1
|
Wu T, Rodrigues AA, Fayle TM, Henry LM. Defensive Symbiont Genotype Distributions Are Linked to Parasitoid Attack Networks. Ecol Lett 2025; 28:e70082. [PMID: 39964074 PMCID: PMC11834374 DOI: 10.1111/ele.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Facultative symbionts are widespread in arthropods and can provide important services such as protection from natural enemies. Yet what shapes associations with defensive symbionts in nature remains unclear. Two hypotheses suggest that interactions with either antagonists or host plants explain the prevalence of symbionts through shared selective pressures or vectors of symbiont transmission. Here we investigate the factors determining similarities in the Hamiltonella defensa symbiosis shared amongst field-collected aphid species. After accounting for host species relatedness, we find that Hamiltonella's genotype distribution aligns with sharing the same parasitoids, rather than host plants, highlighting parasitoids and hosts as key selective agents shaping the symbiosis across aphid species. Our data indicates parasitoid host specificity drives the prevalence of specific aphid-Hamiltonella associations, suggesting defensive symbioses are maintained by the selective pressure imposed by dominant parasitoids and their aphid hosts. These findings underscore the importance of interactions with natural enemies in explaining patterns of defensive symbiosis in nature.
Collapse
Affiliation(s)
- Taoping Wu
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Anoushka A. Rodrigues
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Tom M. Fayle
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic
| | - Lee M. Henry
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
2
|
Yu W, Yang Q, Gill A, Chirgwin E, Gu X, Joglekar C, Umina PA, Hoffmann AA. A persistent bacterial Regiella transinfection in the bird cherry-oat aphid Rhopalosiphum padi increasing host fitness and decreasing plant virus transmission. PEST MANAGEMENT SCIENCE 2025. [PMID: 39823167 DOI: 10.1002/ps.8642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The bird cherry-oat aphid, Rhopalosiphum padi, is a major pest of agriculture due to its ability to directly damage crops and transmit plant viruses. As industries move away from chemical pest control, there is interest in exploring new options to suppress the impact of this pest. RESULTS We describe the production of a transinfected line of R. padi carrying the bacterial endosymbiont, Regiella insecticola, originating from the green peach aphid, Myzus persicae. We show that Regiella increases the fitness of its novel host despite decreasing fitness in its native host. Regiella also shows a low level of horizontal transmission. Importantly the infection suppresses the ability of R. padi to transmit the barley yellow dwarf virus which damages wheat plants. CONCLUSION Our results suggest this Regiella transinfection could be released to suppress virus transmission by aphids with its ability to persist and spread in situations where damage from the virus exceeds that from direct feeding by the aphid. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenjuan Yu
- Pest and Environmental Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Australia
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qiong Yang
- Pest and Environmental Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Alex Gill
- Pest and Environmental Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Australia
| | | | - Xinyue Gu
- Pest and Environmental Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Chinmayee Joglekar
- Pest and Environmental Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Paul A Umina
- Pest and Environmental Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Australia
- Cesar Australia, Brunswick, Australia
| | - Ary A Hoffmann
- Pest and Environmental Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Shang LH, Cai XY, Li XJ, Wang YZ, Wang JD, Hou YM. Role of Gut Bacteria in Enhancing Host Adaptation of Tuta absoluta to Different Host Plants. INSECTS 2024; 15:795. [PMID: 39452371 PMCID: PMC11508330 DOI: 10.3390/insects15100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
The insect gut bacteria play important roles in insect development and growth, such as immune defense, nutrient metabolism, regulating insect adaptations for plants, etc. The Tuta absoluta (Meyrick) is a destructive invasive pest that mainly feeds on solanaceae plants. However, the relationship between gut microflora and host adaption of T. absoluta remains to be known. In this study, we first compared the survival adaptability of T. absoluta feeding with two host plants (tomatoes and potatoes). The T. absoluta completed the generation cycle by feeding on the leaves of both plants. However, the larvae feeding on tomato leaves have shorter larvae durations, longer adult durations, and a greater number of egg production per female. After Single Molecular Real-Time (SMRT) sequencing, according to the LDA Effect Size (LEfSe) analysis, the gut bacterial biomarker of T. absoluta fed on tomato was Enterobacter cloacae and the gut bacterial biomarker of T. absoluta fed on potatoes was Staphylococcus gallinarum and Enterococcus gallinarum. Furthermore, a total of 6 and 7 culturable bacteria were isolated from the guts of tomato- and potato-treated T. absoluta, respectively. However, the isolated strains included bacterial biomarkers E. cloacae and S. gallinarum but not E. gallinarum. In addition, different stains bacterial biomarkers on T. absoluta feeding selection were also studied. E. cloacae enhanced the host preference of the SLTA (T. absoluta of tomato strain) for tomato but had no impact on STTA (T. absoluta of potato strain). S. gallinarum improved the host preference of STTA to a potato but did not affect SLTA. The results showed that the gut bacteria of T. absoluta were affected by exposure to different host plants, and the bacterial biomarkers played an important role in host adaptability. This study not only deepens our understanding of gut bacteria-mediated insect-plant interactions but also provides theoretical support for the development of environmentally friendly and effective agricultural pest control methods.
