1
|
Meral H, Demirdöven A. Extraction and characterization of microcrystalline cellulose from carrot pomace using green pretreatment technologies. Food Chem 2025; 468:142429. [PMID: 39700808 DOI: 10.1016/j.foodchem.2024.142429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
In this study, microcrystalline cellulose (MCC) from carrot pomace, which is a byproduct of the carrot process, was produced. The Response Surface Methodology optimized the effectiveness of autoclaving & ultrasonic pretreatments (AUP) in MCC extraction with a D-optimal design. The yield of AUP was 36.62 % at the optimum point; at the conventional acid hydrolysis method, it was 31.40 %. AUP-derived MCC demonstrated superior rheological properties, including water holding capacity (4.58 g H₂O/g MCC) and oil adsorption capacity (2.94 g oil/g MCC), comparable to commercial MCC. Characterization analyses revealed that the AUP-derived MCC had high crystallinity, thermal stability, and a short-fibered morphology, confirmed by FTIR, SEM, TGA, and XRD. Utilizing carrot pomace reduces agricultural waste while providing a valuable dietary fiber source (87.94 % insoluble fiber). This study highlights MCC production from carrot pomace using AUP offers an economically and environmentally viable alternative, with potential applications in food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Hilal Meral
- Tokat Gaziosmanpasa University, Faculty of Engineering and Architecture, Food Engineering Dept., 60150 Tokat, Turkey.
| | - Aslıhan Demirdöven
- Tokat Gaziosmanpasa University, Faculty of Engineering and Architecture, Food Engineering Dept., 60150 Tokat, Turkey.
| |
Collapse
|
2
|
Li PX, Zhang ZY, Cui JY, Wu SH, Liu Y, Ren HT, Han X. Satisfactory Tensile Strength and Strain of Recyclable Polyurethane with a Trimaleimide Structure for Thermal Self-Healing and Anticorrosive Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12250-12263. [PMID: 38818891 DOI: 10.1021/acs.langmuir.4c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Bismaleimide (BMI) is often used as the cross-linking reagent in Diels-Alder (D-A)-type intrinsic self-healing materials (DISMs) to promote the connectivity of damaged surfaces based on reversible D-A bond formation on the molecular scale. Until now, although DISMs have exhibited great potential in the applications of various sensors, electronic skin, and artificial muscles, it is still difficult to prepare DISMs with satisfactory self-healing abilities and high tensile strengths and strains at the same time, thus largely limiting their applications in self-healing anticorrosive coatings. Herein, symmetrical trimaleimide (TMI) was successfully synthesized, and trimaleimide-structured D-A self-healing polyurethane (TMI-DA-PU) was prepared via the reversible D-A reaction (cycloaddition of furan and maleimide). As a DISM, TMI-DA-PU exhibits apparently higher self-healing efficiency (98.7%), tensile strength (25.4 MPa), and strain (1378%) compared to bismaleimide-structured D-A self-healing polyurethane (BMI-DA-PU) (self-healing efficiency, 90.2%; tensile strength, 19.3 MPa; strain, 1174%). In addition, TMI-DA-PU shows a high recycling efficiency (>95%) after 4 cycles of recycling. A series of characterizations indicate that TMI provides more monoene rings as the self-healing sites, forms denser cross-linked structures compared to BMI, and is, thus, more appropriate to be used for DISM applications. Moreover, the barrier abilities of coatings can be semi-quantitatively expressed by the impedance value at 0.01 Hz (|Z|0.01 Hz). The |Z|0.01 Hz value of the TMI-DA-PU coating is 3.93 × 109 Ω cm2 on day 0, which is significantly higher than that of the BMI-DA-PU coating (6.76 × 108 Ω cm2 on day 0), indicating that the denser rigid cross-linked structure of TMI results in the small porosity in the TMI-DA-PU coating, thus effectively improving the anticorrosion performance. The construction of DISMs with the structure of TMI demonstrates immense potential in self-healing anticorrosive coatings.
