1
|
Zheng D, Fu M, Sun C, Yang Q, Zhang X, Lu J, Chang M, Liu L, Wan X, Chen Q. CsABF8 mediates drought-induced ABA signaling in the regulation of raffinose biosynthesis in Camellia sinensis leaves. Int J Biol Macromol 2025; 311:143521. [PMID: 40306514 DOI: 10.1016/j.ijbiomac.2025.143521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Drought has become an important environmental stress limiting the growth and development of Camellia sinensis due to its moisture-loving and temperature-tolerant nature. ABA-response element binding factor (ABFs) is a key transcriptional regulator in the ABA signaling pathway that regulates plant responses to hormones and adversity. However, their roles and regulatory mechanisms in tea tree remain unknown. To investigate the drought response in Camellia sinensis, drought-sensitive (Fuyun No.6, FY) and drought-tolerant (Taicha No.12, TC) tea cultivars were treated with exogenous PEG and ABA and subjected to non-targeted metabolomics by Ultra Performance Liquid Chromatography-Electrospray Ionization-Triple Quadrupole tandem Mass Spectrometry (UPLC/ESI-Q TRAP-MS/MS). The bioactive carbohydrates galactinol and raffinose were identified as potential drought regulators. Analysis of transcriptomics data identified potential drought tolerant target genes, namely CsGolS1/2, encoding galactinol synthases, CsRaf6, a raffinose synthase, and CsABF8, a transcriptional regulator in the ABA-response element binding factor family. The tea CsSnRK2.8-CsABF8-CsGolS1/CsGolS2/CsRaf6 regulatory module induced in response to drought stress was constructed using multiple molecular validation tools. This preliminary analysis of the molecular mechanism by which CsABF8, a regulator on the ABA signaling pathway, mediates the differences in drought tolerance in different tea cultivars provides a theoretical basis for the selection and breeding of drought-resistant varieties.
Collapse
Affiliation(s)
- Dongqiao Zheng
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, People's Republic of China
| | - Maoyin Fu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, People's Republic of China
| | - Chenyi Sun
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, People's Republic of China
| | - Qiqi Yang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, People's Republic of China
| | - Xinmeng Zhang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, People's Republic of China
| | - Jing Lu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, People's Republic of China
| | - Manman Chang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, People's Republic of China.
| | - Linlin Liu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, People's Republic of China.
| | - Xiaochun Wan
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, People's Republic of China.
| | - Qi Chen
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, People's Republic of China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Food & Nutrition, West 130 Changjiang Road, Hefei 230036, People's Republic of China.
| |
Collapse
|
2
|
Pipponzi S, Primisser S, Antonielli L, Stefani E, Compant S, Sessitsch A, Kostic T. Lettuce fortification through vitamin B 12-producing bacteria - proof of concept study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3343-3354. [PMID: 39831556 PMCID: PMC11949862 DOI: 10.1002/jsfa.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/02/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Vitamin B12 (cobalamin) can be produced de novo only by certain bacteria and archaea. It plays a crucial role in the health of animals and humans, which obtain it only through diet, mainly from animal products. This study aimed to identify endophytic bacterial strains capable of synthesizing vitamin B12 and enriching edible plants with it as a potential solution for vitamin B12 deficiency in vegetarians, vegans, and people with poor diets. RESULTS An in silico genome analysis was performed on 66 bacterial genomes, including the reference strain Pseudomonas denitrificans ATCC 13867, a known vitamin B12 producer. The genomes were analyzed using the Rapid Annotations using Subsystems Technology (RAST) server and the MetaCyc database to verify the presence and completeness of the vitamin B12 metabolic pathway. The ability of the strains to produce vitamin B12 was confirmed with a high-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis of pure culture extracts. Eleven strains produced detectable amounts of vitamin B12 under tested conditions. The best performing candidates were further tested for their efficacy in producing vitamin B12 in lettuce grown under sterile conditions on Murashige and Skoog (MS) medium with or without CoCl2 supplementation. Methylobacterium sp. strain P1-11 produced detectable amounts of vitamin B12 in planta: 1.654 and 2.559 μg per g of dry weight without and with CoCl2 supplementation, respectively. CONCLUSION This is the first time a bacterial endophyte was used to produce vitamin B12 in planta, suggesting that bacterial endophytes could be utilized to enhance the nutraceutical values of plant-based foods. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Pipponzi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
- Center for Health & Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyTullnAustria
| | - Stefanie Primisser
- Center for Health & Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyTullnAustria
- Present address:
Institute for Plant HealthLaimburg Research CentreLaimburg 6Auer (Ora)39040South TyrolItaly
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyTullnAustria
| | - Emilio Stefani
- Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| | - Stephane Compant
- Center for Health & Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyTullnAustria
| | - Angela Sessitsch
- Center for Health & Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyTullnAustria
| | - Tanja Kostic