Collapse
Affiliation(s)
- Luo-Hua Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-H.S.); (X.-Y.C.); (X.-J.L.); (Y.-Z.W.)
| | - Xiang-Yun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-H.S.); (X.-Y.C.); (X.-J.L.); (Y.-Z.W.)
| | - Xiu-Jie Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-H.S.); (X.-Y.C.); (X.-J.L.); (Y.-Z.W.)
| | - Yu-Zhou Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-H.S.); (X.-Y.C.); (X.-J.L.); (Y.-Z.W.)
| | - Jin-Da Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-H.S.); (X.-Y.C.); (X.-J.L.); (Y.-Z.W.)
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-H.S.); (X.-Y.C.); (X.-J.L.); (Y.-Z.W.)
| |
Collapse
|
4
|
Kang K, Wang L, Gong J, Tang Y, Wei K. Diversity analyses of bacterial symbionts in four Sclerodermus (Hymenoptera: Bethylidae) parasitic wasps, the dominant biological control agents of wood-boring beetles in China. Front Cell Infect Microbiol 2024; 14:1439476. [PMID: 39119296 PMCID: PMC11306144 DOI: 10.3389/fcimb.2024.1439476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Objective Sclerodermus wasps are important biocontrol agents of a class of wood borers. Bacterial symbionts influence the ecology and biology of their hosts in a variety of ways, including the formation of life-long beneficial or detrimental parasitic infections. However, only a few studies have explored the species and content of the symbionts in the Sclerodermus species. Methods Here, a high-throughput sequencing study of the V3-V4 region of the 16S ribosomal RNA gene revealed a high level of microbial variety in four Sclerodermus waps, and their diversities and functions were also predicted. Results The three most prevalent phyla of microorganisms in the sample were Firmicutes, Bacteroides, and Proteus. The KEEG pathways prediction results indicated that the three pathways with the highest relative abundances in the S. sichuanensis species were translation, membrane transport, and nucleotide metabolism. These pathways differed from those observed in S. guani, S. pupariae, and S. alternatusi, which exhibited carbohydrate metabolism, membrane transport, and amino acid metabolism, respectively. Bacteroides were found to be abundant in several species, whereas Wolbachia was the most abundant among S. sichuanensis, with a significant negative correlation between temperature and carriage rate. Conclusions These results offer insights into the microbial communities associated with the bethylid wasps, which is crucial for understanding how to increase the reproductive capacity of wasps, enhance their parasitic effects, and lower cost in biocontrol.
