1
|
Guo S, Chai S, Guo Y, Shi X, Han F, Qu T, Xing L, Yang Q, Gao J, Gao X, Feng B, Song H, Yang P. Mapping of major QTL and candidate gene analysis for hull colour in foxtail millet (Setaria italica (L.) P. Beauv.). BMC Genomics 2023; 24:458. [PMID: 37582696 PMCID: PMC10428602 DOI: 10.1186/s12864-023-09517-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/13/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Hull colour is an important morphological marker for selection in seed production of foxtail millet. However, the molecular mechanisms underlying hull colour variation remain unknown. RESULTS An F7 recombinant inbred line (RIL) population containing 215 lines derived from Hongjiugu × Yugu18 was used to analyze inheritance and detect the quantitative trait loci (QTL) for four hull colour traits using major gene plus polygene mixed inheritance analysis and composite interval mapping (CIM) in four environments. Genetic analysis revealed that the hull colour L* value (HCL*) was controlled by two major genes plus additive polygenes, the hull colour a* value (HCa*) was controlled by three major genes, the hull colour b* value (HCb*) was controlled by two major genes plus polygenes, and the hull colour C* value (HCC*) was controlled by four major genes. A high-density genetic linkage map covering 1227.383 cM of the foxtail millet genome, with an average interval of 0.879 cM between adjacent bin markers, was constructed using 1420 bin markers. Based on the genetic linkage map and the phenotypic data, a total of 39 QTL were detected for these four hull colour traits across four environments, each explaining 1.50%-49.20% of the phenotypic variation. Of these, six environmentally stable major QTL were co-localized to regions on chromosomes 1 and 9, playing a major role in hull colour. There were 556 annotated genes within the two QTL regions. Based on the functions of homologous genes in Arabidopsis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) gene annotations, five genes were predicted as candidate genes for further studies. CONCLUSIONS This is the first study to use an inheritance model and QTL mapping to determine the genetic mechanisms of hull colour trait in foxtail millet. We identified six major environmentally stable QTL and predicted five potential candidate genes to be associated with hull colour. These results advance the current understanding of the genetic mechanisms underlying hull colour traits in foxtail millet and provide additional resources for application in genomics-assisted breeding and potential isolation and functional characterization of the candidate genes.
Collapse
Affiliation(s)
- Shuqing Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Shaohua Chai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xing Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Fei Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Ting Qu
- Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lu Xing
- Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qinghua Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Hui Song
- Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Pu Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Genome-Wide Association Studies of Salt Tolerance at the Seed Germination Stage and Yield-Related Traits in Brassica napus L. Int J Mol Sci 2022; 23:ijms232415892. [PMID: 36555533 PMCID: PMC9785822 DOI: 10.3390/ijms232415892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Salt stress severely affects crop growth and development and reduces the yield of Brassica napus. Exploring natural genetic variations for high salt tolerance in B. napus seedlings is an effective approach to improve productivity under salt stress. Using 10,658 high-quality single nucleotide polymorphic (SNP) markers developed by specific-locus amplified fragment sequencing (SLAF-seq) technology, genome-wide association studies (GWAS) were performed to investigate the genetic basis of salt tolerance and yield-related traits of B. napus. The results revealed that 77 and 497 SNPs were significantly associated with salt tolerance and yield-related traits, of which 40 and 58 SNPs were located in previously reported QTLs/SNPs, respectively. We identified nineteen candidate genes orthologous with Arabidopsis genes known to be associated with salt tolerance and seven potential candidates controlling both salt tolerance and yield. Our study provides a novel genetic resource for the breeding of high-yield cultivars resistant to salt stress.
Collapse
|
3
|
Kim SS, Kim HJ, Park KJ, Kang SB, Park Y, Han SG, Kim M, Song YH, Kim DS. Metabolomic Profiling of Citrus unshiu during Different Stages of Fruit Development. PLANTS 2022; 11:plants11070967. [PMID: 35406947 PMCID: PMC9002680 DOI: 10.3390/plants11070967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
Citrus fruits undergo significant metabolic profile changes during their development process. However, limited information is available on the changes in the metabolites of Citrus unshiu during fruit development. Here, we analyzed the total phenolic content (TPC), total carotenoid content (TCC), antioxidant activity, and metabolite profiles in C. unshiu fruit flesh during different stages of fruit development and evaluated their correlations. The TPC and antioxidant activity significantly decreased during fruit development, whereas the TCC increased. The metabolite profiles, including sugars, acidic compounds, amino acids, flavonoids, limonoids, carotenoids, and volatile compounds (mono- and sesquiterpenes), in C. unshiu fruit flesh also changed significantly, and a citrus metabolomic pathway related to fruit development was proposed. Based on the data, C. unshiu fruit development was classified into three groups: Group 1 (Aug. 1), Group 2 (Aug. 31 and Sep. 14), and Group 3 (Oct. 15 and Nov. 16). Although citrus peel was not analyzed and the sensory and functional qualities during fruit development were not investigated, the results of this study will help in our understanding of the changes in chemical profile during citrus fruit development. This can provide vital information for various applications in the C. unshiu industry.
