1
|
Zhu X, Liu X, Yu Q, Liu Y, Wang L, Du W, Ng WL, Ren B, Chen Q. Coordinated mediation of the response to ethyl linoleate by two odorant-binding proteins in Plodia interpunctella larvae. Int J Biol Macromol 2025; 309:142759. [PMID: 40180082 DOI: 10.1016/j.ijbiomac.2025.142759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/09/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
The Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae), is a ubiquitous pest in stored products, with the larvae inflicting the most damage. The molecular mechanisms underlying larval olfaction and associated behaviors remain poorly understood. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis revealed two odorant binding proteins of P. interpunctella (PintOBPs) with antenna-biased expression in larvae. Competitive binding assays revealed that both PintOBP18 and PintOBP19 bind to a variety of volatile compounds emitted from stored food products, with ethyl linoleate identified as the best ligand for both proteins. According to RNA interference tests, the attractiveness of ethyl linoleate to P. interpunctella larvae was not significantly affected by the silencing of PintOBP18 or PintOBP19 separately. Nevertheless, the attractiveness of this odorant to larvae was severely impaired when both OBPs were knocked down. Furthermore, molecular docking and site-directed mutagenesis studies demonstrated that Ser66 in PintOBP18 and Val62 in PintOBP19 play crucial roles in binding ethyl linoleate. These findings advance our understanding of olfactory recognition in P. interpunctella larvae and provide potential targets for developing olfactory disruption strategies to control storage pests.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China; Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Xiaofei Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China; Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Qiling Yu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China; Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Yi Liu
- School of Life Sciences and Engineering, Northwest Minzu University, China
| | - Li Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China; Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Wenmei Du
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Jilin Province Technology Research Center of Biological Control Engineering, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China; Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China; Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Wang Z, Shang X, Wu Z, Wei J, Tian X, Zhang G. Identification of Behaviorally Active Odorants for Adult Chilo sacchariphagus Based on the Binding Properties of Odorant-Binding Proteins toward Host Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7669-7684. [PMID: 40110702 DOI: 10.1021/acs.jafc.4c13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Chilo sacchariphagus is the key pest of sugar cane. Due to the difficulty associated with pesticide application in middle and late growth stages of sugar cane, the use of odorant attractants is a beneficial alternative to pesticides. Odorant-binding proteins (OBPs) in the insect olfactory system represent excellent targets for screening odorant attractants. Here, we identified 12 OBPs from the head transcriptome of C. sacchariphagus adults, with four OBPs (CsacOBP1/2/5/12) highly enriched in adult antennae. Ligand-binding assays for the four CsacOBPs showed that they can bind with 10 of the 30 host volatiles tested. Behavioral assays revealed that (+)-cedrol and 1-hexadecanol from the 10 compounds can attract the moths of both sexes. Protein-ligand interaction analyses identified five key amino acid residues involved in CsacOBPs' binding to (+)-cedrol and 1-hexadecanol. These findings have enhanced our molecular understanding of the host plant selection in C. sacchariphagus and have facilitated the development of attractants for C. sacchariphagus.
Collapse
Affiliation(s)
- Zhixiong Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiankun Shang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zixuan Wu
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jili Wei
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou 434025, Hubei, China
| | - Guohui Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
3
|
Xia G, Yang L, Li B, Wang Q, Huang L, Tian X, Zhang G. Genome-Wide Identification and Expression Profiling of Odorant-Binding Protein Genes in the Bean Flower Thrips Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae). INSECTS 2025; 16:212. [PMID: 40003841 PMCID: PMC11856683 DOI: 10.3390/insects16020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Megalurothrips usitatus is an economically important vegetable pest. Because of the growing demand for reducing pesticide use on vegetables, new environmentally friendly strategies for controlling M. usitatus are urgently needed. Insect odorant-binding proteins are prospective targets for screening environmentally friendly odorant attractants for pest control. However, very little is known about OBP genes in M. usitatus. Here, we identified 14 OBPs in the M. usitatus genome using HMMER and BLAST. The chromosomal location showed that these OBPs were widely distributed across eight chromosomes. The analysis of the gene and protein structure characteristics of OBPs in M. usitatus revealed substantial diversity within the OBP gene family. The spatiotemporal expression profiles showed that ten out of 14 MusiOBPs displayed male biased expression, which were highly expressed in antennae, suggesting that they may play a crucial role in the recognition of host plant volatiles and thrips aggregation pheromones. Notably, only MusiOBP8 was significantly higher expressed in female adults, indicating a potential involvement in reproduction. Moreover, MusiOBP7 and MusiOBP13 were highly expressed in the pupae, indicating their possible role in immune responses. These results provide an important foundation for further exploration of the functions of the OBPs in M. usitatus.
Collapse
Affiliation(s)
- Gen Xia
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.X.); (Q.W.)
| | - Lang Yang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China; (L.Y.); (L.H.)
| | - Boliao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University, Yan’an 716000, China;
| | - Qinli Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.X.); (Q.W.)
| | - Lifei Huang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China; (L.Y.); (L.H.)
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou 434025, China;
| | - Guohui Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.X.); (Q.W.)
| |
Collapse
|
4
|
Yang Y, Tan S, Wang Q, Wang F, Zhang Y. Key amino acids in odorant-binding protein OBP7 enable Bradysia odoriphaga to recognize host plant volatiles. Int J Biol Macromol 2025; 284:138179. [PMID: 39615723 DOI: 10.1016/j.ijbiomac.2024.138179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a devastating underground pest that can cause serious economic losses. Odorant binding proteins (OBPs) are crucial components of the insect olfactory system, playing key roles in locating host plants, oviposition sites, and mates. Therefore, they are considered potential targets for pest control. Here, we obtained one OBP gene (BodoOBP7) from the antennal transcriptome of B. odoriphaga, and observed that the expression level of BodoOBP7 was primarily in the antennae of both sexes, with significantly higher expression level in females than in males. Fluorescence competitive binding assays indicated that BodoOBP7 exhibited strong binding affinities for the six host plant volatiles, including propyl disulfide, dipropyl trisulfide, dimethyl trisulfide, 2-tridecanone, 2-undecanone and alpha-ionone. Subsequently, homology modeling, molecular docking and site-directed mutagenesis revealed that four key amino acid residues (Phe79, Phe99, Ile96, Leu100) participate in the binding of BodoOBP7 with six host plant volatiles. Our results demonstrate that BodoOBP7 is involved in olfactory recognition in B. odoriphaga. These findings may enhance our understanding of the interaction mechanisms between host plants and B. odoriphaga, potentially offering new perspectives for the development of effective green control strategies.