Collapse
Affiliation(s)
- Peng-Xiang Li
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Zhi-Yang Zhang
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Jia-Ying Cui
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Song-Hai Wu
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Hai-Tao Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, People's Republic of China
| | - Xu Han
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
3
|
Islam MA, Talukder L, Al MF, Sarker SK, Muyeen SM, Das P, Hasan MM, Das SK, Islam MM, Islam MR, Moyeen SI, Badal FR, Ahamed MH, Abhi SH. A review on self-healing featured soft robotics. Front Robot AI 2023; 10:1202584. [PMID: 37953963 PMCID: PMC10637358 DOI: 10.3389/frobt.2023.1202584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/19/2023] [Indexed: 11/14/2023] Open
Abstract
Soft robots are becoming more popular because they can solve issues stiff robots cannot. Soft component and system design have seen several innovations recently. Next-generation robot-human interactions will depend on soft robotics. Soft material technologies integrate safety at the material level, speeding its integration with biological systems. Soft robotic systems must be as resilient as biological systems in unexpected, uncontrolled situations. Self-healing materials, especially polymeric and elastomeric ones, are widely studied. Since most currently under-development soft robotic systems are composed of polymeric or elastomeric materials, this finding may provide immediate assistance to the community developing soft robots. Self-healing and damage-resilient systems are making their way into actuators, structures, and sensors, even if soft robotics remains in its infancy. In the future, self-repairing soft robotic systems composed of polymers might save both money and the environment. Over the last decade, academics and businesses have grown interested in soft robotics. Despite several literature evaluations of the soft robotics subject, there seems to be a lack of systematic research on its intellectual structure and development despite the rising number of articles. This article gives an in-depth overview of the existing knowledge base on damage resistance and self-healing materials' fundamental structure and classifications. Current uses, problems with future implementation, and solutions to those problems are all included in this overview. Also discussed are potential applications and future directions for self-repairing soft robots.
Collapse
Affiliation(s)
- Md. Ariful Islam
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Labanya Talukder
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Firoj Al
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Subrata K. Sarker
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - S. M. Muyeen
- Department of Electrical Engineering, Qatar University, Doha, Qatar
| | - Prangon Das
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Mehedi Hasan
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Sajal K. Das
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Manirul Islam
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Robiul Islam
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Sumaya Ishrat Moyeen
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Faisal R. Badal
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Hafiz Ahamed
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Sarafat Hussain Abhi
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| |
Collapse
|
4
|
Zhang R, Yang A, Yang Y, Zhu Y, Song Y, Li Y, Li J. Mussel-inspired cellulose nanofiber/poly(vinyl alcohol) hydrogels with robustness, self-adhesion and antimicrobial activity for strain sensors. Int J Biol Macromol 2023; 245:125469. [PMID: 37343611 DOI: 10.1016/j.ijbiomac.2023.125469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Flexible strain sensors have attracted substantial attention given their application in human-computer interaction and personal health monitoring. Due to the inherent disadvantages of conventional hydrogels, the manufacture of hydrogel strain sensors with high tensile strength, excellent adhesion, self-healing and antimicrobial properties in vitro, and conductive stability is still a challenge. Herein, a conductive hydrogel consisting of polydopamine-coated cellulose nanofibers (CNF@PDA), carbon nanotubes (CNT), and polyvinyl alcohol (PVA) was developed. The CNTs in PVA/CNF@PDA/CNT hydrogels were uniformly dispersed in the presence of CNF@PDA by hydrogen bonding, resulting in a nearly threefold increase in conductivity (0.4 S/m) over hydrogels without PDA. The hydrogel exhibited satisfactory tensile properties (tensile stress up to 0.79 MPa), good fatigue resistance, self-recovery and excellent antimicrobial activity in vitro. It showed excellent adhesion, especially the adhesion strength of pigskin was increased to 27 kPa. In addition, the hydrogel was used as a strain sensor, exhibiting excellent strain sensitivity (strain coefficient = 2.29), fast response (150 ms), and great durability (over 1000 cycles). The fabricated strain sensors can detect both large and subtle human movements (e.g., wrist bending and vocalization) with stable and repeatable electrical signals, indicating potential applications in personal health monitoring.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - An Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yutong Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yachong Zhu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yongming Song
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China.
