1
|
Huang K, Su K, Mohan M, Chen J, Xu Y, Zhou X. Research progress on organic acid pretreatment of lignocellulose. Int J Biol Macromol 2025; 307:142325. [PMID: 40118402 DOI: 10.1016/j.ijbiomac.2025.142325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/18/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Lignocellulosic biomass is a naturally occurring, renewable resource that is utilized to produce a variety of high-value-added products, such as fuels, acids, and building block chemicals. The pretreatment of lignocellulosic biomass is a crucial step in the deconstruction and fractionation of its components. Organic acids, such as formic, acetic, lactic, and maleic acids, have been widely studied for their effectiveness in lignocellulose pretreatment. Organic acid-based pretreatment techniques are gaining increased attention due to their ability to selectively separate hemicellulose and cellulose, promote oligomer formation, and minimize byproducts. This paper presents a comprehensive review of the various advancements in the science and application of organic acids for the pretreatment of lignocellulose. Furthermore, the significant challenges of organic acid recovery after pretreatment are highlighted, and different recovery methods are discussed. The future challenges related to utilizing organic acids for lignocellulose pretreatment are summarized, with a strong emphasis on adopting a sustainable approach to converting valuable bioresources into renewable products.
Collapse
Affiliation(s)
- Kaixuan Huang
- College of Marine and Bio-engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Kaiyue Su
- College of Marine and Bio-engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, China
| | - Mood Mohan
- Biosciences Division and Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Jiayi Chen
- College of Marine and Bio-engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, China
| | - Yong Xu
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Xin Zhou
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China.
| |
Collapse
|
2
|
Sui W, Li S, Chen Y, Wang G, Liu D, Jia H, Wu T, Zhang M. Insights into hydrothermal deconstruction and humification of vegetable waste by non-catalytic steam explosion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123342. [PMID: 39642829 DOI: 10.1016/j.jenvman.2024.123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Accepted: 11/10/2024] [Indexed: 12/09/2024]
Abstract
Source minimization and valorization of vegetable waste has attracted considerable interests recently, but has been limited by its distinctive features of high humidity and perishability. To mitigate these challenges and draw upon its features, this study provides a novel non-catalytic hydrothermal process for rapid humification of broccoli waste by steam explosion (SE). The highest humic substance, fulvic acid (FA) and humic acid yields of 23.48 wt%, 18.70 wt% and 6.07 wt% were obtained within 30 min. Thermal-acidic condition and instantaneous decompression action proved to be favorable for substrate deconstruction, precursor production and humus formation. Potential pathways of hydrothermal humification of vegetable waste were revealed after clarifying the molecular level structure of FA by EA, FTIR, XPS, 2D-NMR and Py-GCMS. This work fills the knowledge gap in the mechanism of hydrothermal humification of vegetable waste and provides technical support for enhancing its agronomic value and efficient cycle in clean production.
Collapse
Affiliation(s)
- Wenjie Sui
- Jinan Fruit Research Institute, All-China Federation of Supply & Marketing Co-operatives, Jinan, 250014, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Agricultural University, Tianjin, 300384, China.
| | - Yue Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Guanhua Wang
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Dan Liu
- Tianjin Jianfeng Natural Product R&D Co., Ltd. Tianjin 300457, China.
| | - Hongyu Jia
- Shandong Academy of Agricultural Sciences, Institute of Agricultural Resources and Environment, Jinan, 250132, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
3
|
Wang R, Zheng X, Feng Z, Feng Y, Ying Z, Wang B, Dou B. Hydrothermal carbonization of Chinese medicine residues: Formation of humic acids and combustion performance of extracted hydrochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171792. [PMID: 38508251 DOI: 10.1016/j.scitotenv.2024.171792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Aiming at the sustainable management of high-moisture Chinese medicine residues (CMR), an alternative way integrating hydrothermal carbonization (HTC), humic acids (HAs) extraction and combustion of remained hydrochar has been proposed in this study. Effect of HTC temperature, HTC duration, and feedwater pH on the mass yield and properties of HAs was examined. The associated formation mechanism of HAs during HTC was proposed. The combustion performance of remained hydrochar after HAs extraction was evaluated. Results show that the positive correlation between hydrochar yield and HAs yield is observed. According to three-dimensional excitation emission matrix (3D EEM) fluorescence intensity, the best quality of HAs is achieved with a yield of 8.17 % at feedwater pH of 13 and HTC temperature of 200 °C. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses show abundant aromatic and aliphatic structure as well as oxygenated functional groups in HAs, which is like commercial HAs (HA-C). Besides, in terms of comprehensive combustion index (CCI), HTC can improve the combustion performance of CMR, while it becomes a bit worse after HAs extraction. Higher weighted mean apparent activation energy (Em) of hydrochar indicating its highly thermal stability. HAs extraction reduces Em and CCI of remained hydrochar. However, it can be regarded a potential renewable energy. This work confirms a more sustainable alternative way for CMR comprehensive utilization in near future.