Collapse
Affiliation(s)
- Yuting Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei 434000, China.
| | - Shunyang Tan
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei 434000, China
| | - Qinli Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei 434000, China
| | - Fu Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei 434000, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China.
| |
Collapse
|
5
|
Wang WW, Han KR, Jing XF, Liu TX, Zhang SZ. Odorant-binding protein CrufOBP1 in Cotesia ruficrus females plays a pivotal role in the detection of Spodoptera frugiperda larvae. Int J Biol Macromol 2024; 274:133491. [PMID: 38944096 DOI: 10.1016/j.ijbiomac.2024.133491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Cotesia ruficrus presents a promising local natural enemy for controlling the invasive fall armyworm Spodoptera frugiperda in China. However, the mechanisms underlying how C. ruficrus locates its target pest remain unclear. In this study, we analyzed the expression patterns of 18 CrufOBPs across different developmental stages of C. ruficrus, and found that CrufOBP1 exhibited consistent and high expression levels in female adults. CrufOBP1 transcript was predominantly localized in sensilla placodea and sensilla trichodea on the antennae. Additionally, we confirmed the binding properties of CrufOBP1 protein to various cuticular compounds of S. frugiperda larvae. Subsequent electroantennogram and behavioral assays revealed that 1-(2-hydroxy-5-methylphenyl)-ethanone attracted female C. ruficrus, consequently increased the parasitism rate. However, upon silencing CrufOBP1, females exhibited reduced attraction towards 1-(2-hydroxy-5-methylphenyl)-ethanone, indicating the crucial role of CrufOBP1 in the chemoreception of C. ruficrus. These findings shed light on the kairomone-based mechanism employed by C. ruficrus to locate S. frugiperda larvae and hold a promise for the development of environmentally friendly pest management strategies.
Collapse
Affiliation(s)
- Wen-Wen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Kai-Ru Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiang-Feng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Tong-Xian Liu
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
6
|
Yang W, Lu Y, He X, Wang L, Nie J, Saba NU, Su X, Xing L, Ye C. Antennal excision reveals disparate olfactory expression patterns within castes in Reticulitermes aculabialis (Isoptera: Rhinotermitidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 78:101326. [PMID: 38176178 DOI: 10.1016/j.asd.2023.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
In lower termites, which exhibit a high degree of compound eye degradation or absence, antennae play a pivotal role in information acquisition. This comprehensive study investigates the olfactory system of Reticulitermes aculabialis, spanning five developmental stages and three castes. Initially, we characterize the structures and distribution of antennal sensilla across different developmental stages. Results demonstrate variations in sensilla types and distributions among stages, aligning with caste-specific division of labor and suggesting their involvement in environmental sensitivity detection, signal differentiation, and nestmate recognition. Subsequently, we explore the impact of antennal excision on olfactory gene expression in various caste categories through transcriptomics, homology analysis, and expression profiling. Findings reveal that olfactory genes expression is influenced by antennal excision, with outcomes varying according to caste and the extent of excision. Finally, utilizing fluorescence in situ hybridization, we precisely localize the expression sites of olfactory genes within the antennae. This research reveals the intricate and adaptable nature of the termite olfactory system, highlighting its significance in adapting to diverse ecological roles and demands of social living.
Collapse
Affiliation(s)
- Wenxu Yang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yan Lu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaohui He
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lu Wang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Jinjuan Nie
- College of Life Sciences, Northwest University, Xi'an, China
| | - Noor Us Saba
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaohong Su
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lianxi Xing
- College of Life Sciences, Northwest University, Xi'an, China
| | - Chenxu Ye
- College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
7
|
Liang D, Chen H, An L, Li Y, Zhao P, Upadhyay A, Hansson BS, Zhao J, Han Q. Molecular identification and functional analysis of Niemann-Pick type C2 proteins,carriers for semiochemicals and other hydrophobic compounds in the brown dog tick, Rhipicephalus linnaei. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105451. [PMID: 37247999 DOI: 10.1016/j.pestbp.2023.105451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Ticks are important vectors of many pathogens with tremendous impact on human and animal health. Studies of semiochemical interactions and mechanisms underlying chemoreception can provide important tools in tick management. Niemann-Pick type C2 (NPC2) proteins have been proposed as one type of chemoreceptor in arthropods. Here, we cloned two NPC2 genes in the brown dog tick, Rhipicephalus linnaei, the tropical lineage previously named R. sanguineus sensu lato and characterized them functionally. R.linNPC2a and R.linNPC2b genes were found to be expressed at each developmental stage with the highest level in adult males. By using quantitative real-time PCR we revealed expression in multiple tissues, including midgut, ovary, salivary glands and legs. Ligand binding analysis revealed that R.linNPC2b bound a wide spectrum of compounds, with β-ionone, α-amylcinnamaldehyde, 2-nitrophenol and benzaldehyde displaying the strongest binding affinity (Ki < 10 μM), whereas R.linNPC2a showed a more narrow ligand binding range, with intermediate binding affinity to α-amylcinnamaldehyde and 2-nitrophenol (Ki < 20 μM). Molecular docking indicated that the amino acid residue Phe89, Leu77 and Val131 of R.linNPC2a and Phe70, Leu132 and Phe73 of R.linNPC2b could bind multiple ligands. These residues might thus play a key role in the identification of the volatiles. Our results contribute to the understanding of olfactory mechanisms of R. linnaei and can offer new pathways towards new management strategies.