| | - Yao Li
- Center for Composite Materials and Structure,Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| |
Collapse
|
5
|
A Experimental Study on Engineered Cementitious Composites (ECC) Incorporated with Sporosarcina pasteurii. BUILDINGS 2022. [DOI: 10.3390/buildings12050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Microbial-induced calcium carbonate precipitation (MICP) has been successfully applied to self-healing concrete with improved mechanical properties, while the performance of engineered cementitious composites (ECC) incorporated with bacteria is still lacking. In this study, Sporosarcina pasteurii, which has a strong ability to produce calcium carbonate, was introduced into engineered cementitious composites (ECC) with mechanical properties analyzed in detail. A multiscale study including compression, tension and fiber pullout tests was carried out to explore the Sporosarcina pasteurii incorporation effect on ECC mechanical properties. Compared with the control group, the compressive strength of S.p.-ECC specimens cured for 7 days was increased by almost 10% and the regained strength after self-healing was increased by 7.31%. Meanwhile, the initial crack strength and tensile strength of S.p.-ECC increased by 10.25% and 12.68%, respectively. Interestingly, the crack pattern of ECC was also improved to some extent, e.g., bacteria seemed to minimize crack width. The addition of bacteria failed to increase the ECC tensile strain, which remained at about 4%, in accordance with engineering practice. Finally, matrix/fiber interface properties were altered in S.p.-ECC with lower chemical bond and higher frictional bond strength. The results at the microscopic scale explain well the property improvements of ECC composites based on the fine-scale mechanical theory.
Collapse
|
6
|
Luo M, Dorothy Winston D, Niu W, Wang Y, Zhao H, Qu X, Lei B. Bioactive therapeutics-repair-enabled citrate-iron hydrogel scaffolds for efficient post-surgical skin cancer treatment. CHEMICAL ENGINEERING JOURNAL 2022; 431:133596. [DOI: 10.1016/j.cej.2021.133596] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
7
|
Blessy Rebecca PN, Durgalakshmi D, Balakumar S, Rakkesh RA. Biomass‐Derived Graphene‐Based Nanocomposites: A Futuristic Material for Biomedical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202104013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P. N. Blessy Rebecca
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| | - D. Durgalakshmi
- Department of Medical Physics Anna University Chennai 600025 TN India
| | - S. Balakumar
- National Centre for Nanoscience and Nanotechnology University of Madras Chennai 600025 TN India
| | - R. Ajay Rakkesh
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| |
Collapse
|
8
|
Zhang Z, Jiang W, Xie X, Liang H, Chen H, Chen K, Zhang Y, Xu W, Chen M. Recent Developments of Nanomaterials in Hydrogels: Characteristics, Influences, and Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202103528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zongzheng Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Wenqing Jiang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Xinmin Xie
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Haiqing Liang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Hao Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Kun Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Ying Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Wenlong Xu
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Mengjun Chen
- School of Qilu Transportation Shandong University Jinan 250002 China
| |
Collapse
|
9
|
Cao L, Tian D, Lin B, Wang W, Bai L, Chen H, Yang L, Yang H, Wei D. Fabrication of self-healing nanocomposite hydrogels with the cellulose nanocrystals-based Janus hybrid nanomaterials. Int J Biol Macromol 2021; 184:259-270. [PMID: 34126148 DOI: 10.1016/j.ijbiomac.2021.06.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Janus nanomaterials possess remarkable prospects in the design of a series of smart materials with unique asymmetric properties. In this work, surface functionalized Janus cellulose nanocrystalline-type (CNCs-type) nanomaterials were manufactured by Pickering emulsion template and the construction of self-healing nanocomposite hydrogels has been realized. During emulsification, the mussel-inspired chemistry was employed to develop Janus nanocomposites. The extension of molecular chain of poly-lysine (PLL) and the polydopamine (PDA) coating were grafted on different sides of CNCs. Afterwards, the prepared nanocomposites were added to poly (acrylic acid) (PAA)-based hydrogels which formed by in-situ polymerization. The collaborative effect of metal-ligand coordination between the molecular chain of PLL, PDA coating, PAA chains and metal ions endowed the nanocomposite hydrogels with excellent mechanical properties (8.8 MPa) and self-healing efficiency (88.9%). Therefore, the synthesized Janus CNCs-PDA/PLL nanocomposites are expected to have diverse application in the development of smart materials with self-healing ability.