Collapse
Affiliation(s)
- Rui Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xiaoyuan Zheng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Zhenyang Feng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yuheng Feng
- Thermal and Environment Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhi Ying
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Bo Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Binlin Dou
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
4
|
Hoang AT, Nguyen XP, Duong XQ, Ağbulut Ü, Len C, Nguyen PQP, Kchaou M, Chen WH. Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges. BIORESOURCE TECHNOLOGY 2023; 385:129398. [PMID: 37385558 DOI: 10.1016/j.biortech.2023.129398] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
The biorefining process of lignocellulosic biomass has recently emerged as one of the most profitable biofuel production options. However, pretreatment is required to improve the recalcitrant lignocellulose's enzymatic conversion efficiency. Among biomass pretreatment methods, the steam explosion is an eco-friendly, inexpensive, and effective approach to pretreating biomass, significantly promoting biofuel production efficiency and yield. This review paper critically presents the steam explosion's reaction mechanism and technological characteristics for lignocellulosic biomass pretreatment. Indeed, the principles of steam explosion technology for lignocellulosic biomass pretreatment were scrutinized. Moreover, the impacts of process factors on pretreatment efficiency and sugar recovery for the following biofuel production were also discussed in detail. Finally, the limitations and prospects of steam explosion pretreatment were mentioned. Generally, steam explosion technology applications could bring great potential in pretreating biomass, although deeper studies are needed to deploy this method on industrial scales.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Quang Duong
- Institute of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam
| | - Ümit Ağbulut
- Department of Mechanical Engineering, Faculty of Engineering, Duzce University, 81620, Düzce, Türkiye
| | - Christophe Len
- PSL Research University, Chimie ParisTech, CNRS, Paris Cedex 05, France
| | - Phuoc Quy Phong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 1, Bisha, Saudi Arabia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
5
|
Cerdan K, Gandara-Loe J, Arnauts G, Vangramberen V, Ginzburg A, Ameloot R, Koos E, Van Puyvelde P. On the gelation of humins: from transient to covalent networks. SOFT MATTER 2023; 19:2801-2814. [PMID: 36995046 DOI: 10.1039/d2sm01506d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Humins are a by-product of many acid-catalyzed biorefinery processes converting polysaccharides into platform chemicals. The valorization of humin residue to increase the profit of biorefinery operations and reduce waste is a field that is growing interest as the production of humins continues to increase. This includes their valorization in materials science. For successful processing of humin-based materials, this study aims to understand the thermal polymerization mechanisms of humins from a rheological perspective. Thermal crosslinking of raw humins leads to an increase in their molecular weight, which in turn leads to the formation of a gel. Humin's gels structure combines physical (thermally reversible) and chemical (thermally irreversible) crosslinks, and temperature plays an essential role in the crosslink density and the gel properties. High temperatures delay the formation of a gel due to the scission of physicochemical interactions, drastically decreasing their viscosity, whereas upon cooling a stronger gel is formed combining the recovered physicochemical bonds and the newly created chemical crosslinks. Thus, a transition from a supramolecular network to a covalently crosslinked network is observed, and properties such as the elasticity or reprocessability of humin gels are influenced by the stage of polymerization.
Collapse
Affiliation(s)
- Kenneth Cerdan
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium.
| | - Jesus Gandara-Loe
- Department of Microbial and Molecular Systems, Centre for Membrane Separation, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium
| | - Giel Arnauts
- Department of Microbial and Molecular Systems, Centre for Membrane Separation, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium
| | - Vedran Vangramberen
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium.
| | - Anton Ginzburg
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SmaRT), Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Rob Ameloot
- Department of Microbial and Molecular Systems, Centre for Membrane Separation, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium
| | - Erin Koos
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium.
| | - Peter Van Puyvelde
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium.
| |
Collapse
|
6
|
Wassenberg A, Esser T, Poller MJ, Albert J. Investigation of the Formation, Characterization, and Oxidative Catalytic Valorization of Humins. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2864. [PMID: 37049157 PMCID: PMC10095678 DOI: 10.3390/ma16072864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The industrial use of biomass, e.g., for the production of platform chemicals such as levulinic acid, became increasingly important in recent years. However, the efficiency of these processes was reduced by the formation of insoluble solid waste products called humins. Herein, the formation of humins from various carbohydrates was investigated under different process conditions, in order to obtain information about the structure and the formation mechanism. During this process, new potential structural fragments of humins were identified. Subsequently, the produced humins were oxidatively converted to low-molecular-weight carboxylic acids with the use of polyoxometalate catalysts. The experiments showed that the use of sugars in acetic acid and ethanol only lead to the formation of a small amount of humins, which were also structurally most suitable for conversion to carboxylic acids. The main products of the oxidative valorisation of these humins were acetic acid, formic acid, and CO2, respectively, and our results indicate that certain functional groups were converted preferentially. These findings will help to improve processes for the valorisation of biomass by enabling an overall more efficient use of thermo-sensitive feedstock such as carbohydrates.