- Center for Health & Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyTullnAustria
| |
Collapse
|
3
|
Gao Y, Sun C, Zhang X, Fu M, Yang Q, Liu L, Wan X, Chen Q. Identification of the GATA transcription factor family in tea plant (Camellia sinensis) and the characterizations in nitrogen metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109661. [PMID: 39987619 DOI: 10.1016/j.plaphy.2025.109661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
GATA transcription factor is a widely existing regulatory factor in biology and participates in many plant physiological processes. In tea plants (Camellia sinensis), the GATA Transcription Factor family has not been explored. In this study, 40 GATA genes were identified in tea plants, with a focus on CsGATA12 and 17, whose expression patterns were correlated with nitrogen deficiency, nitrogen forms and nitrogen concentration. Among them, CsGATA17 is highly correlated with theanine and ethylamine contents in response to high nitrogen levels. Transcriptional regulation confirmed that CsGATA17 acts as a transcriptional activator to positively regulate CsAlaDC (alanine decarboxylase) to promote theanine synthesis in leaves with high nitrogen levels. This interaction was simulated and visualized by molecular docking and ultimately confirmed by EMSA. This study expands our understanding of GATA factors in tea plants and reveals the role of CsGATA17 in nitrogen metabolism and theanine regulation.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Chenyi Sun
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xinmeng Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Qiqi Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
4
|
Xie Y, Cao C, Huang D, Gong Y, Wang B. Effects of microbial biocontrol agents on tea plantation microecology and tea plant metabolism: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1492424. [PMID: 39902199 PMCID: PMC11788416 DOI: 10.3389/fpls.2024.1492424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025]
Abstract
The quality of fresh tea leaves is crucial to the final product, and maintaining microbial stability in tea plantations is essential for optimal plant growth. Unique microbial communities play a critical role in shaping tea flavor and enhancing plant resilience against biotic stressors. Tea production is frequently challenged by pests and diseases, which can compromise both yield and quality. While biotic stress generally has detrimental effects on plants, it also activates defense metabolic pathways, leading to shifts in microbial communities. Microbial biocontrol agents (MBCAs), including entomopathogenic and antagonistic microorganisms, present a promising alternative to synthetic pesticides for mitigating these stresses. In addition to controlling pests and diseases, MBCAs can influence the composition of tea plant microbial communities, potentially enhancing plant health and resilience. However, despite significant advances in laboratory research, the field-level impacts of MBCAs on tea plant microecology remain insufficiently explored. This review provides insights into the interactions among tea plants, insects, and microorganisms, offering strategies to improve pest and disease management in tea plantations.
Collapse
Affiliation(s)
- Yixin Xie
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunxia Cao
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Daye Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yan Gong
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Beibei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
5
|
Sidhu D, Vasundhara M, Dey P. Tea-derived endophytic fungi as an alternative source of catechins: Chemical characterization and evaluation of bioactivities. FOOD BIOSCI 2024; 62:105591. [DOI: 10.1016/j.fbio.2024.105591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2025]
|
6
|
Sidhu D, Vasundhara M, Dey P. Chemical characterization, pathway enrichments and bioactive potentials of catechin-producing endophytic fungi isolated from tea leaves. RSC Adv 2024; 14:33034-33047. [PMID: 39434990 PMCID: PMC11492194 DOI: 10.1039/d4ra05758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Endophytes acquire flavonoid biosynthetic genes from the host medicinal plants. Despite tea (Camellia sinensis (L.) Kuntze) being the major source of bioactive catechins, catechin-producing endophytic fungi have never been reported from the tea plant. Here, we report the isolation and characterization of catechin-producing endophytic fungi isolated from tea leaves, their chemical characterization, and associated bioactivities. Among the nine isolated endophytes, two (CSPL6 and CSPL5b) produced catechin (381.48 and 166.40 μg per mg extract) and epigallocatechin-o-gallate (EGCG; 484.41 and 281.99 μg per mg extract) as quantified by high-performance liquid chromatography (HPLC). The isolates were identified as Pseudopestalotiopsis camelliae-sinensis and Didymella sinensis based on molecular and morphological characterization. Untargeted metabolomics using gas-chromatography mass spectroscopy (GCMS) revealed the presence of several bioactive phytochemicals mostly belonging to tyrosols, pyridoxines, fatty acids, aminopyrimidine, and benzenetriol classes. Metabolic pathways pertaining to the biosynthesis of unsaturated fatty acids (UFAs), butanoate metabolism, and linoleic acid metabolism were highly enriched in both catechin-producing isolates. The isolates were able to differentially scavenge intracellular O2 and N2 free-radicals, but CSPL5b demonstrated relatively superior bioactivities compared to CSPL6. Both isolates stimulated the growth of various probiotic strains, indicating prebiotic effects that are otherwise known to be associated with catechins. Collectively, the current study demonstrated that fungal endophytes CSPL6 and CSPL5b, isolated from tea leaves, could be used as alternative sources of catechins, and hold promising potential in evidence-based therapeutics.