Collapse
Affiliation(s)
- Linlin Cao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Da Tian
- Chemical Technology Academy of Shandong Province, Qingdao University of Science & Technology, Jinan 250014, China
| | - Bencai Lin
- Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213165, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|
10
|
Pei Z, Yu Z, Li M, Bai L, Wang W, Chen H, Yang H, Wei D, Yang L. Self-healing and toughness cellulose nanocrystals nanocomposite hydrogels for strain-sensitive wearable flexible sensor. Int J Biol Macromol 2021; 179:324-332. [PMID: 33684432 DOI: 10.1016/j.ijbiomac.2021.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022]
Abstract
Recently, self-healing and high mechanical strength hydrogels have aroused much research due to their potential future in strain-sensitive flexible sensors. In this manuscript, we successfully designed self-healing and toughness cellulose nanocrystals (CNCs) nanocomposite hydrogels by grafted polypyrrole (PPy) on the surface of CNCs to enhance electrical conductivity. The obtained nanocomposite hydrogels exhibit outstanding self-healing and mechanical behaviors, and the optimal mechanical strength, toughness and self-healing efficiency can be up to 5.7 MPa, 810% and 89.6%, respectively. Using these functional nanocomposite hydrogels, strain-sensitive wearable flexible sensors were designed to monitor finger joint motions, bending of knee, and even the slight pulse beating. Surprisingly, the flexible sensors could evidently perceive body motions from large movements (knee bending) to tiny signals (pulse beating). In addition, it exhibited excellent durability after repeated cycles. This method of prepared self-healing nanocomposite hydrogels will have a potential prospect in the design of biomedical, biosensors, and flexible electronic devices.
Collapse
Affiliation(s)
- Zhaoxia Pei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| | - Zhiwei Yu
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| | - Mengnan Li
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China.
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| |
Collapse
|
11
|
Zhang L, Jiang SC, Guan Y. Efficient removal of selenate in water by cationic poly(allyltrimethylammonium) grafted chitosan and biochar composite. ENVIRONMENTAL RESEARCH 2021; 194:110667. [PMID: 33400948 DOI: 10.1016/j.envres.2020.110667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The discovery of cheap and eco-friendly functional materials for the removal of anionic heavy metal ions is still challenging in the treatment of heavy metal-contaminated water. Herein, a new poly(allyltrimethylammonium) grafted chitosan and biochar composite (PATMAC-CTS-BC) was introduced for the removal of selenate (SeO42-) in water. Results suggest that the PATMAC-CTS-BC showed a rapid removal of SeO42- with efficiency of >97% within 10 min and it followed a pseudo-second-order model. High capacity of SeO42- adsorption by the composite was achieved, with maximum value of 98.99 mg g-1 based on Langmuir model, considerably higher than most of reported adsorbents. The thermodynamic results reflected the spontaneous and exothermic nature of SeO42- adsorption onto the composite. The composite could be applied at a wide initial pH range (2-10) with high removal efficiency of SeO42- because of permanent positive charges of quaternary ammonium groups (=N+-). The removal mechanisms of SeO42- were mainly attributed to electrostatic interactions with =N+- and protonated -NH3+ groups, and redox-complexation interactions with -NH2, -NH-, and -OH groups. Besides SeO42-, the hexavalent chromium (Cr2O72-) was considered as example to further demonstrate the anion removal capability of cationic hydrogel-BC composite. The study outcomes open up new opportunities to efficiently remove anionic heavy metal ions (e.g., SeO42- and Cr2O72-) in water using these materials.
Collapse
Affiliation(s)
- Lixun Zhang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92612, United States; Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92612, United States
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
12
|
Sun Z, Li Z, Qu K, Zhang Z, Niu Y, Xu W, Ren C. A review on recent advances in gel adhesion and their potential applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Wang T, Zhao Y. Optimization of bleaching process for cellulose extraction from apple and kale pomace and evaluation of their potentials as film forming materials. Carbohydr Polym 2021; 253:117225. [PMID: 33278986 DOI: 10.1016/j.carbpol.2020.117225] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Celluloses from apple and kale pomaces were extracted through sequentially chemical treatments, characterized, and evaluated for the film forming property. Since bleaching step is critical to cellulose quality, bleaching conditions including concentration of bleaching agent (NaClO) (0.5-3 %), temperature (60-80 °C) and time (1-2 h) were optimized. NaClO concentration and temperature exhibited significant impact on the quality of celluloses. Excessive bleaching conditions caused severe oxidation of celluloses and significantly reduced their dimension. The optimum bleaching conditions for apple pomace were identified as 1-1.5 % NaClO at 80 °C for 1 h, resulting in cellulose yield of 7.9 %, water retention value of 2.96, and whiteness index of 72.36. Morphological analysis of optimum apple pomace-celluloses revealed their long-shaped structure with 500-750 μm in length and 20-25 μm in width. The prepared cellulose films had high transparency and good mechanical strength. This study provided new insight in converting fruit processing byproducts into high quality celluloses.