Collapse
|
7
|
Huang Y, Xu Y, Zhu Y, Huang R, Kuang Y, Wang J, Xiao W, Lin J, Liu Z. Improved glucose yield and concentration of sugarcane bagasse by the pretreatment with ternary deep eutectic solvents and recovery of the pretreated liquid. BIORESOURCE TECHNOLOGY 2022; 366:128186. [PMID: 36307025 DOI: 10.1016/j.biortech.2022.128186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, a novel ternary deep eutectic solvents (DES) consisting of choline chloride/PEG/hydroxyethyl sulfonic acid (HSA) was developed to effectively improve glucose yield and concentration of sugarcane bagasse, and the conditions of the pretreatment were optimized by response surface method (RSM). Under the optimal conditions, the maximum glucose concentration (GC) could reach 12.39 g/L (HSA concentration 1.34 %, PEG400, 2.3 h, 150 °C), and the maximum glucose yield (GY) was 0.2497 g/g (HSA concentration 1.41 %, PEG400, 2.1 h, 150 °C). Hemicellulose was completely removed, and the maximum lignin removal rate was 86.89 %. After pretreatment, 95 % of the pretreated liquid can be recycled. Finally, the structural and morphological changes of bagasse before and after pretreatment were investigated by scanning electron microscopy (SEM), Fourier Transform infrared analyzer (FT-IR) and X-ray diffraction (XRD).
Collapse
Affiliation(s)
- Yanmin Huang
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yuan Xu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yunlong Zhu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Run Huang
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yujie Kuang
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jue Wang
- Institute of Life Medicine, Hunan University, Changsha 410012, PR China
| | - Wenjuan Xiao
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jianghai Lin
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zehuan Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
8
|
Almhofer L, Bischof RH, Madera M, Paulik C. Kinetic and Mechanistic Aspects of Furfural Degradation in Biorefineries. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas Almhofer
- Wood K plus – Competence Center for Wood Composites & Wood Chemistry, Kompetenzzentrum Holz GmbH Linz Austria
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz Linz Austria
| | | | | | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz Linz Austria
| |
Collapse
|
9
|
Tong D, Zhan P, Zhang W, Zhou Y, Huang Y, Qing Y, Chen J. Surfactant‐Assisted Dilute Phosphoric Acid Plus Steam Explosion of Poplar for Fermentable Sugar Production. ChemistrySelect 2022. [DOI: 10.1002/slct.202200423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Denghui Tong
- Ministry of Forestry Bioethanol Research Center Central South University of Forestry and Technology Changsha 410004 China
- Hunan Engineering Research Center for Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- Hunan International Joint Laboratory of Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- School of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004, China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center Central South University of Forestry and Technology Changsha 410004 China
- Hunan Engineering Research Center for Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- Hunan International Joint Laboratory of Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- School of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004, China
| | - Weifeng Zhang
- Ministry of Forestry Bioethanol Research Center Central South University of Forestry and Technology Changsha 410004 China
- Hunan Engineering Research Center for Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- Hunan International Joint Laboratory of Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- School of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004, China
| | - Yongcai Zhou
- Ministry of Forestry Bioethanol Research Center Central South University of Forestry and Technology Changsha 410004 China
- Hunan Engineering Research Center for Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- Hunan International Joint Laboratory of Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- School of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004, China
| | - Yilei Huang
- Ministry of Forestry Bioethanol Research Center Central South University of Forestry and Technology Changsha 410004 China
- Hunan Engineering Research Center for Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- Hunan International Joint Laboratory of Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- School of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004, China
| | - Yan Qing
- Ministry of Forestry Bioethanol Research Center Central South University of Forestry and Technology Changsha 410004 China
- Hunan Engineering Research Center for Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- Hunan International Joint Laboratory of Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- School of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004, China
| | - Jienan Chen
- Ministry of Forestry Bioethanol Research Center Central South University of Forestry and Technology Changsha 410004 China
- Hunan Engineering Research Center for Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- Hunan International Joint Laboratory of Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- School of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004, China
| |
Collapse
|
10
|
Divya PS, Nair S, Kunnikuruvan S. Identification of Crucial Intermediates in the Formation of Humins from Cellulose-Derived Platform Chemicals Under Brønsted Acid Catalyzed Reaction Conditions. Chemphyschem 2022; 23:e202200057. [PMID: 35285118 DOI: 10.1002/cphc.202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/04/2022] [Indexed: 11/11/2022]
Abstract
Humins are one of the undesirable products formed during the dehydration of sugars as well as the conversion of 5-hydroxymethylfurfural (HMF) to value-added products. Thus, reducing the formation of humins is an important strategy for improving the yield of the aforementioned reactions. Even after a plethora of studies, the mechanism of formation and the structure of humins are still elusive. In this regard, we have employed density functional theory-based mechanistic studies and microkinetic analysis to identify crucial intermediates formed from glucose, fructose, and HMF that can initiate the polymerization reactions resulting in humins under Brønsted acid-catalyzed reaction conditions. This study brings light into crucial elementary reaction steps that can be targeted for controlling humins formation. Moreover, this work provides a rationale for the experimentally observed aliphatic chains and HMF condensation products in the humins structure. Different possible polymerization routes that could contribute to the structure of humins are also suggested based on the results. Importantly, the findings of this work indicate that increasing the rate of isomerization of glucose to fructose and reducing the rate of reaction between HMF molecules could be an efficient strategy for reducing humins formation.