Collapse
Affiliation(s)
- Dejuan Liang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Liping An
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Yao Li
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Peizhen Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Archana Upadhyay
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
8
|
He H, Crabbe MJC, Ren Z. Genome-wide identification and characterization of the chemosensory relative protein genes in Rhus gall aphid Schlechtendalia chinensis. BMC Genomics 2023; 24:222. [PMID: 37118660 PMCID: PMC10142413 DOI: 10.1186/s12864-023-09322-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND The Rhus gall aphid Schlechtendalia chinensis specially uses the only species Rhus chinensis and certain moss species (Mniaceae) as its primary host plant and secondary host plants, respectively. Rhus galls are formed on the primary host by the sucking of aphids, and used in traditional medicine as well as other various areas due to their high tannin contents. Chemoreception is critical for insect behaviors such as host searching, location and identification of mates and reproductive behavior. The process of chemoreception is mediated by a series of protein gene families, including odorant-binding proteins (OBPs), chemosensory proteins (CSPs), olfactory receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs). However, there have been no reports on the analysis of molecular components related to the chemoreception system of S. chinensis at the genome level. RESULTS We examined the genes of eight OBPs, nine CSPs, 24 ORs, 16 GRs, 22 IRs, and five SNMPs in the S. chinensis genome using homological searches, and these chemosensory genes appeared mostly on chromosome 1. Phylogenetic and gene number analysis revealed that the gene families, e.g., ORs, GRs, CSPs and SNMPs in S. chinensis, have experienced major contractions by comparing to Myzus persicae, while the two gene families OBPs and IRs had slight expansion. The current results might be related to the broader host range of M. persicae versus the specialization of S. chinensis on only a host plant. There were 28 gene pairs between genomes of S. chinensis and Acyrthosiphon pisum in the chemoreceptor gene families by collinear comparison. Ka/Ks ratios (< 1) indicated that the genes of S. chinensis were mainly affected by purification selection during evolution. We also found the lower number and expression level of chemoreception genes in S. chinensis than in other 11 aphid species, such as ORs, GRs and IRs, which play an important role in host search. CONCLUSION Our study firstly identified the genes of the different chemosensory protein gene families in the S. chinensis genome, and analyzed their general features and expression profile, demonstrating the importance of chemoreception in the aphid and providing new information for further functional research.
Collapse
Affiliation(s)
- Hongli He
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - M James C Crabbe
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- Wolfson College, Oxford University, Oxford, OX2 6UD, UK
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton, LU1 3JU, UK
| | - Zhumei Ren
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
9
|
Liu Y, Luo Y, Du L, Ban L. Antennal Transcriptome Analysis of Olfactory Genes and Characterization of Odorant Binding Proteins in Odontothrips loti (Thysanoptera: Thripidae). Int J Mol Sci 2023; 24:ijms24065284. [PMID: 36982358 PMCID: PMC10048907 DOI: 10.3390/ijms24065284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
To identify odors in complex environments accurately, insects have evolved multiple olfactory proteins. In our study, various olfactory proteins of Odontothrips loti Haliday, an oligophagous pest that primarily affects Medicago sativa (alfalfa), were explored. Specifically, 47 putative olfactory candidate genes were identified in the antennae transcriptome of O. loti, including seven odorant-binding proteins (OBPs), nine chemosensory proteins (CSPs), seven sensory neuron membrane proteins (SNMPs), eight odorant receptors (ORs), and sixteen ionotropic receptors (IRs). PCR analysis further confirmed that 43 out of 47 genes existed in O. loti adults, and O.lotOBP1, O.lotOBP4, and O.lotOBP6 were specifically expressed in the antennae with a male-biased expression pattern. In addition, both the fluorescence competitive binding assay and molecular docking showed that p-Menth-8-en-2-one, a component of the volatiles of the host, had strong binding ability to the O.lotOBP6 protein. Behavioral experiments showed that this component has a significant attraction to both female and male adults, indicating that O.lotOBP6 plays a role in host location. Furthermore, molecular docking reveals potential active sites in O.lotOBP6 that interact with most of the tested volatiles. Our results provide insights into the mechanism of O. loti odor-evoked behavior and the development of a highly specific and sustainable approach for thrip management.
Collapse
Affiliation(s)
- Yanqi Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yingning Luo
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lixiao Du
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Liping Ban
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
10
|
Zhu J, Wang F, Zhang Y, Yang Y, Hua D. Odorant-binding Protein 10 From Bradysia odoriphaga (Diptera: Sciaridae) Binds Volatile Host Plant Compounds. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7. [PMID: 36729094 PMCID: PMC9894006 DOI: 10.1093/jisesa/iead004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 06/18/2023]
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a major insect pest of seven plant families including 30 commercial crops in Asia. The long-term use of chemical pesticides leads to problems such as insect resistance, environmental issues, and food contamination. Against this background, a novel pest control method should be developed. In insects, odorant-binding proteins (OBPs) transport odor molecules, including pheromones and plant volatiles, to olfactory receptors. Here, we expressed and characterized the recombinant B. odoriphaga OBP BodoOBP10, observing that it could bind the sulfur-containing compounds diallyl disulfide and methyl allyl disulfide with Ki values of 8.01 μM and 7.00 μM, respectively. Homology modeling showed that the BodoOBP10 3D structure was similar to that of a typical OBP. Both diallyl disulfide and methyl allyl disulfide bound to the same site on BodoOBP10, mediated by interactions with six hydrophobic residues Met70, Ile75, Thr89, Met90, Leu93, and Leu94, and one aromatic residue, Phe143. Furthermore, silencing BodoOBP10 expression via RNAi significantly reduced the electroantennogram (EAG) response to diallyl disulfide and methyl allyl disulfide. These findings suggest that BodoOBP10 should be involved in the recognition and localization of host plants.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China
| | - Fu Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | |
Collapse
|
11
|
Wu C, Yin N, Guo Y, Wang Z, Liu N. Two Antenna-Enriched Odorant Binding Proteins in Dioryctria abietella Tuned to General Odorants and Insecticides. INSECTS 2022; 13:1145. [PMID: 36555056 PMCID: PMC9781003 DOI: 10.3390/insects13121145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The management of forest pests has become a significant challenge, particularly for wood borers, because they spend most of the time in the trunks or cones. The coneworm, Dioryctria abietella, is a representative of cone borers as its larvae feed on the cones of Pinaceae plants. The molecular mechanisms underlying the interactions between this species and host plants or habitats can assist in developing strategies for pest control. In this study, we extended the expression profiles of 32 odorant binding proteins (OBPs) in the reproductive tissues of D. abietella, revealing the detectable transcription of 29 genes. Using two DabiOBPs highly expressed in antennae (DabiOBP5 and DabiOBP14) as targets, six compounds with high affinities (dissociation constants < 13 μM) were identified through a reverse chemical ecology strategy, including insecticides widely used for the control of lepidopteran pests. Of these compounds, a floral volatile β-ionone and a pear-produced ester ethyl-(2E,4Z)-decadienoate may serve as behaviorally active compounds in D. abietella. The strong binding of DabiOBPs to insecticides suggested their involvement in insecticide resistance, reflecting sophisticated detoxification mechanisms of this moth. In the molecular simulations, DabiOBP14 possessed stronger interactions with the six ligands compared to DabiOBP5, in which a few key residues within the binding pockets were involved in the formation of hydrogen bonds. This study provides some valuable reference active compounds for the development of lures or repellents in D. abietella and unravels the putative roles of two antenna-dominant DabiOBPs in the perception of plant-derived odorants and insecticides.