Collapse
Affiliation(s)
- Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology Patiala Punjab 147004 India +91-9064275660 +91-8146480908
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering & Technology Patiala Punjab 147004 India +91-9064275660 +91-8146480908
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology Patiala Punjab 147004 India +91-9064275660 +91-8146480908
| |
Collapse
|
7
|
Wu W, Jiang X, Zhu Q, Yuan Y, Chen R, Wang W, Liu A, Wu C, Ma C, Li J, Zhang J, Peng Z. Metabonomics analysis of the flavor characteristics of Wuyi Rock Tea (Rougui) with "rock flavor" and microbial contributions to the flavor. Food Chem 2024; 450:139376. [PMID: 38648695 DOI: 10.1016/j.foodchem.2024.139376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Wuyi Rock Tea (WRT) has different characteristics of "rock flavor" due to different production areas. In this study, we investigated the flavor characteristics and key components of "rock flavor" and the influence of microorganisms on the substances by combining metabolomics and microbiomics with the Rougui WRTs from the Zhengyan, Banyan, and Waishan production areas. The results showed that Rougui has a strong floral and fruity aroma, which is mainly brought by hotrienol, and the sweet, smooth, and fresh taste is composed of epicatechin gallate, epigallocatechin, epigallocatechin gallate, caffeine, theanine, soluble sugar, and sweet and bitter amino acids. Bacteria Chryseobacterium, Pedobacter, Bosea, Agrobacterium, Stenotrophomonas, and Actinoplanes mainly influence the production of hotrienol, epicatechin gallate, and theanine. Fungi Pestalotiopsis, Fusarium, Elsinoe, Teichospora and Tetracladium mainly influence the production of non-volatile compounds. This study provides a reference for the biological formation mechanism of the characteristic aroma of WRT's "rock falvor".
Collapse
Affiliation(s)
- Wenmiao Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qi Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Rongping Chen
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Wenzhen Wang
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Anxing Liu
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Chengjian Wu
- Wuyishan Kaijie Rock Tea City Co., LTD, Nanping 353000, China; Fujian Vocational College of Agriculture, Fuzhou 350119, China
| | | | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
8
|
Liu C, Lin H, Wang K, Zhang Z, Huang J, Liu Z. Study on the Trend in Microbial Changes during the Fermentation of Black Tea and Its Effect on the Quality. Foods 2023; 12:foods12101944. [PMID: 37238765 DOI: 10.3390/foods12101944] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The role of tea endophytes in black tea fermentation and their impact on black tea quality remain unclear. We collected fresh leaves of Bixiangzao and Mingfeng tea and processed them into black tea, while testing the biochemical composition of both the fresh leaves and the black tea. We also used high-throughput techniques, such as 16S rRNA, to analyze the dynamic changes in the microbial community structure and function during black tea processing in order to investigate the influence of dominant microorganisms on the quality of black tea formation. Our results showed that bacteria, such as Chryseobacterium and Sphingomonas, and Pleosporales fungi dominated the entire black tea fermentation process. Predicted functional analysis of the bacterial community indicated that glycolysis-related enzymes, pyruvate dehydrogenase, and tricarboxylic acid cycle-related enzymes were significantly elevated during the fermentation stage. Amino acids, soluble sugars, and tea pigment content also increased considerably during fermentation. Pearson's correlation analysis revealed that the relative bacterial abundance was closely related to the content of tea polyphenols and catechins. This study provides new insights into the changes in microbial communities during the fermentation of black tea and demonstrates understanding of the basic functional microorganisms involved in black tea processing.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Haiyan Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Kuofei Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Zhixu Zhang
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha 410128, China
| |
Collapse
|
9
|