Collapse
Affiliation(s)
- P S Divya
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, IISER Thiruvananthapuram, 695551, Thiruvananthapuram, INDIA
| | - Swetha Nair
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, IISER Thiruvananthapuram, 695551, Thiruvananthapuram, INDIA
| | - Sooraj Kunnikuruvan
- IISER Thiruvananthapuram: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, Maruthamala PO, Vithura, 695551, Thiruvananthapuram, INDIA
| |
Collapse
|
11
|
Wei Z, Yao E, Cheng Y, Hu J, Liu Y. Insight into the dehydration of high-concentration fructose to 5-hydroxymethylfurfural in oxygen-containing polar aprotic solvents. NEW J CHEM 2022. [DOI: 10.1039/d2nj01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A high 5-HMF yield of 85.4% was achieved in polar aprotic oxygen-containing solvent with strong electrophilic maleic acid by quenching DHH.
Collapse
Affiliation(s)
- Zuojun Wei
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou 310027, P. R. China
- Institute of Zhejiang University–Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, P. R. China
| | - En Yao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou 310027, P. R. China
- Institute of Zhejiang University–Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, P. R. China
| | - Yuran Cheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou 310027, P. R. China
- Institute of Zhejiang University–Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, P. R. China
| | - Jinbo Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, 1 GongDa Road, Wukang Street, Deqing County, HuZhou 313200, P. R. China
| | - Yingxin Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, 1 GongDa Road, Wukang Street, Deqing County, HuZhou 313200, P. R. China
| |
Collapse
|
12
|
Fiorentini C, Bassani A, Duserm Garrido G, Merino D, Perotto G, Athanassiou A, Peräntie J, Halonen N, Spigno G. High-pressure autohydrolysis process of wheat straw for cellulose recovery and subsequent use in PBAT composites preparation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Sui W, Li S, Zhou X, Dou Z, Liu R, Wu T, Jia H, Wang G, Zhang M. Potential Hydrothermal-Humification of Vegetable Wastes by Steam Explosion and Structural Characteristics of Humified Fractions. Molecules 2021; 26:molecules26133841. [PMID: 34202485 PMCID: PMC8270290 DOI: 10.3390/molecules26133841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, steam explosion (SE) was exploited as a potential hydrothermal-humification process of vegetable wastes to deconstruct their structure and accelerate their decomposition to prepare humified substances. Results indicated that the SE process led to the removal of hemicellulose, re-condensation of lignin, degradation of the cellulosic amorphous region, and the enhancement of thermal stability of broccoli wastes, which provided transformable substrates and a thermal-acidic reaction environment for humification. After SE treatment, total humic substances (HS), humic acids (HAs), and fulvic acids (FAs) contents of broccoli samples accounted for up to 198.3 g/kg, 42.3 g/kg, and 166.6 g/kg, and their purification were also facilitated. With the increment of SE severity, structural characteristics of HAs presented the loss of aliphatic compounds, carbohydrates, and carboxylic acids and the enrichment of aromatic structures and N-containing groups. Lignin substructures were proved to be the predominant aromatic structures and gluconoxylans were the main carbohydrates associated with lignin in HAs, both of their signals were enhanced by SE. Above results suggested that SE could promote the decomposition of easily biodegradable matters and further polycondensation, aromatization, and nitrogen-fixation reactions during humification, which were conducive to the formation of HAs.
Collapse
Affiliation(s)
- Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (W.S.); (S.L.); (X.Z.); (Z.D.); (R.L.); (T.W.)
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (W.S.); (S.L.); (X.Z.); (Z.D.); (R.L.); (T.W.)
| | - Xiaodan Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (W.S.); (S.L.); (X.Z.); (Z.D.); (R.L.); (T.W.)
| | - Zishan Dou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (W.S.); (S.L.); (X.Z.); (Z.D.); (R.L.); (T.W.)
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (W.S.); (S.L.); (X.Z.); (Z.D.); (R.L.); (T.W.)
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (W.S.); (S.L.); (X.Z.); (Z.D.); (R.L.); (T.W.)
| | - Hongyu Jia
- Shandong Academy of Agricultural Sciences Institute of Agricultural Resources and Environment, Jinan 250132, China
- Correspondence: (H.J.); (G.W.); (M.Z.); Tel.: +86-022-60912430 (M.Z.)
| | - Guanhua Wang
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: (H.J.); (G.W.); (M.Z.); Tel.: +86-022-60912430 (M.Z.)