Collapse
Affiliation(s)
- Taoran Wang
- Department of Food Science & Technology, 100 Wiegand Hall, Oregon State University, Corvallis, OR, 97331, USA
| | - Yanyun Zhao
- Department of Food Science & Technology, 100 Wiegand Hall, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
14
|
Xiong Y, Zhang X, Ma X, Wang W, Yan F, Zhao X, Chu X, Xu W, Sun C. A review of the properties and applications of bioadhesive hydrogels. Polym Chem 2021. [DOI: 10.1039/d1py00282a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their outstanding properties, bioadhesive hydrogels have been extensively studied by researchers in recent years.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoran Zhang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xintao Ma
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenqi Wang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Feiyan Yan
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaohan Zhao
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoxiao Chu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenlong Xu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Changmei Sun
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| |
Collapse
|
15
|
Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering. Molecules 2020; 25:molecules25245795. [PMID: 33302592 PMCID: PMC7764781 DOI: 10.3390/molecules25245795] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels (HGs), as three-dimensional structures, are widely used in modern medicine, including regenerative medicine. The use of HGs in wound treatment and tissue engineering is a rapidly developing sector of medicine. The unique properties of HGs allow researchers to easily modify them to maximize their potential. Herein, we describe the physicochemical properties of HGs, which determine their subsequent applications in regenerative medicine and tissue engineering. Examples of chemical modifications of HGs and their applications are described based on the latest scientific reports.
Collapse
|
16
|
An ultrasensitive label-free electrochemical immunosensor based on 3D porous chitosan-graphene-ionic liquid-ferrocene nanocomposite cryogel decorated with gold nanoparticles for prostate-specific antigen. Talanta 2020; 224:121787. [PMID: 33379016 DOI: 10.1016/j.talanta.2020.121787] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
A highly sensitive and selective label-free electrochemical immunosensor was successfully fabricated for measuring prostate-specific antigen (PSA). A composite of chitosan, graphene, ionic liquid and ferrocene (CS-GR-IL-Fc) was drop casted onto a screen-printed carbon electrode (SPCE) and frozen to create a layer of 3D porous cryogel (CS-GR-IL-Fc cry) which was decorated with gold nanoparticles (AuNPs). The biocompatibility and porosity of the cryogel increased the surface area available for AuNPs loading via amino groups and the population of anti-PSA, immobilized on the AuNPs via chemisorption, could be increased. The CS-GR-IL-Fc cry displayed excellent conductivity, enhancing electron transfer and amplifying the current signal. Differential pulse voltammetry was employed to determine PSA by measuring the reduction in the Fc oxidation peak current in response to the formation of PSA/anti-PSA immunocomplex. Under the optimized incubation time and electrolyte pH, the developed immunosensor displayed excellent analytical performances, including a wide linear range at concentrations from 1.0 × 10-7 to 1.0 × 10-1 ng mL-1, with a very low limit of detection of 4.8 × 10-8 ng mL-1 and good reproducibility (relative standard deviation of <4.6%, n = 6), stability (90% sensitivity within 20 days), repeatability (12 cycles of binding-rebinding, the sensitivity > 90%) and selectivity. The results obtained from the device for the determination of PSA in human serum were consistent with results from the enzyme-linked immunosorbent assay (P > 0.05), and indicated the promising potential of the proposed immunosensor in clinical diagnosis.