Collapse
Affiliation(s)
- Kui Kang
- College of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Lina Wang
- College of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Jun Gong
- College of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Yanlong Tang
- College of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Ke Wei
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
5
|
Gonzalez-Gonzalez A, Cabrera N, Rubio-Meléndez ME, Sepúlveda DA, Ceballos R, Fernández N, Francis F, Figueroa CC, Ramirez CC. Facultative endosymbionts modulate the aphid reproductive performance on wheat cultivars differing in contents of benzoxazinoids. PEST MANAGEMENT SCIENCE 2024; 80:1949-1956. [PMID: 38088471 DOI: 10.1002/ps.7932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 03/12/2024]
Abstract
BACKGROUND Facultative bacterial endosymbionts have the potential to influence the interactions between aphids, their natural enemies, and host plants. Among the facultative symbionts found in populations of the grain aphid Sitobion avenae in central Chile, the bacterium Regiella insecticola is the most prevalent. In this study, we aimed to investigate whether infected and cured aphid lineages exhibit differential responses to wheat cultivars containing varying levels of the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), which is a xenobiotic compound produced by plants. Specifically, we examined the reproductive performance responses of the most frequently encountered genotypes of Sitobion avenae when reared on wheat seedlings expressing low, medium, and high concentrations of DIMBOA. RESULTS Our findings reveal that the intrinsic rate of population increase (rm ) in cured lineages of Sitobion avenae genotypes exhibits a biphasic pattern, characterized by the lowest rm and an extended time to first reproduction on wheat seedlings with medium levels of DIMBOA. In contrast, the aphid genotypes harbouring Regiella insecticola display idiosyncratic responses, with the two most prevalent genotypes demonstrating improved performance on seedlings featuring an intermediate content of DIMBOA compared to their cured counterparts. CONCLUSION This study represents the first investigation into the mediating impact of facultative endosymbionts on aphid performance in plants exhibiting varying DIMBOA contents. These findings present exciting prospects for identifying novel targets for aphid control by manipulating the presence of aphid symbionts. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Angelica Gonzalez-Gonzalez
- Centre for Molecular and Functional Ecology, Institute of Biological Sciences, University of Talca, Talca, Chile
| | - Nuri Cabrera
- Centre for Molecular and Functional Ecology, Institute of Biological Sciences, University of Talca, Talca, Chile
| | | | - Daniela A Sepúlveda
- Centre for Molecular and Functional Ecology, Institute of Biological Sciences, University of Talca, Talca, Chile
| | - Ricardo Ceballos
- Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Chillán, Chile
| | - Natalí Fernández
- Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Chillán, Chile
| | - Frederic Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Christian C Figueroa
- Centre for Molecular and Functional Ecology, Institute of Biological Sciences, University of Talca, Talca, Chile
| | - Claudio C Ramirez
- Centre for Molecular and Functional Ecology, Institute of Biological Sciences, University of Talca, Talca, Chile
| |
Collapse
|
6
|
Gu X, Ross PA, Gill A, Yang Q, Ansermin E, Sharma S, Soleimannejad S, Sharma K, Callahan A, Brown C, Umina PA, Kristensen TN, Hoffmann AA. A rapidly spreading deleterious aphid endosymbiont that uses horizontal as well as vertical transmission. Proc Natl Acad Sci U S A 2023; 120:e2217278120. [PMID: 37094148 PMCID: PMC10161079 DOI: 10.1073/pnas.2217278120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/23/2023] [Indexed: 04/26/2023] Open
Abstract
Endosymbiotic bacteria that live inside the cells of insects are typically only transmitted maternally and can spread by increasing host fitness and/or modifying reproduction in sexual hosts. Transinfections of Wolbachia endosymbionts are now being used to introduce useful phenotypes into sexual host populations, but there has been limited progress on applications using other endosymbionts and in asexual populations. Here, we develop a unique pathway to application in aphids by transferring the endosymbiont Rickettsiella viridis to the major crop pest Myzus persicae. Rickettsiella infection greatly reduced aphid fecundity, decreased heat tolerance, and modified aphid body color, from light to dark green. Despite inducing host fitness costs, Rickettsiella spread rapidly through caged aphid populations via plant-mediated horizontal transmission. The phenotypic effects of Rickettsiella were sensitive to temperature, with spread only occurring at 19 °C and not 25 °C. Body color modification was also lost at high temperatures despite Rickettsiella maintaining a high density. Rickettsiella shows the potential to spread through natural M. persicae populations by horizontal transmission and subsequent vertical transmission. Establishment of Rickettsiella in natural populations could reduce crop damage by modifying population age structure, reducing population growth and providing context-dependent effects on host fitness. Our results highlight the importance of plant-mediated horizontal transmission and interactions with temperature as drivers of endosymbiont spread in asexual insect populations.