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (W.S.); (S.L.); (X.Z.); (Z.D.); (R.L.); (T.W.)
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300392, China
- Correspondence: (H.J.); (G.W.); (M.Z.); Tel.: +86-022-60912430 (M.Z.)
| |
Collapse
|
14
|
Shi N, Liu Q, Liu Y, Chen L, Zhang H, Huang H, Ma L. Characterization of the Soluble Products Formed during the Hydrothermal Conversion of Biomass-Derived Furanic Compounds by Using LC-MS/MS. ACS OMEGA 2020; 5:23322-23333. [PMID: 32954183 PMCID: PMC7496007 DOI: 10.1021/acsomega.0c03169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
To reveal the hydrothermal conversion routes of the biomass-derived furanic compounds, the soluble products formed during the hydrothermal conversion of 5-hydroxymethylfurfural (HMF), furfural, and furfuryl alcohol were analyzed by liquid chromatography-mass spectrometry (LC-MS) and LC-MS/MS. Multiple carbocyclic compounds containing hydroxy group and carbonyl group were detected, with a molecular mass in the range of 154-272 Da and carbon chain of the length 8-15. The formation of these soluble carbocyclic compounds was proposed to involve hydrolytic ring-opening of the furanic ring, intermolecular aldol condensation, intramolecular aldol condensation, and C-C cleavage reaction. The C-C cleavage reaction was proposed to occur on the dicarbonyl structure of the formed primary polymers.
Collapse
Affiliation(s)
- Ning Shi
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, P. R. China
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou 510640, P. R. China
| | - Qiying Liu
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou 510640, P. R. China
| | - Ying Liu
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, P. R. China
| | - Lijun Chen
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, P. R. China
| | - Hongyan Zhang
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, P. R. China
| | - Hongsheng Huang
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, P. R. China
| | - Longlong Ma
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou 510640, P. R. China
| |
Collapse
|
15
|
New Intensification Strategies for the Direct Conversion of Real Biomass into Platform and Fine Chemicals: What Are the Main Improvable Key Aspects? Catalysts 2020. [DOI: 10.3390/catal10090961] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nowadays, the solvothermal conversion of biomass has reached a good level of development, and now it is necessary to improve the process intensification, in order to boost its further growth on the industrial scale. Otherwise, most of these processes would be limited to the pilot scale or, even worse, to exclusive academic investigations, intended as isolated applications for the development of new catalysts. For this purpose, it is necessary to improve the work-up technologies, combining, where possible, reaction/purification unit operations, and enhancing the feedstock/liquid ratio, thus improving the final concentration of the target product and reducing the work-up costs. Furthermore, it becomes decisive to reconsider more critically the choice of biomass, solvent(s), and catalysts, pursuing the biomass fractionation in its components and promoting one-pot cascade conversion routes. Screening and process optimization activities on a laboratory scale must be fast and functional to the flexibility of these processes, exploiting efficient reaction systems such as microwaves and/or ultrasounds, and using multivariate analysis for an integrated evaluation of the data. These upstream choices, which are mainly of the chemist’s responsibility, are fundamental and deeply interconnected with downstream engineering, economic, and legislative aspects, which are decisive for the real development of the process. In this Editorial, all these key issues will be discussed, in particular those aimed at the intensification of solvothermal processes, taking into account some real case studies, already developed on the industrial scale.
Collapse
|
16
|
Conversion of Xylose to Furfural over Lignin-Based Activated Carbon-Supported Iron Catalysts. Catalysts 2020. [DOI: 10.3390/catal10080821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, conversion of xylose to furfural was studied using lignin-based activated carbon-supported iron catalysts. First, three activated carbon supports were prepared from hydrolysis lignin with different activation methods. The supports were modified with different metal precursors and metal concentrations into five iron catalysts. The prepared catalysts were studied in furfural production from xylose using different reaction temperatures and times. The best results were achieved with a 4 wt% iron-containing catalyst, 5Fe-ACs, which produced a 57% furfural yield, 92% xylose conversion and 65% reaction selectivity at 170 °C in 3 h. The amount of Fe in 5Fe-ACs was only 3.6 µmol and using this amount of homogeneous FeCl3 as a catalyst, reduced the furfural yield, xylose conversion and selectivity. Good catalytic activity of 5Fe-ACs could be associated with iron oxide and hydroxyl groups on the catalyst surface. Based on the recycling experiments, the prepared catalyst needs some improvements to increase its stability but it is a feasible alternative to homogeneous FeCl3.