Collapse
|
17
|
Wang N, Wang C, Chen H, Bai L, Wang W, Yang H, Wei D, Yang L. Facile fabrication of a controlled polymer brush-type functional nanoprobe for highly sensitive determination of alpha fetoprotein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4438-4446. [PMID: 32856029 DOI: 10.1039/d0ay01151g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As robust functional polymers, polymer brush-based hybrid nanomaterials have potential application in the highly sensitive determination of tumor markers (TMs). Currently, there are plentiful reports on the polymerization methods of functional polymer brushes. Low ppm ATRP (activators (re)generated by electron transfer for atom transfer radical polymerization (A(R)GET ATRP), initiators for continuous activator regeneration atom transfer radical polymerization (ICAR ATRP) and electrochemically mediated atom transfer radical polymerization (eATRP)) is a facile and robust methodology with the advantages of simplicity, eco-friendliness and wide applicability to prepare well-defined polymeric materials. In this work, a controlled polymer brush-type functional nanoprobe is successfully fabricated by functional AGET ATRP and used as a sandwich-type electrochemical immunosensor for precise detection of TMs (alpha-fetoprotein, AFP). Using graphene oxide (GO) as an excellent conductive matrix, a GO-based poly-heterozygosis pyridine nanomaterial (GO@PHPY) is obtained by surface-initiated AGET ATRP and photocatalytic modification. The nanoprobe is assembled using GO@PHPY and a detection antibody (Ab2) to detect AFP, in which Cu(ii) serves as a signal label to coordinate with the pyridyl group. Under optimized conditions, the electrochemical sensor exhibits a good detection effect on AFP, with a detection range of 0.1 pg mL-1 to 100 ng mL-1 and a low detection limit of 0.08 pg mL-1. It is worth noting that the detection platform can be applied to the detection of real human serum samples. Thus, it is a desirable platform for AFP detection in clinical diagnosis and practical applications. Meanwhile, this work proves that designing and constructing functional polymer brushes is one of the most effective methods for developing new materials for analytical scientific applications.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fabrication of novel electrochemical immunosensor by mussel-inspired chemistry and surface-initiated PET-ATRP for the simultaneous detection of CEA and AFP. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Fan L, Ge X, Qian Y, Wei M, Zhang Z, Yuan WE, Ouyang Y. Advances in Synthesis and Applications of Self-Healing Hydrogels. Front Bioeng Biotechnol 2020; 8:654. [PMID: 32793562 PMCID: PMC7385058 DOI: 10.3389/fbioe.2020.00654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hydrogels, a type of three-dimensional (3-D) crosslinked network of polymers containing a high water concentration, have been receiving increasing attention in recent years. Self-healing hydrogels, which can return to their original structure and function after physical damage, are especially attractive. Some self-healable hydrogels have several kinds of properties such as injectability, adhesiveness, and conductivity, which enable them to be used in the manufacturing of drug/cell delivery vehicles, glues, electronic devices, and so on. MAIN BODY This review will focus on the synthesis and applications of self-healing hydrogels. Their repair mechanisms and potential applications in pharmaceutical, biomedical, and other areas will be introduced. CONCLUSION Self-healing hydrogels are used in various fields because of their ability to recover. The prospect of self-healing hydrogels is promising, and they may be further developed for various applications.
Collapse
Affiliation(s)
- Leqi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yebin Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Minyan Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zirui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
20
|
Self-healing, sensitive and antifreezing biomass nanocomposite hydrogels based on hydroxypropyl guar gum and application in flexible sensors. Int J Biol Macromol 2020; 155:1569-1577. [DOI: 10.1016/j.ijbiomac.2019.11.134] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 01/08/2023]
|
21
|
Ma A, Jiang C, Li M, Cao L, Deng Z, Bai L, Wang W, Chen H, Yang H, Wei D. Surface-initiated photoinduced electron transfer ATRP and mussel-inspired chemistry: Surface engineering of graphene oxide for self-healing hydrogels. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Highly efficient removal of iodine ions using MXene-PDA-Ag2Ox composites synthesized by mussel-inspired chemistry. J Colloid Interface Sci 2020; 567:190-201. [DOI: 10.1016/j.jcis.2020.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023]
|
23
|
Novel synthesis of mussel inspired and Fe3+ induced pH-sensitive hydrogels: Adhesion, injectable, shapeable, temperature properties, release behavior and rheological characterization. Carbohydr Polym 2020; 236:116045. [DOI: 10.1016/j.carbpol.2020.116045] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
|
24
|
Jiang X, Xi M, Bai L, Wang W, Yang L, Chen H, Niu Y, Cui Y, Yang H, Wei D. Surface-initiated PET-ATRP and mussel-inspired chemistry for surface engineering of MWCNTs and application in self-healing nanocomposite hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110553. [DOI: 10.1016/j.msec.2019.110553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
|
25
|
Su T, Wu L, Zuo G, Pan X, Shi M, Zhang C, Qi X, Dong W. Incorporation of dumbbell-shaped and Y-shaped cross-linkers in adjustable pullulan/polydopamine hydrogels for selective adsorption of cationic dyes. ENVIRONMENTAL RESEARCH 2020; 182:109010. [PMID: 31884195 DOI: 10.1016/j.envres.2019.109010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Hydrogel adsorbents have attracted considerable attention due to their sludge minimization, good water permeability and renewable performance. Here, a promising strategy for the one-step preparation of pullulan/polydopamine hybird hydrogels (PPGels) was presented. Dumbbell-shaped cross-linker neopentyl glycol diglycidyl ether (NGDE, 2 arms) and Y-shaped cross-linker trimethylolpropane triglycidyl ether (TTE, 3 arms) were selected to study the relationship between cross-linker structure and hydrogel performances. The NGDE possessing less molecular repulsive force and higher reactivity demonstrated more effective cross-linking with the pullulan, which leaded to a decrease in pore size of the hydrogel. Meanwhile, the introduction of polydopamine significantly enhanced the adsorption ability and gave the resulting hybrid gel the specific selectivity toward cationic dyes (96 mg/g for crystal violet, 25.8 mg/g for methylene blue and barely not adsorption for azophloxine). Our data suggested that the electrostatic interaction played a vital role in the dye adsorption process, and the adsorption data could be explained by pseudo-second-order model and Langmuir isotherm model. Furthermore, the obtained PPGel could be easily separated after adsorption. This study describes the relationship between cross-linker structure and properties of pullulan/polydopamine hybrid gels, which provides a new strategy to create polysaccharide-based adsorbents for wastewater remediation.