Collapse
|
12
|
Yang Y, Hua D, Zhu J, Wang F, Zhang Y. Chemosensory protein 4 is required for Bradysia odoriphaga to be olfactory attracted to sulfur compounds released from Chinese chives. Front Physiol 2022; 13:989601. [PMID: 36237523 PMCID: PMC9552003 DOI: 10.3389/fphys.2022.989601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a serious pest of Chinese chives cultivated in China. Chemosensory proteins (CSPs) are important components of insect olfactory systems that capture and bind environmental semiochemicals which are then transported to olfactory receptors. Despite their importance, the mechanism of olfaction and related behavioral processes in B. odoriphaga have not been characterized. Here, we found that BodoCSP4 has an important olfactory function. RT-qPCR indicated that BodoCSP4 expression was highest in the heads (antennae removed) of adult males, followed by the antennae of adult males. Competitive binding assays with 33 ligands indicated that BodoCSP4 binds well with methyl allyl disulfide, diallyl disulfide, and n-heptadecane; the corresponding dissolution constants (Ki) were as high as 5.71, 5.71, and 6.85 μM, respectively. 3D-structural and molecular docking indicated that BodoCSP4 has five α-helices and surrounds the ligand with certain hydrophobic residues including Leu60, Leu63, Leu64, Ala67, Val28, Ile30, Ile33, Leu34, and Val86, suggesting these residues help BodoCSP4 bind to ligands. Silencing of BodoCSP4 significantly decreased the attraction of B. odoriphaga males to diallyl disulfide and n-heptadecane but not to methyl allyl disulfide in Y-tube olfaction assays. These results increase our understanding of how BodoCSP4 contributes to host and female localization by B. odoriphaga males.
Collapse
Affiliation(s)
- Yuting Yang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Dengke Hua
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan, Hubei, China
| | - Jiaqi Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fu Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Youjun Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Youjun Zhang,
| |
Collapse
|
13
|
Hao E, Li Y, Guo B, Yang X, Lu P, Qiao H. Key Residues Affecting Binding Affinity of Sirex noctilio Fabricius Odorant-Binding Protein (SnocOBP9) to Aggregation Pheromone. Int J Mol Sci 2022; 23:ijms23158456. [PMID: 35955589 PMCID: PMC9369295 DOI: 10.3390/ijms23158456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Sirex noctilio Fabricius (Hymenoptera Siricidae) is a major quarantine pest responsible for substantial economic losses in the pine industry. To achieve better pest control, (Z)-3-decen-ol was identified as the male pheromone and used as a field chemical trapping agent. However, the interactions between odorant-binding proteins (OBPs) and pheromones are poorly described. In this study, SnocOBP9 had a higher binding affinity with Z3D (Ki = 1.53 ± 0.09 μM) than other chemical ligands. Molecular dynamics simulation and binding mode analysis revealed that several nonpolar residues were the main drivers for hydrophobic interactions between SnocOBP9 and Z3D. Additionally, computational alanine scanning results indicated that five amino acids (MET54, PHE57, PHE71, PHE74, LEU116) in SnocOBP9 could potentially alter the binding affinity to Z3D. Finally, we used single-site-directed mutagenesis to substitute these five residues with alanine. These results imply that the five residues play crucial roles in the SnocOBP9-Z3D complex. Our research confirmed the function of SnocOBP9, uncovered the key residues involved in SnocOBP9-Z3D interactions, and provides an inspiration to improve the effects of pheromone agent traps.
Collapse
Affiliation(s)
- Enhua Hao
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing 100083, China; (E.H.); (Y.L.); (B.G.); (X.Y.)
| | - Yini Li
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing 100083, China; (E.H.); (Y.L.); (B.G.); (X.Y.)
| | - Bing Guo
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing 100083, China; (E.H.); (Y.L.); (B.G.); (X.Y.)
| | - Xi Yang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing 100083, China; (E.H.); (Y.L.); (B.G.); (X.Y.)
| | - Pengfei Lu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing 100083, China; (E.H.); (Y.L.); (B.G.); (X.Y.)
- Correspondence: (P.L.); (H.Q.); Tel.: +86-10-6233-6755 (P.L.); +86-10-5783-3180 (H.Q.)
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Correspondence: (P.L.); (H.Q.); Tel.: +86-10-6233-6755 (P.L.); +86-10-5783-3180 (H.Q.)
| |
Collapse
|
14
|
Shi W, Ye H, Roderick G, Cao J, Kerdelhué C, Han P. Role of Genes in Regulating Host Plants Expansion in Tephritid Fruit Flies (Diptera) and Potential for RNAi-Based Control. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:10. [PMID: 35983691 PMCID: PMC9389179 DOI: 10.1093/jisesa/ieac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Host plant expansion is an important survival strategy for tephritids as they expand their range. Successful host expansion requires tephritids to adapt to the chemical and nonchemical properties of a novel host fruit, such as fruit color, phenology, and phytochemicals. These plant properties trigger a series of processes in tephritids, with each process having its own genetic basis, which means that various genes are involved in regulating host plant expansion by tephritids. This review summarizes current knowledge on the categories and roles of genes involved in host plant expansion in several important tephritid species, including genes related to chemoreception (olfactory and gustation), vision, digestion, detoxification, development, ribosomal and energy metabolism. Chemoreception- and detoxification- and digestion-related genes are stimulated by volatile chemicals and secondary chemicals of different hosts, respectively, which are involved in the regulation of nervous signal transduction that triggers behavioral, physical, and chemical responses to the novel host fruit. Vision-, nerve-, and development-related genes and metabolism-associated genes are activated in response to nonchemical stimuli from different hosts, such as color and phenology, to regulate a comprehensive adaptation of the extending host for tephritids. The chemical and nonchemical signals of hosts activate ribosomal and energy-related genes that result in the basic regulation of many processes of host expansion, including detoxification and development. These genes do not regulate novel host use individually, but multiple genes regulate multilevel adaptation to novel host fruits via multiple mechanisms. These genes may also be potential target genes for RNAi-based control of tephritid pests.