Collapse
Affiliation(s)
- Xinyue Gu
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| | - Alex Gill
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Eloïse Ansermin
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Sonia Sharma
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Safieh Soleimannejad
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kanav Sharma
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashley Callahan
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Courtney Brown
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul A. Umina
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Cesar Australia, Brunswick, VIC 3052, Australia
| | - Torsten N. Kristensen
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| |
Collapse
|
7
|
Li J, An Z, Luo J, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Gao X, Cui J. Parasitization of Aphis gossypii Glover by Binodoxys communis Gahan Causes Shifts in the Ovarian Bacterial Microbiota. INSECTS 2023; 14:314. [PMID: 37103129 PMCID: PMC10142764 DOI: 10.3390/insects14040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Aphis gossypii Glover is an important agricultural pest distributed worldwide. Binodoxys communis Gahan is the main parasitoid wasp of A. gossypii. Previous studies have shown that parasitization causes reduced egg production in A. gossypii, but the effects of parasitism on the symbiotic bacteria in the host ovaries are unknown. RESULTS In this study, we analyzed the microbial communities in the ovaries of A. gossypii without and after parasitization. Whether parasitized or not, Buchnera was the dominant genus of symbiotic bacteria in the ovaries, followed by facultative symbionts including Arsenophonus, Pseudomonas, and Acinetobacter. The relative abundance of Buchnera in the aphid ovary increased after parasitization for 1 d in both third-instar nymph and adult stages, but decreased after parasitization for 3 d. The shifts in the relative abundance of Arsenophonus in both stages were the same as those observed for Buchnera. In addition, the relative abundance of Serratia remarkably decreased after parasitization for 1 d and increased after parasitization for 3 d. A functional predictive analysis of the control and parasitized ovary microbiomes revealed that pathways primarily enriched in parasitization were "amino acid transport and metabolism" and "energy production and conversion." Finally, RT-qPCR analysis was performed on Buchnera, Arsenophonus, and Serratia. The results of RT-qPCR were the same as the results of 16S rDNA sequencing. CONCLUSIONS These results provide a framework for investigating shifts in the microbial communities in host ovaries, which may be responsible for reduced egg production in aphids. These findings also broaden our understanding of the interactions among aphids, parasitoid wasps, and endosymbionts.
Collapse
Affiliation(s)
- Jinming Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhe An
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
8
|
Aphid species specializing on milkweed harbor taxonomically similar bacterial communities that differ in richness and relative abundance of core symbionts. Sci Rep 2022; 12:21127. [PMID: 36477425 PMCID: PMC9729595 DOI: 10.1038/s41598-022-25554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Host plant range is arguably one of the most important factors shaping microbial communities associated with insect herbivores. However, it is unclear whether host plant specialization limits microbial community diversity or to what extent herbivores sharing a common host plant evolve similar microbiomes. To investigate whether variation in host plant range influences the assembly of core herbivore symbiont populations we compared bacterial diversity across three milkweed aphid species (Aphis nerii, Aphis asclepiadis, Myzocallis asclepiadis) feeding on a common host plant (Asclepias syriaca) using 16S rRNA metabarcoding. Overall, although there was significant overlap in taxa detected across all three aphid species (i.e. similar composition), some structural differences were identified within communities. Each aphid species harbored bacterial communities that varied in terms of richness and relative abundance of key symbionts. However, bacterial community diversity did not vary with degree of aphid host plant specialization. Interestingly, the narrow specialist A. asclepiadis harbored significantly higher relative abundances of the facultative symbiont Arsenophonus compared to the other two aphid species. Although many low abundance microbes were shared across all milkweed aphids, key differences in symbiotic partnerships were observed that could influence host physiology or additional ecological variation in traits that are microbially-mediated. Overall, this study suggests overlap in host plant range can select for taxonomically similar microbiomes across herbivore species, but variation in core aphid symbionts within these communities may still occur.
Collapse
|
9
|
Li T, Wei Y, Zhao C, Li S, Gao S, Zhang Y, Wu Y, Lu C. Facultative symbionts are potential agents of symbiont-mediated RNAi in aphids. Front Microbiol 2022; 13:1020461. [PMID: 36504780 PMCID: PMC9727308 DOI: 10.3389/fmicb.2022.1020461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Aphids are major crop pests, and they can be controlled through the application of the promising RNA interference (RNAi) techniques. However, chemical synthesis yield of dsRNA for RNAi is low and costly. Another sustainable aphid pest control strategy takes advantage of symbiont-mediated RNAi (SMR), which can generate dsRNA by engineered microbes. Aphid host the obligate endosymbiont Buchnera aphidicola and various facultative symbionts that not only have a wide host range but are also vertically and horizontally transmitted. Thus, we described the potential of facultative symbionts in aphid pest control by SMR. We summarized the community and host range of these facultative symbionts, and then reviewed their probable horizontal transmitted routes and ecological functions. Moreover, recent advances in the cultivation and genetic engineering of aphid facultative symbionts were discussed. In addition, current legislation of dsRNA-based pest control strategies and their safety assessments were reviewed.