Chang M, Ma J, Sun Y, Tian L, Liu L, Chen Q, Zhang Z, Wan X, Sun J. γ-Glutamyl-transpeptidase CsGGT2 functions as light-activated theanine hydrolase in tea plant (Camellia sinensis L.). PLANT, CELL & ENVIRONMENT 2023; 46:1596-1609. [PMID: 36757089 DOI: 10.1111/pce.14561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Theanine is an important secondary metabolite endowing tea with umami taste and health effects. It is essential to explore the metabolic pathway and regulatory mechanism of theanine to improve tea quality. Here, we demonstrated that the expression patterns of CsGGT2 (γ-glutamyl-transpeptidase), participated in theanine synthesis in vitro in our previous research, are significantly different in the aboveground and underground tissues of tea plants and regulated by light. Light up-regulated the expression of CsHY5, directly binding to the promoter of CsGGT2 and acting as an activator of CsGGT2, with a negative correlation with theanine accumulation. The enzyme activity assays and transient expression in Nicotiana benthamiana showed that CsGGT2, acting as bifunctional protein, synthesize and degrade theanine in vitro and in planta. The results of enzyme kinetics, Surface plasmon resonance (SPR) assays and targeted gene-silencing assays showed that CsGGT2 had a higher substrate affinity of theanine than that of ethylamine, and performed a higher theanine degradation catalytic efficiency. Therefore, light mediates the degradation of theanine in different tissues by regulating the expression of the theanine hydrolase CsGGT2 in tea plants, and these results provide new insights into the degradation of theanine mediated by light in tea plants.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Liying Tian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
- College of Horticulture, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| |
Collapse
|
10
|
Chang M, Ma J, Sun Y, Fu M, Liu L, Chen Q, Zhang Z, Song C, Sun J, Wan X. Role of Endophytic Bacteria in the Remobilization of Leaf Nitrogen Mediated by CsEGGT in Tea Plants ( Camellia sinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5208-5218. [PMID: 36970979 DOI: 10.1021/acs.jafc.2c08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important economic plant, tea (Camellia sinensis) has a good economic value and significant health effects. Theanine is an important nitrogen reservoir, and its synthesis and degradation are considered important for nitrogen storage and remobilization in tea plants. Our previous research indicated that the endophyte CsE7 participates in the synthesis of theanine in tea plants. Here, the tracking test confirmed that CsE7 tended to be exposed to mild light and preferentially colonized mature tea leaves. CsE7 also participated in glutamine, theanine, and glutamic acid circulatory metabolism (Gln-Thea-Glu) and contributed to nitrogen remobilization, mediated by the γ-glutamyl-transpeptidase (CsEGGT) with hydrolase preference. The reisolation and inoculation of endophytes further verified their role in accelerating the remobilization of nitrogen, especially in the reuse of theanine and glutamine. This is the first report about the photoregulated endophytic colonization and the positive effect of endophytes on tea plants mediated and characterized by promoting leaf nitrogen remobilization.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| |
Collapse
|
11
|
Lin H, Liu C, Peng Z, Tan B, Wang K, Liu Z. Distribution pattern of endophytic bacteria and fungi in tea plants. Front Microbiol 2022; 13:872034. [PMID: 36212870 PMCID: PMC9538792 DOI: 10.3389/fmicb.2022.872034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Endophytes are critical for plant growth and health. Tea is an economically important crop in China. However, little is known about the distribution pattern and potential functions of endophytic communities in tea trees. In this study, two genotypes (BXZ and MF) cultivated under the same conditions were selected, and endophytic bacteria and fungi were analyzed through 16S rRNA and ITS high-throughput sequencing technologies, respectively. For endophytic bacteria, root tissues harbored the most diverse endophytes, followed by stems and old leaves, and new leaves possessed the lowest diversity. In contrast, old leave tissues harbored more diverse endophytic fungi than did root and stem tissues. Most of the dominant endophytes showed obvious cultivar and tissue preferences. Tissue type played a more important role in shaping community structure than did cultivar. Nevertheless, some endophytic bacterial groups, which mainly affiliated to Chryseobacterium, Sphingomonas, Rhizobium, Morganella, Methylobacterium and Comamonadaceae, could parasitize different tissues, and the average relative abundance of endophytic bacteria was as high as 72.57%. Some endophytic fungal populations, such as Colletotrichum, Uwebraunia, Cladosporium, and Devriesia, could also parasitize tea, and the relative abundance accounted for approximately 25.70–97.26%. The cooperative relationship between endophytic bacteria and fungi in the new leaves was stronger than that in the old leaves, which can better participate in the metabolism of tea material.
