophagy inhibition in cadmium-induced kidney injury. Toxicology 2021; 464:152999. [PMID: 34695510 DOI: 10.1016/j.tox.2021.152999] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) serves as the master regulator of antioxidant signaling and inhibition or hyperactivation of Nrf2 pathway will result in the redox imbalance to induce tissue injury. Herein, we established cadmium (Cd)-exposed rat kidney injury model by intraperitoneal injection with CdCl2 (1.5 mg/kg body weight) and cytotoxicity model of NRK-52E cells by CdCl2 (5 μM) exposure to reveal the role of Nrf2 hyperactivation in Cd-induced nephrotoxicity. Data from the in vitro and in vivo study showed that Cd caused Nrf2 nuclear retention due to nuclear-cytoplasmic depletion of Kelch-like ECH-associated protein 1 (Keap1) and Sequestosome-1(SQSTM1/p62) accumulation, leading to the persistent activation of Nrf2. Moreover, we established inhibited models of Cd-induced prolonged Nrf2 activation using siRNA-mediated gene silencing in vitro and pharmacological inhibition in vivo for subsequent assays. First, Cd-induced cytotoxicity, renal injury and concomitant oxidative stress were markedly alleviated by Nrf2 inhibition. Second, Cd-induced autophagy inhibition was notably alleviated by Nrf2 inhibition. Further, we revealed underlying molecular mechanisms of the crosstalk between persistent activation of Nrf2 and autophagy inhibition in Cd-induced nephrotoxicity. Data showed that Cd-induced lysosomal dysfunction evidenced by impaired lysosomal biogenesis and degradation capacity was markedly recovered by Nrf2 inhibition. Meanwhile, Cd-impaired autophagosome-lysosome fusion was obviously restored by Nrf2 inhibition. In conclusion, our findings revealed that persistent activation of Nrf2 promoted a vicious cycle of oxidative stress and autophagy inhibition in Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Kou-Kou Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
12
|
Abstract
Lysosomes are the main degradative organelles of almost all eukaryotic cells. They fulfil a crucial function in cellular homeostasis, and impairments in lysosomal function are connected to a continuously increasing number of pathological conditions. In recent years, lysosomes are furthermore emerging as control centers of cellular metabolism, and major regulators of cellular signaling were shown to be activated at the lysosomal surface. To date, >300 proteins were demonstrated to be located in/at the lysosome, and the lysosomal proteome and interactome is constantly growing. For the identification of these proteins, and their involvement in cellular mechanisms or disease progression, mass spectrometry (MS)-based proteomics has proven its worth in a large number of studies. In this review, we are recapitulating the application of MS-based approaches for the investigation of the lysosomal proteome, and their application to a diverse set of research questions. Numerous strategies were applied for the enrichment of lysosomes or lysosomal proteins and their identification by MS-based methods. This allowed for the characterization of the lysosomal proteome, the investigation of lysosome-related disorders, the utilization of lysosomal proteins as biomarkers for diseases, and the characterization of lysosome-related cellular mechanisms. While these >60 studies provide a comprehensive picture of the lysosomal proteome across several model organisms and pathological conditions, various proteomics approaches have not been applied to lysosomes yet, and a large number of questions are still left unanswered.
Collapse
Affiliation(s)
- Pathma Muthukottiappan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, 53115 Bonn, Germany.