Collapse
|
17
|
Yang F, Zhang S, Cheng K, Antonietti M. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:1140-1151. [PMID: 31412510 DOI: 10.1016/j.scitotenv.2019.06.045] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
A novel preparation protocol for synthetic, look-a-like humic substances (i.e., fulvic and humic acids) simulating geochemical processes through hydrothermal reaction is presented, with crude waste biomass as an omnipresent and universal precursor. The chemical nature of the organic scaffold and the type and abundance of oxygen-containing functional groups of the synthetic humic substances (A-FA and A-HA) are revealed by a series of examinations. Results from EA, XPS analyze, FTIR spectra and NMR technology matched well each other, suggesting high similarity on chemical structure (abundant aromatic frameworks) and contents (e.g. N and S elements) in both humic acids. Pyrolysis-gas-chromatography/mass spectrometry (Py-GC/MS) analysis is employed on the organic structure and is directly compared to extracted natural humic matter from black soils (Harbin, China). Dehydrated carbohydrates and their condensates with low molecular weight that are rich in oxygen are the main structural components of the artificial fulvic acids, while aromatic structures and aliphatic side chains are almost absent. Aromatics (7.43%) and in some cases long-chain aliphatics (7.15%) are more prominent in the A-HA sample. The combination of the diverse analytical techniques not only allows a better understanding of artificial fulvic and humic acids, but also supports the high similarity to natural humic substances in structure and morphology. As the technology can be easily scaled and is comparable cheap, the as obtained products can be discussed to rehabilitate used up farm land.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, 14476 Potsdam, Germany.
| | - Shuaishuai Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Kui Cheng
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, 14476 Potsdam, Germany.
| |
Collapse
|
18
|
Wang X, Li H, Lin Q, Li R, Li W, Wang X, Peng F, Ren J. Efficient catalytic conversion of dilute-oxalic acid pretreated bagasse hydrolysate to furfural using recyclable ironic phosphates catalysts. BIORESOURCE TECHNOLOGY 2019; 290:121764. [PMID: 31310865 DOI: 10.1016/j.biortech.2019.121764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Efficient conversion of dilute-oxalic acid pretreated bagasse hydrolysate to furfural was developed using recyclable ironic phosphates (FePO4) catalysts in the modified heterogeneous system. The effects of reaction conditions on the furfural yields were investigated, and the stability and water solubility of catalysts were evaluated. Results showed that the maximum furfural yield of 88.7% was obtained in the modified biphasic system by FePO4 catalysts at 190 °C for 120 min. The catalyst could be recycled and reused in conversion of the xylose-rich hydrolysate into furfural due to the unique feature that the catalyst showed solid state at room temperature and could be gradually dissolved into the aqueous phase upon increasing the reaction temperature and time. The experiments of five-time recycles showed that the FePO4 catalyst exhibited excellent stability and catalytic performances.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weiying Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
19
|
Chen Z, Bai X, Lusi A, Jacoby WA, Wan C. One-pot selective conversion of lignocellulosic biomass into furfural and co-products using aqueous choline chloride/methyl isobutyl ketone biphasic solvent system. BIORESOURCE TECHNOLOGY 2019; 289:121708. [PMID: 31271914 DOI: 10.1016/j.biortech.2019.121708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
This study investigated simultaneous lignocellulose fractionation and conversion in a one-pot reaction using an aqueous choline chloride/methyl isobutyl ketone (ChCl/MIBK) biphasic solvent system. Under the optimized condition (170 °C, 60 min, 0.6 wt% H2SO4, 10.7 wt% solid loading), the biphasic solvent solubilized 96% xylan in raw switchgrass, which was simultaneously converted to furfural with a yield of 84.04%. The biphasic solvent was also able to selectively extract lignin, which had a high purity (93.1%), and uncondensed moieties (i.e., Hibbert's ketone), as well as decreased molecular weight and polydispersity index. The resultant pulp was enriched with cellulose (73.3%), which can be completely hydrolyzed into glucose within 48 h via enzymatic hydrolysis. Aqueous ChCl was successfully recycled and reused for atleast three cycles with similar performance in switchgrass fractionation. This study demonstrated that aqueous ChCl/MIBK biphasic system was an effective solvent system for co-production of furfural, high quality technical lignin and digestible cellulose for further upgrading.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO 65211, USA
| | - Xianglan Bai
- Department of Mechanical Engineering, Iowa State University, 2529 Union Drive, Ames, IA 50011, USA
| | - A Lusi
- Department of Mechanical Engineering, Iowa State University, 2529 Union Drive, Ames, IA 50011, USA
| | - William A Jacoby
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO 65211, USA
| | - Caixia Wan
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO 65211, USA.