Collapse
Affiliation(s)
- Wei Shi
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Hui Ye
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - George Roderick
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Jun Cao
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Carole Kerdelhué
- INRAE, CBGP (INRAE, CIRAD, RD, Montpellier Supagro, University Montpellier), Montpellier, France
| | - Peng Han
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| |
Collapse
|
15
|
Fan Z, Zhang Z, Zhang X, Kong X, Liu F, Zhang S. Five Visual and Olfactory Target Genes for RNAi in Agrilus Planipennis. Front Genet 2022; 13:835324. [PMID: 35186047 PMCID: PMC8855093 DOI: 10.3389/fgene.2022.835324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
RNA interference (RNAi) is a widely used technique for gene function researches and recently pest controls. It had been applied in emerald ash borer (EAB Agrilus planipennis) larvae and adults, and achieved significant interference effects, whether by ingesting or microinjecting. Feeding in the phloem and cambial regions, the larvae of A. planipennis are difficult to be controlled by conventional insecticides, so adult stage is the critical stage for EAB control. However, the target genes of adult stage of A. planipennis need to be further screened. Here, we preliminarily screened five potential target genes of vision and olfaction for RNAi in A. planipennis. Three odorant binding proteins (OBPs) and three opsins, which expressed significantly different between newly emerged and sexually mature EABs (OBP5, OBP7, OBP10, LW opsin 1 and UV opsin 2) or highly in sexually mature male EAB (UV opsin 3), were selected as targets to design primers for gene silencing. After dsRNA injection, the gene expression levels were determined by real-time quantitative PCR. We found that the expression levels of five genes were significantly down-regulated, during the 4 days after dsRNA injection. Among these genes, the expression of LW opsin 1 was down-regulated the most, causing a reduction of 99.1% compared with the control treated with EGFP dsRNA, followed by UV opsin 3 (97.4%), UV opsin 2 (97.0%), OBP7 (96.2%), and OBP10 (88.7%). This study provides a basis for further RNAi-based new controlling method development of A. planipennis at adult stage.
Collapse
|
16
|
Zhang Q, Li Z, Chen D, Wu S, Wang H, Li Y, Lei Z. The molecular identification, odor binding characterization, and immunolocalization of odorant-binding proteins in Liriomyza trifolii. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105016. [PMID: 35082039 DOI: 10.1016/j.pestbp.2021.105016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The Liriomyza trifolii is a highly invasive polyphagia pest. Understanding the physiological functions of odorant binding proteins (OBPs) in the chemical communication of L. trifolii can lead to effective pest management strategies. Seven full-length OBPs were identified by transcriptome screening of L. trifolii adults. Bioinformatics analyses classified the seven OBPs into two subfamilies (six classic OBPs, one minus-C OBP). The analysis of their expression in different development stages revealed that LtriOBP5 was highly expressed in the larval stage, LtriOBP4 in the pupa stage, and LtriOBP1, 2, 3, 6, 7 in the adult stage; the expression levels were higher in male adults than in females. The analysis of different tissues showed high expression of LtriOBP1, 3, 6, 7 in the antennae, which were selected for in vitro purification. To explore the ligand compounds of OBPs, fluorescence competitive binding experiments were performed. Immunofluorescence localization revealed that LtriOBP1, 3, 6, 7 showed strong binding abilities to plant volatiles and were located in the antennae, implying that LtriOBP1, 3, 6, 7 may play key roles in olfaction, such as host location. LtriOBP6 and LtriOBP7 had strong binding abilities to specific herbivore-induced plant volatiles, suggesting LtriOBP6 and LtriOBP7 may also play critical roles in chemoreception. This study provides preliminary exploration of the olfactory perception mechanism of L. trifolii, which can be used as a basis to design insect behavior regulators and develop highly effective insecticides using mixture of ligands and known pesticides.
Collapse
Affiliation(s)
- Qikai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zibo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongkai Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengyong Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haihong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlong Li
- Beijing Plant Protection Station, Beijing 100029, China
| | - Zhongren Lei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
17
|
Zhou X, Wang Z, Cui G, Du Z, Qian Y, Yang S, Liu M, Guo J. Binding Properties of Odorant-Binding Protein 4 of Tirathaba rufivena to Areca catechu Volatiles. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020167. [PMID: 35050055 PMCID: PMC8779631 DOI: 10.3390/plants11020167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 05/26/2023]
Abstract
Odorant-binding proteins (OBPs) play a key role in the olfactory system and are essential for mating and oviposition host selection. Tirathaba rufivena, a serious lepidopterous insect pest of the palm area in recent years, has threatened cultivations of Areca catechu in Hainan. Female-biased odorant-binding protein 4 of T. rufivena (TrufOBP4) expression was hypothesized to participate in the process of oviposition host recognition and localization. In this study, we cloned and analyzed the cDNA sequence of TrufOBP4. The predicted mature protein TrufOBP4 is a small, soluble, secretory protein and belongs to a classic OBP subfamily. Fluorescence binding assay results showed that TrufOBP4 had high binding abilities with the host plant volatiles, octyl methoxycinnamate, dibutyl phthalate, myristic acid and palmitic acid. These four components tend to dock in the same binding pocket based on the molecular docking result. The interactions and contributions of key amino acid residues were also characterized. This research provides evidence that TrufOBP4 might participate in the chemoreception of volatile compounds from inflorescences of A. catechu and can contribute to the integrated management of T. rufivena.
Collapse
|
18
|
Chen J, Yang L, Tian XL, Gui LY, Wang FL, Zhang GH. Functional Characterization of Two Antenna-Enriched Odorant-Binding Proteins From Bactrocera minax (Diptera: Tephritidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2361-2369. [PMID: 34668560 DOI: 10.1093/jee/toab199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Olfaction is of great significance for insect mate-seeking and host-locating behaviors. Insect odorant-binding proteins (OBPs), especially those antenna-enriched OBPs, are thought to discriminate, capture and transport odorant molecules to olfactory receptors, but this has not been fully clarified in Bactrocera minax (Enderlein), an economically important pest of citrus crops. Our previous studies showed that seven OBP genes (BminOBP1-7) were identified from B. minax adults via a head transcriptome analysis, of which only BminOBP3 and 6 were highly expressed in antennae, suggesting an olfactory role. To confirm their functions, here, BminOBP3 and 6 were cloned, expressed in Escherichia coli cells. Binding properties of the recombinant BminOBPs with 13 volatiles, most of which can elicit a significant behavioral response from B. minax adults, were determined by fluorescent competitive binding assays. The results showed that Both BminOBP3 and 6 exhibited a remarkable selectivity towards the 13 ligands tested. BminOBP3 displayed strong binding affinity only with undecanol. BminOBP6 demonstrated strong binding affinity with undecanol and limonene among 13 ligands tested. Undecanol is believed to be main sex pheromone component of B. minax. Limonene is an important volatile compound enriched in citrus fruits. Taken together, we concluded that BminOBP3 and 6 may play a prominent role in the process of B. minax mate-seeking and host-locating behaviors through recognizing and transporting these volatiles. It is conceivable that this study will increase our molecular understanding of B. minax olfaction, facilitating the development of OBP-based behavioral interference that is potentially useful for the integrated management of B. minax.