Collapse
Affiliation(s)
- Tong Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Chenchen Zhao
- Henan International Laboratory for Green Pest Control /College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shaojian Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Suxia Gao
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuanchen Zhang
- College of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chuantao Lu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China,Chuantao Lu
| |
Collapse
|
10
|
Clavé C, Sugio A, Morlière S, Pincebourde S, Simon J, Foray V. Physiological costs of facultative endosymbionts in aphids assessed from energy metabolism. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Corentin Clavé
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS Université de Tours Tours France
- Department of Agricultural Sciences University of Naples Federico II Portici Italy
| | - Akiko Sugio
- IGEPP, Agrocampus Ouest, INRA Université de Rennes 1 Le Rheu France
| | | | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS Université de Tours Tours France
| | | | - Vincent Foray
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS Université de Tours Tours France
| |
Collapse
|
11
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
12
|
Boyd BM, Chevignon G, Patel V, Oliver KM, Strand MR. Evolutionary genomics of APSE: a tailed phage that lysogenically converts the bacterium Hamiltonella defensa into a heritable protective symbiont of aphids. Virol J 2021; 18:219. [PMID: 34758862 PMCID: PMC8579659 DOI: 10.1186/s12985-021-01685-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background Most phages infect free-living bacteria but a few have been identified that infect heritable symbionts of insects or other eukaryotes. Heritable symbionts are usually specialized and isolated from other bacteria with little known about the origins of associated phages. Hamiltonella defensa is a heritable bacterial symbiont of aphids that is usually infected by a tailed, double-stranded DNA phage named APSE. Methods We conducted comparative genomic and phylogenetic studies to determine how APSE is related to other phages and prophages. Results Each APSE genome was organized into four modules and two predicted functional units. Gene content and order were near-fully conserved in modules 1 and 2, which encode predicted DNA metabolism genes, and module 4, which encodes predicted virion assembly genes. Gene content of module 3, which contains predicted toxin, holin and lysozyme genes differed among haplotypes. Comparisons to other sequenced phages suggested APSE genomes are mosaics with modules 1 and 2 sharing similarities with Bordetella-Bcep-Xylostella fastidiosa-like podoviruses, module 4 sharing similarities with P22-like podoviruses, and module 3 sharing no similarities with known phages. Comparisons to other sequenced bacterial genomes identified APSE-like elements in other heritable insect symbionts (Arsenophonus spp.) and enteric bacteria in the family Morganellaceae. Conclusions APSEs are most closely related to phage elements in the genus Arsenophonus and other bacteria in the Morganellaceae. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01685-y.
Collapse
Affiliation(s)
- Bret M Boyd
- Department of Entomology, University of Georgia Athens, Athens, GA, USA. .,Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA.
| | - Germain Chevignon
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER, La Tremblade, France
| | - Vilas Patel
- Department of Entomology, University of Georgia Athens, Athens, GA, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia Athens, Athens, GA, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia Athens, Athens, GA, USA.