Collapse
Affiliation(s)
- Sang Suk Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Hyun-Jin Kim
- Division of Applied Life Sciences (BK21 Four), Gyeongsang National University, Jinju 52828, Korea;
| | - Kyung Jin Park
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Seok Beom Kang
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - YoSup Park
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Seong-Gab Han
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Misun Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Yeong Hun Song
- Department of Agricultural Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
| | - Dong-Shin Kim
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-2555
| |
Collapse
|
4
|
Kim DS, Lee S, Park SM, Yun SH, Gab HS, Kim SS, Kim HJ. Comparative Metabolomics Analysis of Citrus Varieties. Foods 2021; 10:2826. [PMID: 34829107 PMCID: PMC8622604 DOI: 10.3390/foods10112826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 01/12/2023] Open
Abstract
Many citrus varieties are hybridized to improve their quality and to overcome the effects of climate change. However, there is limited information on the effect of the chemical profiles of hybrid varieties on their quality. In this study, we analyzed 10 citrus varieties and evaluated the correlation with their general characteristics and antioxidant activities. Chemical profiles, including the contents of sugars, organic acid compounds, flavonoids, limonoids, and carotenoids, which are related to taste, color, and health benefits, were significantly different depending on the citrus varieties, leading to different antioxidant capacities and general quality parameters. Based on these data, the correlations were investigated, and 10 citrus varieties were clustered into four groups-Changshou kumquat and Jeramon (cluster I); Setoka (cluster II-1); Natsumi, Satsuma mandarin, and Navel orange (cluster II-2); Kanpei, Tamnaneunbong, Saybyeolbong, and Shiranui (cluster II-3). Moreover, a metabolomic pathway was proposed. Although citrus peels were not analyzed and the sensory and functional qualities of the citrus varieties were not investigated in this study, our results are useful to better understand the relationship between citrus quality and metabolite profiles, which can provide basic information for the development and improvement of new citrus varieties.
Collapse
Affiliation(s)
- Dong-Shin Kim
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Sun Lee
- Department of Food Science & Technology, Gyeongsang National University, Jinju 52828, Korea;
| | - Suk Man Park
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.M.P.); (S.H.Y.); (H.-S.G.); (S.S.K.)
| | - Su Hyun Yun
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.M.P.); (S.H.Y.); (H.-S.G.); (S.S.K.)
| | - Han-Seung Gab
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.M.P.); (S.H.Y.); (H.-S.G.); (S.S.K.)
| | - Sang Suk Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.M.P.); (S.H.Y.); (H.-S.G.); (S.S.K.)
| | - Hyun-Jin Kim
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea;
- Department of Food Science & Technology, Gyeongsang National University, Jinju 52828, Korea;
- Division of Applied Life Sciences (BK21 Four), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
5
|
Nayak SN, Aravind B, Malavalli SS, Sukanth BS, Poornima R, Bharati P, Hefferon K, Kole C, Puppala N. Omics Technologies to Enhance Plant Based Functional Foods: An Overview. Front Genet 2021; 12:742095. [PMID: 34858472 PMCID: PMC8631721 DOI: 10.3389/fgene.2021.742095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Functional foods are natural products of plants that have health benefits beyond necessary nutrition. Functional foods are abundant in fruits, vegetables, spices, beverages and some are found in cereals, millets, pulses and oilseeds. Efforts to identify functional foods in our diet and their beneficial aspects are limited to few crops. Advances in sequencing and availability of different omics technologies have given opportunity to utilize these tools to enhance the functional components of the foods, thus ensuring the nutritional security. Integrated omics approaches including genomics, transcriptomics, proteomics, metabolomics coupled with artificial intelligence and machine learning approaches can be used to improve the crops. This review provides insights into omics studies that are carried out to find the active components and crop improvement by enhancing the functional compounds in different plants including cereals, millets, pulses, oilseeds, fruits, vegetables, spices, beverages and medicinal plants. There is a need to characterize functional foods that are being used in traditional medicines, as well as utilization of this knowledge to improve the staple foods in order to tackle malnutrition and hunger more effectively.