| |
Collapse
|
20
|
Wan G, Zhang Q, Li M, Jia Z, Guo C, Luo B, Wang S, Min D. How Pseudo-lignin Is Generated during Dilute Sulfuric Acid Pretreatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10116-10125. [PMID: 31442037 DOI: 10.1021/acs.jafc.9b02851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pseudo-lignin is generated from lignocellulose biomass during pretreatment with dilute sulfuric acid and has a significant inhibitory effect on cellulase. However, the mechanism of pseudo-lignin generation remains unclear. The following main points have been addressed to help elucidate the pseudo-lignin generation pathway. Cellulose and xylan were pretreated with sulfuric acid at different concentrations; aliquots were periodically collected; and the changes in the byproducts of the prehydrolysate were quantified. Milled wood lignin (MWL) mixed with cellulose and xylan was pretreated to evaluate the impact of lignin on pseudo-lignin generation. Furfural, 5-hydroxymethylfurfural, and MWL were pretreated as model compounds to investigate pseudo-lignin generation. The result indicated that the increasing acid concentration significantly promoted the generation of pseudo-lignin. When the acid concentration was increased from 0 to 1.00 wt %, pseudo-lignin was increased from 1.36 to 4.05 g. In addition, lignin promoted the pseudo-lignin generation through the condensation between lignin and the generated intermediates.
Collapse
Affiliation(s)
- Guangcong Wan
- College of Light Industry and Food Engineering , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control , Nanning , Guangxi 530004 , People's Republic of China
| | - Qingtong Zhang
- College of Light Industry and Food Engineering , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control , Nanning , Guangxi 530004 , People's Republic of China
| | - Mingfu Li
- College of Light Industry and Food Engineering , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control , Nanning , Guangxi 530004 , People's Republic of China
| | - Zhuan Jia
- College of Light Industry and Food Engineering , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control , Nanning , Guangxi 530004 , People's Republic of China
| | - Chenyan Guo
- College of Light Industry and Food Engineering , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control , Nanning , Guangxi 530004 , People's Republic of China
| | - Bin Luo
- College of Light Industry and Food Engineering , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control , Nanning , Guangxi 530004 , People's Republic of China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control , Nanning , Guangxi 530004 , People's Republic of China
| | - Douyong Min
- College of Light Industry and Food Engineering , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control , Nanning , Guangxi 530004 , People's Republic of China
| |
Collapse
|
21
|
Efficient Microwave-Assisted Hydrolysis of Microcrystalline Cellulose into Glucose Using New Carbon-Based Solid Catalysts. Catal Letters 2019. [DOI: 10.1007/s10562-019-02912-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Shanmugam S, Sun C, Chen Z, Wu YR. Enhanced bioconversion of hemicellulosic biomass by microbial consortium for biobutanol production with bioaugmentation strategy. BIORESOURCE TECHNOLOGY 2019; 279:149-155. [PMID: 30716607 DOI: 10.1016/j.biortech.2019.01.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
As a renewable and sustainable source for next-generation biofuel production, lignocellulosic biomass can be effectively utilized in environmentally friendly manner. In this study, a stable, xylan-utilizing, anaerobic microbial consortium MC1 enriched from mangrove sediments was established, and it was taxonomically identified that the genera Ruminococcus and Clostridium from this community played a crucial role in the substrate utilization. In addition, a butanol-producing Clostridium sp. strain WST was introduced via the bioaugmentation process, which resulted in the conversion of xylan to biobutanol up to 10.8 g/L, significantly improving the butanol yield up to 0.54 g/g by 98-fold. When this system was further applied to other xylan-rich biomass, 1.09 g/L of butanol could be achieved from 20 g/L of corn cob. These results provide another new method to efficiently convert xylan, the main hemicellulose from lignocellulosic biomass into biofuels through a low-cost and eco-friendly manner.
Collapse
Affiliation(s)
| | - Chongran Sun
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Zichuang Chen
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; STU-UNIVPM Joint Algal Research Center, Shantou University, Shantou, Guangdong 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
23
|
Shi N, Liu Q, Ju R, He X, Zhang Y, Tang S, Ma L. Condensation of α-Carbonyl Aldehydes Leads to the Formation of Solid Humins during the Hydrothermal Degradation of Carbohydrates. ACS OMEGA 2019; 4:7330-7343. [PMID: 31459833 PMCID: PMC6648842 DOI: 10.1021/acsomega.9b00508] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 06/01/2023]
Abstract
Catalytic hydrothermal conversion of carbohydrates could provide a series of versatile valuable platform chemicals, but the formation of solid humins greatly decreased the efficiency of the process. Herein, by studying the hydrothermal degradation behavior and analyzing the degradation paths of kinds of model compounds including carbohydrates, furan compounds, cyclic ketone derivatives, and some simple short carbon-chain oxy-organics, we demonstrate that α-carbonyl aldehydes and α-carbonyl acids are the key primary precursors for humin formation during the hydrothermal conversion process. Then, we analyzed the hydrothermal degradation paths of two simple α-carbonyl aldehydes including glyoxal and pyruvaldehyde and found that the α-carbonyl aldehydes could undergo aldol condensation followed by acetal cyclization and dehydration to form solid humins rich of furan ring structure or undergo Cannizaro route (hydration followed by 1,2-hydride shift) to form corresponding α-hydroxy acids. On the basis of the hydrothermal behavior of the α-carbonyl aldehydes, we mapped the hydrothermal degradation routes of carbohydrates (glucose, fructose, and xylose) and illuminated the formation details of α-carbonyl aldehydes, α-hydroxy acids, γ-lactones, furfural derivatives, and humins. Finally, we deduced the typical structure fragments of humins from three α-carbonyl aldehydes of pyruvaldehyde, 2,5-dioxo-6-hydroxy-hexanal, and 3-deoxyglucosone, all of which could be formed during the hydrothermal degradation of hexose.