| |
Collapse
|
13
|
Salazar MM, Pupo MT, Brown AMV. Co-Occurrence of Viruses, Plant Pathogens, and Symbionts in an Underexplored Hemipteran Clade. Front Cell Infect Microbiol 2021; 11:715998. [PMID: 34513731 PMCID: PMC8426549 DOI: 10.3389/fcimb.2021.715998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/30/2021] [Indexed: 12/05/2022] Open
Abstract
Interactions between insect symbionts and plant pathogens are dynamic and complex, sometimes involving direct antagonism or synergy and sometimes involving ecological and evolutionary leaps, as insect symbionts transmit through plant tissues or plant pathogens transition to become insect symbionts. Hemipterans such as aphids, whiteflies, psyllids, leafhoppers, and planthoppers are well-studied plant pests that host diverse symbionts and vector plant pathogens. The related hemipteran treehoppers (family Membracidae) are less well-studied but offer a potentially new and diverse array of symbionts and plant pathogenic interactions through their distinct woody plant hosts and ecological interactions with diverse tending hymenopteran taxa. To explore membracid symbiont–pathogen diversity and co-occurrence, this study performed shotgun metagenomic sequencing on 20 samples (16 species) of treehopper, and characterized putative symbionts and pathogens using a combination of rapid blast database searches and phylogenetic analysis of assembled scaffolds and correlation analysis. Among the 8.7 billion base pairs of scaffolds assembled were matches to 9 potential plant pathogens, 12 potential primary and secondary insect endosymbionts, numerous bacteriophages, and other viruses, entomopathogens, and fungi. Notable discoveries include a divergent Brenneria plant pathogen-like organism, several bee-like Bombella and Asaia strains, novel strains of Arsenophonus-like and Sodalis-like symbionts, Ralstonia sp. and Ralstonia-type phages, Serratia sp., and APSE-type phages and bracoviruses. There were several short Phytoplasma and Spiroplasma matches, but there was no indication of plant viruses in these data. Clusters of positively correlated microbes such as yeast-like symbionts and Ralstonia, viruses and Serratia, and APSE phage with parasitoid-type bracoviruses suggest directions for future analyses. Together, results indicate membracids offer a rich palette for future study of symbiont–plant pathogen interactions.
Collapse
Affiliation(s)
- McKinlee M Salazar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Mônica T Pupo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
14
|
Li Q, Sun J, Qin Y, Fan J, Zhang Y, Tan X, Hou M, Chen J. Reduced insecticide susceptibility of the wheat aphid Sitobion miscanthi after infection by the secondary bacterial symbiont Hamiltonella defensa. PEST MANAGEMENT SCIENCE 2021; 77:1936-1944. [PMID: 33300163 DOI: 10.1002/ps.6221] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bacterial symbionts in insects, especially aphids, have a major influence on host adaptation. We previously showed that infection with the secondary symbiont Hamiltonella defensa increases the fitness of the wheat aphid Sitobion miscanthi, yielding increases in fitness parameters such as adult weight and offspring number. However, whether H. defensa affects the sensitivity of host aphids to insecticides remains unknown. RESULTS We tested the effects of H. defensa on host aphid susceptibility to the insecticides chlorpyrifos methyl, imidacloprid, cyantraniliprole and acetamiprid. Our results showed that compared with Hamiltonella-free aphid clones, Hamiltonella-infected aphid clones exhibited lower sensitivity to most of the tested insecticides at low concentrations. Quantitative polymerase chain reaction showed that the density of H. defensa in the infected clones was slightly decreased at 24 h but then sharply increased until the late stage after treatment with the different insecticides. H. defensa in the host aphids was detected by fluorescence in situ hybridization and was localized to the aphid hindgut. Levels of the detoxification enzymes acetylcholinesterase, glutathione transferase and carboxylesterase were significantly higher in Hamiltonella-infected clones than in Hamiltonella-free clones. CONCLUSIONS The findings indicated that infection with H. defensa reduced aphid susceptibility to the investigated insecticides at low concentrations, potentially by increasing detoxification enzyme activity in the host. Therefore, symbiont-mediated insecticide resistance should be taken into account when performing resistance-monitoring studies. Studies of symbiont-mediated insecticide resistance may enhance our understanding of the emergence of insecticide resistance in agricultural systems. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - JingXuan Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - YaoGuo Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - XiaoLing Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - MaoLin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - JuLian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Li F, Hua H, Han Y, Hou M. Plant-Mediated Horizontal Transmission of Asaia Between White-Backed Planthoppers, Sogatella furcifera. Front Microbiol 2020; 11:593485. [PMID: 33329476 PMCID: PMC7734105 DOI: 10.3389/fmicb.2020.593485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022] Open
Abstract