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
13
|
Luo C, Peng W, Kang J, Chen C, Peng J, Wang Y, Tang Q, Xie H, Li Y, Pan X. Glutamine Regulates Cell Growth and Casein Synthesis through the CYTHs/ARFGAP1-Arf1-mTORC1 Pathway in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6810-6819. [PMID: 34096300 DOI: 10.1021/acs.jafc.1c02223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the dairy industry, glutamine (Gln) is often used as a feed additive to increase milk yield and quality; however, the molecular regulation underneath needs further clarification. Here, with bovine mammary epithelial cells (BMECs), the effects and mechanisms of Gln on cell growth and casein synthesis were assessed. When Gln was added or depleted from BMECs, both cell growth and β-casein (CSN2) expression were increased or decreased, respectively. Overexpressing or inhibiting the mechanistic target of rapamycin (mTOR) revealed that Gln regulated cell growth and CSN2 synthesis through the mTORC1 pathway. A similar intervention of ADP-ribosylation factor 1 (Arf1) uncovered that Gln activated the mTORC1 pathway through Arf1. We next observed that both guanine nucleotide exchange factors, Cytohesin-1/2/3 (CYTH1/2/3, CYTHs) and ADP-ribosylation factor GTPase activating protein 1 (ARFGAP1), interacted with Arf1. Inhibiting CYTHs or ARFGAP1 showed that Gln supplement or depletion activated or inactivated Arf1 through CYTHs or ARFGAP1, respectively. Collectively, this study demonstrated that Gln positively regulated cell growth and casein synthesis in BMECs, which works through the CYTHs/ARFGAP1-Arf1-mTORC1 pathway. These results greatly enhanced current understanding regarding the regulation of the mTOR pathway and provided new insights for the processes of cell growth and casein synthesis by amino acids, particularly Gln.
Collapse
|
14
|
Jia W, Zhang R, Zhu Z, Shi L. A High-Throughput Comparative Proteomics of Milk Fat Globule Membrane Reveals Breed and Lactation Stages Specific Variation in Protein Abundance and Functional Differences Between Milk of Saanen Dairy Goat and Holstein Bovine. Front Nutr 2021; 8:680683. [PMID: 34124126 PMCID: PMC8193056 DOI: 10.3389/fnut.2021.680683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Large variations in the bioactivities and composition of milk fat globule membrane (MFGM) proteins were observed between Saanen dairy goat and Holstein bovine at various lactation periods. In the present study, 331, 250, 182, and 248 MFGM proteins were characterized in colostrum and mature milk for the two species by Q-Orbitrap HRMS-based proteomics techniques. KEGG pathway analyses displayed that differentially expressed proteins in colostrum involved in galactose metabolism and an adipogenesis pathway, and the differentially expressed proteins in mature milk associated with lipid metabolism and a PPAR signaling pathway. These results indicated that the types and functions of MFGM proteins in goat and bovine milk were different, and goat milk had a better function of fatty acid metabolism and glucose homeostasis, which can enhance our understanding of MFGM proteins in these two species across different lactation periods, and they provide significant information for the study of lipid metabolism and glycometabolism of goat milk.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| |
Collapse
|
15
|
Zhou Y, Zhou X, Huang X, Hong T, Zhang K, Qi W, Guo M, Nie S. Lysosome-Mediated Cytotoxic Autophagy Contributes to Tea Polysaccharide-Induced Colon Cancer Cell Death via mTOR-TFEB Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:686-697. [PMID: 33369397 DOI: 10.1021/acs.jafc.0c07166] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Targeting autophagy and lysosome may serve as a promising strategy for cancer therapy. Tea polysaccharide (TP) has shown promising antitumor effects. However, its mechanism remains elusive. Here, TP was found to have a significant inhibitory effect on the proliferation of colon cancer line HCT116 cells. RNA-seq analysis showed that TP upregulated autophagy and lysosome signal pathways, which was further confirmed through experiments. Immunofluorescence experiments indicated that TP activated transcription factor EB (TFEB), a key nuclear transcription factor modulating autophagy and lysosome biogenesis. In addition, TP inhibited the activity of mTOR, while it increased the expression of Lamp1. Furthermore, TP ameliorated the lysosomal damage and autophagy flux barrier caused by Baf A1 (lysosome inhibitor). Hence, our data suggested that TP repressed the proliferation of HCT116 cells by targeting lysosome to induce cytotoxic autophagy, which might be achieved through mTOR-TFEB signaling. In summary, TP may be used as a potential drug to overcome colon cancer.