Collapse
Affiliation(s)
- Jian Chen
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Ling Yang
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Xiao-Li Tian
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Lian-You Gui
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Fu-Lian Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Guo-Hui Zhang
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| |
Collapse
|
19
|
Yang Y, Luo L, Tian L, Zhao C, Niu H, Hu Y, Shi C, Xie W, Zhang Y. Function and Characterization Analysis of BodoOBP8 from Bradysia odoriphaga (Diptera: Sciaridae) in the Recognition of Plant Volatiles and Sex Pheromones. INSECTS 2021; 12:879. [PMID: 34680648 PMCID: PMC8539145 DOI: 10.3390/insects12100879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 01/01/2023]
Abstract
The belowground pest Bradysia odoriphaga (Diptera: Sciaridae) has a sophisticated and sensitive olfactory system to detect semiochemical signals from the surrounding environment. In particular, odorant-binding proteins (OBPs) are crucial in capturing and transporting these semiochemical signals across the sensilla lymph to the corresponding odorant receptors. In this study, we cloned a full-length cDNA sequence of BodoOBP8 from B. odoriphaga. Real-time PCR (qRT-PCR) analysis revealed that BodoOBP8 has the highest expression levels in males, with more pronounced expression in the male antennae than in other tissues. In this study, the recombinant protein BodoOBP8 was successfully expressed by a bacterial system to explore its function. Competitive binding assays with 33 host plant volatiles and one putative sex pheromone (n-heptadecane) revealed that purified BodoOBP8 strongly bound to two sulfur compounds (methyl allyl disulfide and diallyl disulfide) and to n-heptadecane; the corresponding dissolution constants (Ki) were 4.04, 6.73, and 4.04 μM, respectively. Molecular docking indicated that Ile96, Ile103, Ala107, and Leu111, located in the hydrophobic cavity of BodoOBP8, are the key residues mediating the interaction of BodoOBP8 with two sulfur compounds (methyl allyl disulfide and diallyl disulfide) and n-heptadecane. These results show that BodoOBP8 plays a role in the recognition of plant volatiles and sex pheromones, suggesting its application as a molecular target for the screening of B. odoriphaga attractants and repellents and facilitating a new mechanism of B. odoriphaga control.
Collapse
Affiliation(s)
- Yuting Yang
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China; (Y.Y.); (L.L.); (C.Z.); (H.N.); (Y.H.); (C.S.)
| | - Liang Luo
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China; (Y.Y.); (L.L.); (C.Z.); (H.N.); (Y.H.); (C.S.)
| | - Lixia Tian
- Institute of Plant and Environment Protection Beijing Academy of Agriculture and Forestry Sciences, Beijing 100081, China;
| | - Changwei Zhao
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China; (Y.Y.); (L.L.); (C.Z.); (H.N.); (Y.H.); (C.S.)
| | - Hongli Niu
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China; (Y.Y.); (L.L.); (C.Z.); (H.N.); (Y.H.); (C.S.)
| | - Yifeng Hu
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China; (Y.Y.); (L.L.); (C.Z.); (H.N.); (Y.H.); (C.S.)
| | - Caihua Shi
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China; (Y.Y.); (L.L.); (C.Z.); (H.N.); (Y.H.); (C.S.)
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Zhang C, Tang B, Zhou T, Yu X, Hu M, Dai W. Involvement of Chemosensory Protein BodoCSP1 in Perception of Host Plant Volatiles in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10797-10806. [PMID: 34503327 DOI: 10.1021/acs.jafc.1c02807] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemosensory proteins (CSPs) can bind and transport odorant molecules and play important roles in insect chemoreception. In this study, we focused on the roles of a chemosensory protein (BodoCSP1) in perception of host plant volatiles in Bradysia odoriphaga. The expression of BodoCSP1 was significantly higher in adults than in larvae and pupae, without a significant difference between male and female adults. Recombinant protein BodoCSP1 exhibited relatively high binding affinities to 9 out of 10 tested ligands (Ki < 10 μM). Behavioral assays revealed that adults of B. odoriphaga showed a significant preference for five compounds. The predicted three-dimensional (3D) structure of BodoCSP1 has the typical six α-helices that form the hydrophobic ligand-binding pocket. Molecular docking and site-directed mutagenesis combined with ligand-binding assays indicated that Val48 and Thr66 may be the key binding site in BodoCSP1 for host plant volatiles. RNAi results indicated that dsBodoCSP1-treated adults showed significant reductions in response to diallyl disulfide, dipropyl disulfide, and allyl methyl disulfide. These results indicated that BodoCSP1 plays essential functions in the perception of host plant volatiles in B. odoriphaga.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bowen Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Taoling Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoting Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Manfei Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Yuting Y, Dengke H, Caihua S, Wen X, Youjun Z. Molecular and Binding Characteristics of OBP5 of Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1509-1516. [PMID: 34050657 DOI: 10.1093/jee/toab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Odorant-binding proteins (OBPs) capture and transport semiochemicals to olfactory receptors (OR) and function in the first step in insect olfaction. In the present study, we cloned a full-length cDNA sequence of BodoOBP5 from the insect pest Bradysia odoriphaga (Diptera: Sciaridae). Real-time PCR (qRT-PCR) analysis revealed that BodoOBP5 was expressed at higher levels in female adults than in other developmental stages. In the different tissues, BodoOBP5 was highly expressed in the female antennae, whereas low levels were expressed in the head and the male antennae, expression was negligible in other tissues. The recombinant protein of BodoOBP5 was successfully expressed with a bacterial system. Competitive binding assays with nine host plant volatiles and a putative sex pheromone revealed that purified BodoOBP5 strongly bound to two sulfur compounds (methyl allyl disulfide and diallyl disulfide); the corresponding dissolution constants (Ki) were 10.38 and 9.23 μM, respectively. Molecular docking indicated that Leu99, Leu103, Ala143, Tyr107, Phe142, and Trp144 in the hydrophobic cavity of BodoOBP5 are the key residues mediating the interaction of BodoOBP5 with methyl allyl disulfide and diallyl disulfide. RNAi-based Y-tube olfactometer assay indicated that there is no significant difference in methyl allyl disulfide and diallyl disulfide. The results of this study increase our understanding of the binding of BodoOBP5 with plant volatiles, facilitating the development of novel ways to control B. odoriphaga.