Collapse
Affiliation(s)
- Ning Shi
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, P. R. China
| | - Qiying Liu
- Guangzhou
Institute of Energy Conversion, Chinese
Academy of Sciences, Guangzhou 510640, P. R. China
- CAS
Key Laboratory of Renewable Energy, Guangzhou 510640, P. R.
China
- Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou 510640, P. R. China
| | - Rongmei Ju
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, P. R. China
| | - Xiong He
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, P. R. China
| | - Yulan Zhang
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, P. R. China
| | - Shiyun Tang
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, P. R. China
| | - Longlong Ma
- Guangzhou
Institute of Energy Conversion, Chinese
Academy of Sciences, Guangzhou 510640, P. R. China
- CAS
Key Laboratory of Renewable Energy, Guangzhou 510640, P. R.
China
- Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou 510640, P. R. China
| |
Collapse
|
24
|
Batista G, Souza RBA, Pratto B, Dos Santos-Rocha MSR, Cruz AJG. Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. BIORESOURCE TECHNOLOGY 2019; 275:321-327. [PMID: 30594843 DOI: 10.1016/j.biortech.2018.12.073] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 05/15/2023]
Abstract
The recalcitrant structures of sugarcane straw and related lignocellulosic biomasses require a pretreatment step to enable a better enzymatic attack during the hydrolysis. Factors like the energy consumption and the formation of inhibitors require the optimization of the pretreatment step. Thus, the influence of different severity factors (SF) on hydrothermal (also called liquid hot water, LHW) pretreatment was evaluated using a factorial design 22 with central point. The obtained results showed that low values of SF (<3.39) did not promote reasonable alteration in the sugarcane straw structures, whereas high SF values (>4.70) resulted in loss of hydrolyzed sugars, generation of inhibitors such as furfural, and formation of pseudo-lignin structures, despite high hemicellulose removal (∼97%). The residence time exhibited low influence on LHW. An optimum condition was found for the process (10 min and 195 °C) with low cellulose solubilization (9.80%) and a reasonable hemicellulose removal (85.45%).
Collapse
Affiliation(s)
- Gustavo Batista
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos, SP, Brazil
| | - Renata B A Souza
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos, SP, Brazil
| | - Bruna Pratto
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos, SP, Brazil
| | - Martha S R Dos Santos-Rocha
- Chemical Engineering Graduate Program, Federal University of Alagoas, Avenida Lourival de Melo Mota, s/n, Cidade Universitária, CEP: 57072-970, Maceió, AL, Brazil
| | - Antonio J G Cruz
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
25
|
Cheng B, Zhang X, Lin Q, Xin F, Sun R, Wang X, Ren J. A new approach to recycle oxalic acid during lignocellulose pretreatment for xylose production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:324. [PMID: 30534202 PMCID: PMC6280388 DOI: 10.1186/s13068-018-1325-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/29/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Dilute oxalic acid pretreatment has drawn much attention because it could selectively hydrolyse the hemicellulose fraction during lignocellulose pretreatment. However, there are few studies focusing on the recovery of oxalic acid. Here, we reported a new approach to recycle oxalic acid used in pretreatment via ethanol extraction. RESULTS The highest xylose content in hydrolysate was 266.70 mg xylose per 1 g corncob (85.0% yield), which was achieved using 150 mmol/L oxalic acid under the optimized treatment condition (140 °C, 2.5 h). These pretreatment conditions were employed to the subsequent pretreatment using recycled oxalic acid. Oxalic acid in the hydrolysate could be recycled according to the following steps: (1) water was removed via evaporation and vacuum drying, (2) ethanol was used to extract oxalic acid in the remaining mixture, and (3) oxalic acid and ethanol were separated by reduced pressure evaporation. The total xylose yields could be stabilized by intermittent adding oxalic acid, and the yields were in range of 46.7-64.3% in this experiment. CONCLUSIONS This sustainable approach of recycling and reuse of oxalic acid has a significant potential application for replacing traditional dilute mineral acid pretreatment of lignocellulose, which could contribute to reduce CO2 emissions and the cost of the pretreatment.
Collapse
Affiliation(s)
- Banggui Cheng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Xiao Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Fengxue Xin
- Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 211800 China
| | - Runcang Sun
- Centre for Lignocellulose Science and Engineering, and Liaoning Key Laboratory Pulp and Paper Engineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| |
Collapse
|