Collapse
Affiliation(s)
- Ting Su
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Lipeng Wu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Gancheng Zuo
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Xihao Pan
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Mingyang Shi
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Cheng Zhang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Xiaoliang Qi
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
26
|
Zeng Q, Qi X, Zhang M, Tong X, Jiang N, Pan W, Xiong W, Li Y, Xu J, Shen J, Xu L. Efficient decontamination of heavy metals from aqueous solution using pullulan/polydopamine hydrogels. Int J Biol Macromol 2020; 145:1049-1058. [DOI: 10.1016/j.ijbiomac.2019.09.197] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
|
27
|
Zhao X, Wang N, Chen H, Bai L, Xu H, Wang W, Yang H, Wei D, Yang L, Cheng Z. Preparation of a novel sandwich-type electrochemical immunosensor for AFP detection based on an ATRP and click chemistry technique. Polym Chem 2020. [DOI: 10.1039/c9py01279f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is extremely important to explore the synthesis methodology and application scope of functional polymer brush-based nanocomposites.
Collapse
|
28
|
Karmakar M, Mondal H, Ghosh T, Chattopadhyay PK, Maiti DK, Singha NR. Chitosan-grafted tetrapolymer using two monomers: pH-responsive high-performance removals of Cu(II), Cd(II), Pb(II), dichromate, and biphosphate and analyses of adsorbed microstructures. ENVIRONMENTAL RESEARCH 2019; 179:108839. [PMID: 31679719 DOI: 10.1016/j.envres.2019.108839] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/12/2019] [Accepted: 10/17/2019] [Indexed: 05/21/2023]
Abstract
For circumventing the cumbersome and expensive multifunctional and multipolymer adsorbents for high-performance removals of hazardous water-contaminant(s), chitosan-g-[2-acrylamido-2-methyl-1-propanoic acid (AMPS)-co-2-(3-acrylamidopropanamido)-2-methylpropane-1-sulfonic acid (APAMPS)-co-2-(N-(3-amino-3-oxopropyl)acrylamido)-2-methylpropane-1-sulfonic acid (NAOPAMPS)-co-acrylamide (AM)] (i.e., chitosan-g-tetrapolymer), a multifunctional scalable and reusable hydrogel, was synthesized by grafting of chitosan and in situ attachments of N-H functionalized NAOPAMPS and APAMPS hydrophilic acrylamido-monomers during free-radical solution-polymerization of the two ex situ added AMPS and AM monomers in water. The response surface methodology was employed to synthesize one hydrogel envisaging the optimum balance between swelling and stability for the superadsorption of Cu(II), Cd(II), Pb(II), Cr2O72-, and HPO42-. The in situ attachments of NAOPAMPS and APAMPS, grafting of chitosan into tetrapolymer, structures and properties, pH-responsive abilities, superadsorption mechanism, and reusability were understood via in depth microstructural analyses of adsorbed and/or unadsorbed chitosan-g-tetrapolymer(s) through 1H/13C NMR, FTIR, XPS, TGA, XRD, DLS, and pHPZC. The maximum adsorption capacities of Cd(II), Cu(II), Pb(II), Cr2O72-, and HPO42- were 1374.41, 1521.08, 1554.08, 47.76, and 32.76 mg g-1, respectively.