Collapse
Affiliation(s)
- Yujia Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Tao Hong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Ke Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Wucheng Qi
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Mi Guo
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| |
Collapse
|
16
|
Dai W, Zhao F, Liu J, Liu H. ASCT2 Is Involved in SARS-Mediated β-Casein Synthesis of Bovine Mammary Epithelial Cells with Methionine Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13038-13045. [PMID: 31597423 DOI: 10.1021/acs.jafc.9b03833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The methionine (Met) uptake into mammary cells depends upon the corresponding amino acid (AA) transporters, which play a regulatory role in the mammary protein production beyond transport. Our previous studies have identified that seryl-tRNA synthetase (SARS) could be a novel mediator to regulate essential AA-stimulated casein synthesis in primary bovine mammary epithelial cells (BMECs). However, the regulatory mechanisms of Met in milk protein production in dairy cows remain further clarified. Here, we aimed to investigate the effects of Met on milk protein synthesis in BMECs and explore the underlying mechanism. The effects of Met on the AA transporter, casein synthesis, and the related signaling pathway were evaluated in the BMECs treated with 0.6 mM Met for 6 h combined with or without the inhibition of AA transporter (ASCT2, a neutral AA transporter) activity by the corresponding inhibitor (GPNA). Besides, the effects of SARS on the cells were mainly evaluated in the BMECs treated with 0.6 mM Met for 6 h together with or without SARS knockdown by RNAi interference. The gene expression of AA transporters and pathway-related genes were analyzed by the real-time quantitative polymerase chain reaction method, and the protein expression of related proteins were determined by the western blot assay. Results showed that 0.6 mM Met remarkably enhanced cell growth and β-casein synthesis compared to the supply of other Met concentrations. Among 13 amino acid transporters, 0.6 mM Met highly increased ASCT2 expression. This Met-stimulated ASCT2 expression and the enhanced mammary intracellular Met uptake were both decreased by the addition of 500 μM GPNA, an inhibitor of ASCT2. In the presence of 0.6 mM Met, the inhibition of ASCT2 activity (by GPNA) and SARS expression (by RNAi) both reduced β-casein synthesis. Additionally, 0.6 mM Met increased the gene expression of mTOR, S6K1, 4EBP1, and Akt; in contrast, the inhibition of ASCT2 by GPNA lowered the gene expression of these four genes. Collectively, this work suggests that ASCT2 is involved in the SARS-mediated Met stimulation of β-casein synthesis through enhancing mammary Met uptake and activating the mTOR signaling pathway in BMECs.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Fengqi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
17
|
Zinovieva NA, Dotsev AV, Sermyagin AA, Deniskova TE, Abdelmanova AS, Kharzinova VR, Sölkner J, Reyer H, Wimmers K, Brem G. Selection signatures in two oldest Russian native cattle breeds revealed using high-density single nucleotide polymorphism analysis. PLoS One 2020; 15:e0242200. [PMID: 33196682 PMCID: PMC7668599 DOI: 10.1371/journal.pone.0242200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Native cattle breeds can carry specific signatures of selection reflecting their adaptation to the local environmental conditions and response to the breeding strategy used. In this study, we comprehensively analysed high-density single nucleotide polymorphism (SNP) genotypes to characterise the population structure and detect the selection signatures in Russian native Yaroslavl and Kholmogor dairy cattle breeds, which have been little influenced by introgression with transboundary breeds. Fifty-six samples of pedigree-recorded purebred animals, originating from different breeding farms and representing different sire lines, of the two studied breeds were genotyped using a genome-wide bovine genotyping array (Bovine HD BeadChip). Three statistical analyses—calculation of fixation index (FST) for each SNP for the comparison of the pairs of breeds, hapFLK analysis, and estimation of the runs of homozygosity (ROH) islands shared in more than 50% of animals—were combined for detecting the selection signatures in the genome of the studied cattle breeds. We confirmed nine and six known regions under putative selection in the genomes of Yaroslavl and Kholmogor cattle, respectively; the flanking positions of most of these regions were elucidated. Only two of the selected regions (localised on BTA 14 at 24.4–25.1 Mbp and on BTA 16 at 42.5–43.5 Mb) overlapped in Yaroslavl, Kholmogor and Holstein breeds. In addition, we detected three novel selection sweeps in the genome of Yaroslavl (BTA 4 at 4.74–5.36 Mbp, BTA 15 at 17.80–18.77 Mbp, and BTA 17 at 45.59–45.61 Mbp) and Kholmogor breeds (BTA 12 at 82.40–81.69 Mbp, BTA 15 at 16.04–16.62 Mbp, and BTA 18 at 0.19–1.46 Mbp) by using at least two of the above-mentioned methods. We expanded the list of candidate genes associated with the selected genomic regions and performed their functional annotation. We discussed the possible involvement of the identified candidate genes in artificial selection in connection with the origin and development of the breeds. Our findings on the Yaroslavl and Kholmogor breeds obtained using high-density SNP genotyping and three different statistical methods allowed the detection of novel putative genomic regions and candidate genes that might be under selection. These results might be useful for the sustainable development and conservation of these two oldest Russian native cattle breeds.