Collapse
Affiliation(s)
- Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B. Aravind
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Sachin S. Malavalli
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B. S. Sukanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - R. Poornima
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Pushpa Bharati
- Department of Food Science and Nutrition, University of Agricultural Sciences, Dharwad, India
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - Chittaranjan Kole
- President, International Phytomedomics and Nutriomics Consortium (ipnc.info), Daejeon, South Korea
| | - Naveen Puppala
- New Mexico State University-Agricultural Science Center at Clovis, New Mexico, NM, United States
| |
Collapse
|
6
|
Sabbadini S, Capocasa F, Battino M, Mazzoni L, Mezzetti B. Improved nutritional quality in fruit tree species through traditional and biotechnological approaches. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Huang Y, Xu Y, Jiang X, Yu H, Jia H, Tan C, Hu G, Hu Y, Rao MJ, Deng X, Xu Q. Genome of a citrus rootstock and global DNA demethylation caused by heterografting. HORTICULTURE RESEARCH 2021; 8:69. [PMID: 33790260 PMCID: PMC8012640 DOI: 10.1038/s41438-021-00505-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 05/03/2023]
Abstract
Grafting is an ancient technique used for plant propagation and improvement in horticultural crops for at least 1,500 years. Citrus plants, with a seed-to-seed cycle of 5-15 years, are among the fruit crops that were probably domesticated by grafting. Poncirus trifoliata, a widely used citrus rootstock, can promote early flowering, strengthen stress tolerance, and improve fruit quality via scion-rootstock interactions. Here, we report its genome assembly using PacBio sequencing. We obtained a final genome of 303 Mb with a contig N50 size of 1.17 Mb and annotated 25,680 protein-coding genes. DNA methylome and transcriptome analyses indicated that the strong adaptability of P. trifoliata is likely attributable to its special epigenetic modification and expression pattern of resistance-related genes. Heterografting by using sweet orange as scion and P. trifoliata as rootstock and autografting using sweet orange as both scion and rootstock were performed to investigate the genetic effects of the rootstock. Single-base methylome analysis indicated that P. trifoliata as a rootstock caused DNA demethylation and a reduction in 24-nt small RNAs (sRNAs) in scions compared to the level observed with autografting, implying the involvement of sRNA-mediated graft-transmissible epigenetic modifications in citrus grafting. Taken together, the assembled genome for the citrus rootstock and the analysis of graft-induced epigenetic modifications provide global insights into the genetic effects of rootstock-scion interactions and grafting biology.
Collapse
Affiliation(s)
- Yue Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, China
| | - Xiaolin Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, China
| | - Huiwen Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, China
| | - Huihui Jia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, China
| | - Chunming Tan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, China
| | - Gang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, China
| | - Yibo Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
8
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|
9
|
Mou J, Zhang Z, Qiu H, Lu Y, Zhu X, Fan Z, Zhang Q, Ye J, Fernie AR, Cheng Y, Deng X, Wen W. Multiomics-based dissection of citrus flavonoid metabolism using a Citrus reticulata × Poncirus trifoliata population. HORTICULTURE RESEARCH 2021; 8:56. [PMID: 33642588 PMCID: PMC7917093 DOI: 10.1038/s41438-021-00472-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 05/20/2023]
Abstract
Deciphering the genetic basis of plant secondary metabolism will provide useful insights for genetic improvement and enhance our fundamental understanding of plant biological processes. Although citrus plants are among the most important fruit crops worldwide, the genetic basis of secondary metabolism in these plants is largely unknown. Here, we use a high-density linkage map to dissect large-scale flavonoid metabolic traits measured in different tissues (young leaf, old leaf, mature pericarp, and mature pulp) of an F1 pseudo-testcross citrus population. We detected 80 flavonoids in this population and identified 138 quantitative trait loci (QTLs) for 57 flavonoids in these four tissues. Based on transcriptional profiling and functional annotation, twenty-one candidate genes were identified, and one gene encoding flavanone 3-hydroxylase (F3H) was functionally verified to result in naturally occurring variation in dihydrokaempferol content through genetic variations in its promoter and coding regions. The abundant data resources collected for diverse citrus germplasms here lay the foundation for complete characterization of the citrus flavonoid biosynthetic pathway and will thereby promote efficient utilization of metabolites in citrus quality improvement.