Asaia is a bacterial symbiont of sugar-feeding insects that has been shown to be vertically transmitted by maternal transmission and paternal transmission mechanism, and to be horizontally transmitted via co-feeding artificial diet and venereal routes. Here, the first case of plant-mediated horizontal transmission of Asaia between white-backed planthoppers (WBPH), Sogatella furcifera, was reported. In Asaia-infected WBPH, Asaia was detected mostly in salivary glands and to a less extent in stylets. The rice leaf sheaths fed by Asaia-infected WBPH for 12 h were all positive with Asaia, where Asaia persisted for at least 30 d but was localized in the feeding sites only. When confined to Asaia-infected leaf sheaths for 7 d at the sites pre-infested by the Asaia-infected WBPH, all Asaia-free WBPH became infected with Asaia and the acquired Asaia could be vertically transmitted to their offspring. Phylogenetic analysis confirmed an identical Asaia strain in the Asaia-infected donor WBPH, the Asaia-infected leaf sheaths, and the newly infected recipient WBPH. Our findings provide direct evidence for the first time that rice plant can mediate horizontal transmission of Asaia between WBPH, which may contribute to the spread of Asaia in the field WBPH populations.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hongxia Hua
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqiang Han
- College of Life Science and Environmental Resources, Yichun University, Yichun, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Ives AR, Barton BT, Penczykowski RM, Harmon JP, Kim KL, Oliver K, Radeloff VC. Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system. Nat Ecol Evol 2020; 4:702-711. [DOI: 10.1038/s41559-020-1155-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
|
17
|
Li Q, Fan J, Sun J, Zhang Y, Hou M, Chen J. Anti-plant Defense Response Strategies Mediated by the Secondary Symbiont Hamiltonella defensa in the Wheat Aphid Sitobion miscanthi. Front Microbiol 2019; 10:2419. [PMID: 31708894 PMCID: PMC6823553 DOI: 10.3389/fmicb.2019.02419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Bacterial symbionts are omnipresent in insects, particularly aphids, and often exert important effects on the host ecology; however, examples of symbionts that mediate herbivore-plant interactions remain limited. Here, three clones with identical genetic backgrounds were established: a Hamiltonella defensa-free clone, H. defensa-infected clone and H. defensa-cured clone. H. defensa infection was found to increase the fitness of Sitobion miscanthi by increasing the total number of offspring and decreasing the age of first reproduction. Furthermore, gene expression studies and phytohormone measurement showed that feeding by the Hamiltonella-infected clone suppressed the salicylic acid (SA)- and jasmonic acid (JA)-related defense pathways and SA/JA accumulation in wheat plants relative to feeding by the other two clones. Additionally, after feeding by the Hamiltonella-infected clone, the activity levels of the defense-related enzymes polyphenol oxidase (PPO) and peroxidase (POD) in wheat plants were significantly decreased compared with the levels observed after feeding by the other two clones. Taken together, these data reveal for the first time the potential role of H. defensa of S. miscanthi in mediating the anti-plant defense responses of aphids.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - JingXuan Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - MaoLin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - JuLian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Pons I, Renoz F, Noël C, Hance T. Circulation of the Cultivable Symbiont Serratia symbiotica in Aphids Is Mediated by Plants. Front Microbiol 2019; 10:764. [PMID: 31037067 PMCID: PMC6476230 DOI: 10.3389/fmicb.2019.00764] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 11/17/2022] Open
Abstract
Symbiosis is a common phenomenon in nature that substantially affects organismal ecology and evolution. Fundamental questions regarding how mutualistic associations arise and evolve in nature remain, however, poorly studied. The aphid-Serratia symbiotica bacterium interaction represents a valuable model to study mechanisms shaping these symbiotic interspecific interactions. S. symbiotica strains capable of living independently of aphid hosts have recently been isolated. These strains probably resulted from horizontal transfers and could be an evolutionary link to an intra-organismal symbiosis. In this context, we used the tripartite interaction between the aphid Aphis fabae, a cultivable S. symbiotica bacterium, and the host plant Vicia faba to evaluate the bacterium ability to circulate in this system, exploring its environmental acquisition by aphids and horizontal transmission between aphids via the host plant. Using molecular analyses and fluorescence techniques, we showed that the cultivable S. symbiotica can enter the plants and induce new bacterial infections in aphids feeding on these new infected plants. Remarkably, we also found that the bacterium can have positive effects on the host plant, mainly at the root level. Furthermore, our results demonstrated that cultivable S. symbiotica can be horizontally transferred from infected to uninfected aphids sharing the same plant, providing first direct evidence that plants can mediate horizontal transmission of certain strains of this symbiont species. These findings highlight the importance of considering symbiotic associations in complex systems where microorganisms can circulate between different compartments. Our study can thus have major implications for understanding the multifaceted interactions between microbes, insects and plants.
Collapse
Affiliation(s)
- Inès Pons
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Renoz
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Christine Noël
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|