Collapse
Affiliation(s)
- Yang Yuting
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Hua Dengke
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Shi Caihua
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Xie Wen
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhang Youjun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
22
|
Li YJ, Chen HC, Hong TL, Yan MW, Wang J, Shao ZM, Wu FA, Sheng S, Wang J. Identification of chemosensory genes by antennal transcriptome analysis and expression profiles of odorant-binding proteins in parasitoid wasp Aulacocentrum confusum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100881. [PMID: 34273642 DOI: 10.1016/j.cbd.2021.100881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
The endoparasitoid wasp, Aulacocentrum confusum (Hymenoptera: Braconidae), is a preponderant natural enemy of the larvae of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae), which is a destructive pest of mulberry trees. We first constructed the antennal transcriptome database of A. confusum. In total, we obtained 48,262,304 clean reads from the dataset and assembled 24,324 unigenes. A total of 12,690 (52.17%) unigenes indicated significant similarity (E-value < 10-5) compared to known protein sequences of other species from the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to determine the functional categories of these genes. A total of 84 putative chemosensory genes were identified from the antennal transcriptome of A. confusum, including 11 putative odorant-binding protein (OBP) genes, six chemosensory protein (CSP) genes, 44 olfactory receptor (OR) genes (including one olfactory co-receptor, Orco), 19 ionotropic receptor (IR) genes, and four sensory neuron membrane protein (SNMP) genes. Results of qPCR assays indicated that among of 11 AconOBPs, nine AconOBP genes were significantly expressed in the antennae of A. confusum adults. AconOBP8 was significantly expressed in the abdomen and AconOBP10 was highly expressed in the thorax. These findings can build a basis for further study on the processes of chemosensory perception in A. confusum at the molecular level.
Collapse
Affiliation(s)
- Yi-Jiangcheng Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Hong-Chao Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Tian-le Hong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Meng-Wen Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Jiao Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Zuo-Min Shao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| |
Collapse
|
23
|
Cheng W, Zhang Y, Yu J, Liu W, Zhu-Salzman K. Functional Analysis of Odorant-Binding Proteins 12 and 17 from Wheat Blossom Midge Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae). INSECTS 2020; 11:insects11120891. [PMID: 33348639 PMCID: PMC7767053 DOI: 10.3390/insects11120891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/04/2022]
Abstract
Simple Summary Sitodiplosis mosellana is one of the most destructive pests of wheat. Adults rely highly on wheat spike volatiles to search and locate oviposition sites. Insect odorant-binding proteins (OBPs) are important in binding and transporting host plant volatiles to the olfactory receptors. Therefore, OBP-based behavioral interference is believed to be a novel and effective pest management strategy. The objectives of this study were to clone two S. mosellana female antenna-enriched OBP genes (SmosOBP12 and SmosOBP17), determine the functions of the encoded SmosOBP proteins in binding wheat volatiles, and investigate behavioral responses of female S. mosellana to odorant molecules. Results indicated that SmosOBP12 had a broader ligand-binding spectrum than SmosOBP17 to wheat volatiles. Female S. mosellana showed intensive response to 3-hexanol, 1-octen-3-ol, D-panthenol, 3-carene, (Z)-3-hexenylacetate, hexyl acetate, methyl salicylate, heptyl acetate, ethyl heptanoate, α-farnesene, and ocimene. Notably, all these compounds except α-farnesene exhibited strong affinity to SmosOBP12. In conclusion, SmosOBP12 may play more crucial roles than SmosOBP17 in perception and transportation of biologically active host volatiles. This information has enhanced our molecular understanding of the S. mosellana olfaction, which could also serve as an important reference for developing attractants or repellents to control this pest. Abstract The wheat blossom midge Sitodiplosis mosellana, one of the most disastrous wheat pests, depends highly on olfactory cues to track suitable plants. To better understand the olfactory recognition mechanisms involved in host selection, in the present study we cloned two S. mosellana adult antenna-specific odorant binding protein (OBP) genes, SmosOBP12 and SmosOBP17, and evaluated bacterially expressed recombinant proteins for their selectivity and sensitivity for host wheat volatiles using the fluorescence-based ligand binding assay. The results showed that both SmosOBPs effectively bound alcohol, ester, ketone, and terpenoid compounds. Particularly, SmosOBP12 had significantly higher affinities (Ki < 10.5 μM) than SmosOBP17 (Ki2 > 0.1 μM) to 3-hexanol, 1-octen-3-ol, D-panthenol, 3-carene, (Z)-3-hexenylacetate, hexyl acetate, methyl salicylate, heptyl acetate, and ethyl heptanoate. Consistently, S. mosellana females were attracted to all these chemicals in a behavioral assay using Y-tube olfactometer. SmosOBP12 also bound aldehyde, but neither bound alkanes. Notably, SmosOBP12 exhibited strong affinity to ocimene (Ki = 8.2 μM) that repelled S. mosellana. SmosOBP17, however, was insensitive to this compound. Taken together, our results indicate that SmosOBP12 may play a greater role than SmosOBP17 in perceiving these biologically active plant volatiles.
Collapse
Affiliation(s)
- Weining Cheng
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
- Correspondence: (W.C.); (K.Z.-S.)
| | - Yudong Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
| | - Jinlin Yu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
| | - Wei Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (W.C.); (K.Z.-S.)
| |
Collapse
|
24
|
Li L, Gao X, Gui H, Lan M, Zhu J, Xie Y, Zhan Y, Wang Z, Li Z, Ye M, Wu G. Identification and preliminary characterization of chemosensory-related proteins in the gall fly, Procecidochares utilis by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100724. [PMID: 32836214 DOI: 10.1016/j.cbd.2020.100724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Chemoreception is critical for insect behaviors such as foraging, host searching and oviposition. The process of chemoreception is mediated by a series of proteins, including odorant-binding proteins (OBPs), gustatory receptors (GRs), odorant receptors (ORs), ionotropic receptors (IRs), chemosensory proteins (CSPs) and sensory neuron membrane proteins (SNMPs). The tephritid stem gall fly, Procecidochares utilis Stone, is a type of egg parasitic insect, which is an effective biological control agent for the invasive weed Ageratina adenophora in many countries. However, the study of molecular components related to the olfactory system of P. utilis has not been investigated. Here, we conducted the developmental transcriptome (egg, first-third instar larva, pupa, female and male adult) of P. utilis using next-generation sequencing technology and identified a total of 133 chemosensory genes, including 40 OBPs, 29 GRs, 24 ORs, 28 IRs, 6 CSPs, and 6 SNMPs. The sequences of these candidate chemosensory genes were confirmed by BLAST, and phylogenetic analysis was performed. Quantitative real-time PCR (qRT-PCR) confirmed that the expression levels of the candidate OBPs varied at the different developmental stages of P. utilis with most OBPs expressed mainly in the pupae, female and male adults but scarcely in eggs and larvae, which was consistent with the differentially expressed genes (DEGs) analysis using the fragments per kilobase per million fragments (FPKM) value. Our results provide a significant contribution towards the knowledge of the set of chemosensory proteins and help advance the use of P. utilis as biological control agents.