Collapse
Affiliation(s)
- Jiaolin Mou
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhehui Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiji Qiu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Lu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Zhu
- Thermo Fisher Scientific, Shanghai, 201206, China
| | - Ziquan Fan
- Thermo Fisher Scientific, Shanghai, 201206, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476, Potsdam-Golm, Germany
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Zheng X, Mi J, Deng X, Al-Babili S. LC-MS-Based Profiling Provides New Insights into Apocarotenoid Biosynthesis and Modifications in Citrus Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1842-1851. [PMID: 33543938 DOI: 10.1021/acs.jafc.0c06893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Apocarotenoids contribute to fruit color and aroma, which are critical quality and marketability attributes. Previously, we reported that the red peels of citrus fruits, which are characterized by higher expression levels of a carotenoid cleavage dioxygenase 4b (CitCCD4b) gene, accumulate higher levels of β-citraurin and β-citraurinene than yellow peels. Here, we identified and quantified 12 apocarotenoids, either volatile or nonvolatile, in citrus peel using liquid chromatography-mass spectrometry (LC-MS). Our results show that red peels contain also dramatically higher amounts of β-apo-8'-carotenal, crocetin dialdehyde known from saffron, β-citraurol, β-cyclocitral, and 3-OH-β-cyclocitral and up to about 17-fold higher levels of 3-OH-β-cyclocitral glucoside (picrocrocin isomer). The content of these apocarotenoids was also significantly increased in different CitCCD4b-overexpressing transgenic callus lines, compared with corresponding controls. Transient expression of CitCCD4b in Nicotiana benthamiana leaves resulted in a striking increase in the 3-OH-β-cyclocitral level and the accumulation of picrocrocin. Thus, our work reinforces the specific function of CitCCD4b in producing C10 apocarotenoid volatiles and C30 pigments in citrus peel and uncovers its involvement in the biosynthesis of picrocrocin, C20 dialdehyde, and C30 alcohol apocarotenoids, suggesting the potential of this enzyme in metabolic engineering of apocarotenoids and their derivatives.
Collapse
Affiliation(s)
- Xiongjie Zheng
- Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jianing Mi
- Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Salim Al-Babili
- Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Xu Y, Zhang B, Ma N, Liu X, Qin M, Zhang Y, Wang K, Guo N, Zuo K, Liu X, Zhang M, Huang Z, Xu A. Quantitative Trait Locus Mapping and Identification of Candidate Genes Controlling Flowering Time in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2020; 11:626205. [PMID: 33613591 PMCID: PMC7886670 DOI: 10.3389/fpls.2020.626205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/30/2020] [Indexed: 05/02/2023]
Abstract
Flowering time plays a vital role in determining the life-cycle period, yield, and seed quality of rapeseed (Brassica napus L.) in certain environments. Quantitative trait locus (QTL) mapping to identify the genetic architecture of genes controlling flowering time helps accelerate the early maturity breeding process. In this study, simple sequence repeats (SSR) and specific-locus amplified fragment sequencing (SLAF-seq) technologies were adopted to map the QTLs for flowering time in four environments. As a result, three target intervals, FTA09, FTA10, and FTC05 were identified. Among this, FTA09 was considered as a novel interval, FTA10 and FTC05 as stable regions. Based on the parental re-sequencing data, 7,022 single nucleotide polymorphisms (SNPs) and 2,195 insertion-deletions (InDels) between the two parents were identified in these three target regions. A total of 186 genes possessed genetic variations in these intervals, 14 of which were related to flowering time involved in photoperiod, circadian clock, vernalization, and gibberellin pathways. Six InDel markers linked to flowering time were developed in the three target intervals, indicating that the results were credible in this study. These results laid a good foundation for further genetic studies on flowering-time regulation in B. napus L.