Collapse
Affiliation(s)
- Natalia Anatolievna Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
- * E-mail:
| | - Arsen Vladimirovich Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Alexander Alexandrovich Sermyagin
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Tatiana Evgenievna Deniskova
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Alexandra Sergeevna Abdelmanova
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Veronika Ruslanovna Kharzinova
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Johann Sölkner
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology [FBN], Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology [FBN], Dummerstorf, Germany
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine [VMU], Vienna, Austria
| |
Collapse
|
18
|
Guo Z, Cheng X, Feng X, Zhao K, Zhang M, Yao R, Chen Y, Wang Y, Hao H, Wang Z. The mTORC1/4EBP1/PPARγ Axis Mediates Insulin-Induced Lipogenesis by Regulating Lipogenic Gene Expression in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6007-6018. [PMID: 31060359 DOI: 10.1021/acs.jafc.9b01411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
4EBP1 is a chief downstream factor of mTORC1, and PPARγ is a key lipogenesis-related transcription factor. mTORC1 and PPARγ are associated with lipid metabolism. However, it is unknown which effector protein connects mTORC1 and PPARγ. This study investigated the interaction between 4EBP1 with PPARγ as part of the underlying mechanism by which insulin-induced lipid synthesis and secretion are regulated by mTORC1 in primary bovine mammary epithelial cells (pBMECs). Rapamycin, a specific inhibitor of mTORC1, downregulated 4EBP1 phosphorylation and the expression of PPARγ and the following lipogenic genes: lipin 1, DGAT1, ACC, and FAS. Rapamycin also decreased the levels of intracellular triacylglycerol (TAG); 10 types of fatty acid; and the accumulation of TAG, palmitic acid (PA), and stearic acid (SA) in the cell culture medium. Inactivation of mTORC1 by shRaptor or shRheb attenuated the synthesis and secretion of TAG and PA. In contrast, activation of mTORC1 by Rheb overexpression promoted 4EBP1 phosphorylation and PPARγ expression and upregulated the mRNA and protein levels of lipin 1, DGAT1, ACC, and FAS, whereas the levels of intracellular and extracellular TAG, PA, and SA also rose. Further, 4EBP1 interacted directly with PPARγ. Inactivation of mTORC1 by shRaptor prevented the nuclear location of PPARγ. These results demonstrate that mTORC1 regulates lipid synthesis and secretion by inducing the expression of lipin 1, DGAT1, ACC, and FAS, which is likely mediated by the 4EBP1/PPARγ axis. This finding constitutes a novel mechanism by which lipid synthesis and secretion are regulated in pBMECs.
Collapse
Affiliation(s)
- Zhixin Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Xiaoou Cheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Xue Feng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Keyu Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Meng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
- School of Life Sciences , Jining Normal University , Jining 012000 , China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| |
Collapse
|