Collapse
Affiliation(s)
- Lifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Huamin Gui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yonghui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Youguo Zhan
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Zhijiang Wang
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Zhengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
25
|
Wang Z, Gao C, Liu J, Zhou W, Zeng X. Host plant odours and their recognition by the odourant-binding proteins of Diaphorina citri Kuwayama (Hemiptera: Psyllidae). PEST MANAGEMENT SCIENCE 2020; 76:2453-2464. [PMID: 32058655 DOI: 10.1002/ps.5786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND The Asian citrus psyllid (ACP), Diaphorina citri, is one of the major pests in citrus production because it transmits huanglongbing, a devastating disease of citrus plants. Odourant-binding proteins (OBPs) play an important role in the olfactory perception of insects. Revealing the function of DcitOBPs is beneficial to the development of new ACP management strategies. RESULTS An analysis of the components of volatiles from the new shoots of six host plant species showed that β-caryophyllene was the characteristic volatile compound in flushing shoots and the most abundant volatile compound in three of the six tested ACP host plant species. The tissue expression profiles of nine known DcitOBPs were analyzed based on a transcriptome database, and DcitOBP3 and DcitOBP6 exhibited high expression in the antennae of both sexes and the ovipositor of females. The binding ability of two recombinant proteins with eight ligands was studied through competitive binding analysis; the results showed that DcitOBP6 exhibited stronger binding to β-caryophyllene. Behavioural trials indicated that sexually mature female adults of D. citri were significantly attracted to β-caryophyllene at concentrations of 0.1 μL mL-1 and 10 μL mL-1 . RNAi analysis in female D. citri showed that the reduction of DcitOBP6 transcript abundance led to a decrease in antennae EAG activity and behavioural responses to β-caryophyllene. CONCLUSION The results demonstrate that DcitOBP6 is involved in the perception of an important host plant volatile, β-caryophyllene, in the ACP, and provide a theoretical foundation for behavioural interference in ACP management.
Collapse
Affiliation(s)
- Zhengbing Wang
- Guangdong Engineering Research Center for Insect Behavior Regulation; Key Laboratory of Bio-Pesticide Innovation and Application, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Chuanhe Gao
- Guangdong Engineering Research Center for Insect Behavior Regulation; Key Laboratory of Bio-Pesticide Innovation and Application, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiali Liu
- Guangdong Engineering Research Center for Insect Behavior Regulation; Key Laboratory of Bio-Pesticide Innovation and Application, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology; Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinnian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation; Key Laboratory of Bio-Pesticide Innovation and Application, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Wang R, Hu Y, Wei P, Qu C, Luo C. Molecular and Functional Characterization of One Odorant-Binding Protein Gene OBP3 in Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:299-305. [PMID: 31599328 DOI: 10.1093/jee/toz248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Odorant binding proteins (OBPs) of insects play a critical role in chemical perceptions and choice of insect host plant. Bemisia tabaci is a notorious insect pest which can damage more than 600 plant species. In order to explore functions of OBPs in B. tabaci, here we investigated binding characteristics and function of odorant-binding protein 3 in B. tabaci (BtabOBP3). The results indicated that BtabOBP3 shows highly similar sequence with OBPs of other insects, including the typical signature motif of six cysteines. The recombinant BtabOBP3 protein was obtained, and the evaluation of binding affinities to tested volatiles of host plant was conducted, then the results indicated that β-ionone had significantly higher binding to BtabOBP3 among other tested plant volatiles. Furthermore, silencing of BtabOBP3 significantly altered choice behavior of B. tabaci to β-ionone. In conclusion, it has been demonstrated that BtabOBP3 exerts function as one carrier of β-ionone and the results could be contributed to reveal the mechanisms of choosing host plant in B. tabaci.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Yuan Hu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Peiling Wei
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Cheng Qu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Chen Luo
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| |
Collapse
|
27
|
Zhang Y, Shen C, Xia D, Wang J, Tang Q. Characterization of the Expression and Functions of Two Odorant-Binding Proteins of Sitophilus zeamais Motschulsky (Coleoptera: Curculionoidea). INSECTS 2019; 10:insects10110409. [PMID: 31731819 PMCID: PMC6920827 DOI: 10.3390/insects10110409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/24/2022]
Abstract
Odorant-binding proteins (OBPs) are important in insect chemical communication. The objective of this research was to identify the functions of two OBPs in Sitophilus zeamais. qRT-PCR and western blot (WB) were performed to investigate the expression profiles at the transcript and protein levels, respectively. Fluorescence competitive binding assays were used to measure the ability of the OBPs to bind to host volatiles, and a Y-tube olfactometer was used to verify the results (attraction/no response) via behavioral experiments. The RNAi was used to verify the function by knocking down the ability of proteins to bind odorants. qRT-PCR showed the highest expression SzeaOBP1 and SzeaOBP28 at the low-instar larva (LL) and eclosion adult (EA) stages, respectively. WB showed that both SzeaOBP1 and SzeaOBP28 were highly expressed in the EA stage. Fluorescence competitive binding assays indicated that SzeaOBP1 exhibited extremely high binding affinity with cetanol. SzeaOBP28 exhibited a pronounced binding affinity for 4-hydroxy-3-methoxybenzaldehyde. The behavioral experiment showed that the adult S. zeamais responded strongly to 4-hydroxy-3-methoxybenzaldehyde and valeraldehyde from Sorghum bicolor. The RNAi knockdown individuals displayed behavioral differences between normal insects and dsRNA (SzeaOBP1)-treated insects. We infer that they both have functions in perception and recognition of host volatiles, whereas SzeaOBP28 may also have other functions.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (Y.Z.); (C.S.); (D.X.)
| | - Chen Shen
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (Y.Z.); (C.S.); (D.X.)
| | - Daosong Xia
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (Y.Z.); (C.S.); (D.X.)
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD 20742, USA;
| | - Qingfeng Tang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (Y.Z.); (C.S.); (D.X.)
- Correspondence: ; Tel.: +86-551-65786321
| |
Collapse
|