Collapse
Affiliation(s)
- Yu Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Bingbing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Ning Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Xia Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
- Market Supervision Administration, Yanchi, China
| | - Mengfan Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Yan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Kai Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Na Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Kaifeng Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Miao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
- Zhen Huang,
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Aixia Xu,
| |
Collapse
|
12
|
Zheng X, Zhu K, Sun Q, Zhang W, Wang X, Cao H, Tan M, Xie Z, Zeng Y, Ye J, Chai L, Xu Q, Pan Z, Xiao S, Fraser PD, Deng X. Natural Variation in CCD4 Promoter Underpins Species-Specific Evolution of Red Coloration in Citrus Peel. MOLECULAR PLANT 2019; 12:1294-1307. [PMID: 31102783 DOI: 10.1016/j.molp.2019.04.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 05/06/2023]
Abstract
Carotenoids and apocarotenoids act as phytohormones and volatile precursors that influence plant development and confer aesthetic and nutritional value critical to consumer preference. Citrus fruits display considerable natural variation in carotenoid and apocarotenoid pigments. In this study, using an integrated genetic approach we revealed that a 5' cis-regulatory change at CCD4b encoding CAROTENOID CLEAVAGE DIOXYGENASE 4b is a major genetic determinant of natural variation in C30 apocarotenoids responsible for red coloration of citrus peel. Functional analyses demonstrated that in addition the known role in synthesizing β-citraurin, CCD4b is also responsible for the production of another important C30 apocarotenoid pigment, β-citraurinene. Furthermore, analyses of the CCD4b promoter and transcripts from various citrus germplasm accessions established a tight correlation between the presence of a putative 5' cis-regulatory enhancer within an MITE transposon and the enhanced allelic expression of CCD4b in C30 apocarotenoid-rich red-peeled accessions. Phylogenetic analysis provided further evidence that functional diversification of CCD4b and naturally occurring variation of the CCD4b promoter resulted in the stepwise evolution of red peels in mandarins and their hybrids. Taken together, our findings provide new insights into the genetic and evolutionary basis of apocarotenoid diversity in plants, and would facilitate breeding efforts that aim to improve the nutritional and aesthetic value of citrus and perhaps other fruit crops.
Collapse
Affiliation(s)
- Xiongjie Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Quan Sun
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Hongbo Cao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Meilian Tan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Pan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China.
| | - Shunyuan Xiao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China; Department of Plant Science and Landscape Architecture, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
13
|
Zhao J, Xu Y, Li H, Yin Y, An W, Li Y, Wang Y, Fan Y, Wan R, Guo X, Cao Y. A SNP-Based High-Density Genetic Map of Leaf and Fruit Related Quantitative Trait Loci in Wolfberry ( Lycium Linn.). FRONTIERS IN PLANT SCIENCE 2019; 10:977. [PMID: 31440266 PMCID: PMC6693522 DOI: 10.3389/fpls.2019.00977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/11/2019] [Indexed: 05/26/2023]
Abstract
Wolfberry (Lycium Linn. 2n = 24) fruit, Gouqizi, is a perennial shrub, traditional food and medicinal plant resource in China. Leaf and fruit related characteristics are economically important traits that are the focus for genetic improvement, but few studies into the molecular genetics of this crop have been reported to date. Here, an F1 population (302 individuals) derived from a cross between "NO.1 Ningqi" (Lycium barbarum L.) and "Chinese gouqi" (Lycium chinese Mill.) was constructed. We recorded fruit weight, longitude, diameter and index along with leaf length, width and index for three consecutive years from 2015 to 2017. Based on this population and these phenotypic data, we constructed the first high-density genetic map of Lycium using specific length amplified fragment sequencing (SLAF-seq) and analyzed quantitative trait loci (QTLs). The map contains 6733 single nucleotide polymorphisms and 12 linkage groups (LG) with a total map distance of 1702.45 cM and an average map distance of 0.253 cM. A total of 55 QTLs were mapped for more than 2 years, of which 18 stable QTLs for fruit index on LG 11, spanning an interval of 73.492-90.945 cM, were detected. qFI11-15 for fruit index was an impressive QTL with logarithm of odds (LOD) and proportion of variance explained (PEV) values reaching 11.07 and 19.7%, respectively. The QTLs on LG 11 were gathered tightly, having an average interval of less than 1 cM per QTL, suggesting that there might be a cluster region controlling fruit index. Remarkably, qLI10-2 and qLI11-2 for leaf index were detectable for 3 years. These results give novel insight into the genetic control of leaf and fruit related traits in Lycium and provide robust support for undertaking further positional cloning studies and implementing marker-assisted selection in seedlings.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yuhui Xu
- Biomarker Technology Corporation, Beijing, China
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wei An
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yanlong Li
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yajun Wang
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yunfang Fan
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Ru Wan
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xin Guo
- Biomarker Technology Corporation, Beijing, China
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| |
Collapse
|