Collapse
Affiliation(s)
- Mrinmoy Karmakar
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, 700106, West Bengal, India
| | - Himarati Mondal
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, 700106, West Bengal, India
| | - Tanmoy Ghosh
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, 700106, West Bengal, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, 700106, West Bengal, India.
| |
Collapse
|
29
|
Yang G, Huang H, Chen J, Gan D, Deng F, Huang Q, Wen Y, Liu M, Zhang X, Wei Y. Preparation of ionic liquids functionalized nanodiamonds-based composites through the Michael addition reaction for efficient removal of environmental pollutants. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Fan D, Wang G, Ma A, Wang W, Chen H, Bai L, Yang H, Wei D, Yang L. Surface Engineering of Porous Carbon for Self-Healing Nanocomposite Hydrogels by Mussel-Inspired Chemistry and PET-ATRP. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38126-38135. [PMID: 31536325 DOI: 10.1021/acsami.9b12264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, surface-functionalized microcapsules from porous carbon nanospheres (PCNs) were successfully prepared by mussel-inspired chemistry with polydopamine (PDA) and metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP). These functional microcapsules are introduced into self-healing hydrogels to enhance their mechanical strength. The PCNs synthesized by a simple soft template method are mixed with linseed oil for loading of the biomass healing agent, and the microcapsules are first prepared by coating PDA. PDA coatings were used to immobilize the ATRP initiator for initiating 4-vinylpyridine on the surface of microcapsules by PET-ATRP. Using these functional microcapsules, the self-healing efficiency was about 92.5% after 4 h at ambient temperature and the healed tensile strength can be held at 2.5 MPa with a fracture strain of 625.2%. All results indicated that the surface-functionalized microcapsules for self-healing hydrogels have remarkable biocompatibility and mechanical properties.
Collapse
Affiliation(s)
- Dechao Fan
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Guanglin Wang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Anyao Ma
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Hou Chen
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Huawei Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Donglei Wei
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Lixia Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| |
Collapse
|
31
|
In situ formation of small-scale Ag2S nanoparticles in carbonaceous aerogel for enhanced photodegradation performance. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Yang H, Zhang J, Liu Y, Wang L, Bai L, Yang L, Wei D, Wang W, Niu Y, Chen H. Rapid removal of anionic dye from water by poly(ionic liquid)-modified magnetic nanoparticles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
33
|
Zhao X, Wang N, Chen H, Bai L, Xu H, Wang W, Yang H, Wei D, Yang L. Fabrication of nanoprobe via AGET ATRP and photocatalytic modification for highly sensitive detection of Hg(II). REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Fabrication of dual network self-healing alginate/guar gum hydrogels based on polydopamine-type microcapsules from mesoporous silica nanoparticles. Int J Biol Macromol 2019; 129:916-926. [DOI: 10.1016/j.ijbiomac.2019.02.089] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/25/2022]
|
35
|
Fan D, Wang W, Chen H, Bai L, Yang H, Wei D, Yang L, Xue Z, Niu Y. Self-healing and tough GO-supported hydrogels preparedviasurface-initiated ATRP and photocatalytic modification. NEW J CHEM 2019. [DOI: 10.1039/c8nj05186k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hydrogels with the properties of self-healing, toughness, stiffness and strength have great potential for use in smart materials.
Collapse
Affiliation(s)
- Dechao Fan
- Shandong Key University Laboratory of High Performance and Functional Polymer
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
| | - Wenxiang Wang
- Shandong Key University Laboratory of High Performance and Functional Polymer
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
| | - Hou Chen
- Shandong Key University Laboratory of High Performance and Functional Polymer
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
| | - Liangjiu Bai
- Shandong Key University Laboratory of High Performance and Functional Polymer
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
| | - Huawei Yang
- Shandong Key University Laboratory of High Performance and Functional Polymer
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
| | - Donglei Wei
- Shandong Key University Laboratory of High Performance and Functional Polymer
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
| | - Lixia Yang
- Shandong Key University Laboratory of High Performance and Functional Polymer
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
| | - Zhongxin Xue
- Shandong Key University Laboratory of High Performance and Functional Polymer
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
| | - Yuzhong Niu
- Shandong Key University Laboratory of High Performance and Functional Polymer
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
| |
Collapse
|