Collapse
Affiliation(s)
- Haiyan Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhong Peng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Bin Tan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
12
|
Zhou Z, Chang N, Lv Y, Jiang H, Yao C, Wan X, Li Y, Zhang X. K-solubilizing bacteria (Bacillus) promote theanine synthesis in tea roots (Camellia sinensis) by activating CsTSI activity. TREE PHYSIOLOGY 2022; 42:1613-1627. [PMID: 35271713 DOI: 10.1093/treephys/tpac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Theanine is an important quality parameter referring to tea quality. Applying nitrogen fertilizers is one strategy to improve the level of theanine; however, the effect of plant growth-promoting rhizobacteria on theanine synthesis in tea roots has been less studied. In this study, the bacteria isolated from Qimen County with the maximum potassium (K) solubilization were identified as Bacillus by biochemical and molecular analyses. We show that tartaric and pyruvic acids produced by Bacillus were important components related to K solubilization in vitro. Pot experiments and enzymatic assays in vitro showed that inoculation with Bacillus-secreted organic acids increased the level of available potassium in the soil. The increased K level activated recombinant CsTSI activity (theanine biosynthesis enzyme) and increased ethylamine content (the synthesis precursor of theanine), resulting in promoted theanine synthesis in tea roots. Therefore, our study indicates that Bacillus can be a potential bioinoculant for biofortification of tea.
Collapse
Affiliation(s)
- Ziwen Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Changjiang West Road Hefei, Anhui 230036, China
| | - Na Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Changjiang West Road Hefei, Anhui 230036, China
| | - Yaning Lv
- Technology Center of Hefei Customs, NO 329 Tunxi Road, Hefei, Anhui 230036, China
| | - Hong Jiang
- Anhui Keemun Black Tea Industry Co., Ltd, Huangshan, Anhui 245600, China
| | - Cheng Yao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Changjiang West Road Hefei, Anhui 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Changjiang West Road Hefei, Anhui 230036, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Changjiang West Road Hefei, Anhui 230036, China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Changjiang West Road Hefei, Anhui 230036, China
| |
Collapse
|
13
|
Kong YS, Ren HY, Liu R, da Silva RR, Aksenov AA, Melnik AV, Zhao M, Le MM, Ren ZW, Xu FQ, Yan XW, Yu LJ, Zhou Y, Xie ZW, Li DX, Wan XC, Long YH, Xu ZZ, Ling TJ. Microbial and Nonvolatile Chemical Diversities of Chinese Dark Teas Are Differed by Latitude and Pile Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5701-5714. [PMID: 35502792 DOI: 10.1021/acs.jafc.2c01005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the microbial and chemical diversities, as well as what affects these diversities, is important for modern manufacturing of traditional fermented foods. In this work, Chinese dark teas (CDTs) that are traditional microbial fermented beverages with relatively high sample diversity were collected. Microbial DNA amplicon sequencing and mass spectrometry-based untargeted metabolomics show that the CDT microbial β diversity, as well as the nonvolatile chemical α and β diversities, is determined by the primary impact factors of geography and manufacturing procedures, in particular, latitude and pile fermentation after blending. A large number of metabolites sharing between CDTs and fungi were discovered by Feature-based Molecular Networking (FBMN) on the Global Natural Products Social Molecular Networking (GNPS) web platform. These molecules, such as prenylated cyclic dipeptides and B-vitamins, are functionally important for nutrition, biofunctions, and flavor. Molecular networking has revealed patterns in metabolite profiles on a chemical family level in addition to individual structures.
Collapse
Affiliation(s)
- Ya-Shuai Kong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- School of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, P. R. China
| | - Hong-Yu Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Rui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Ricardo R da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café─Vila Monte Alegre, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Alexander A Aksenov
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Alexey V Melnik
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ming Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming 100191, Yunnan, P. R. China
| | - Miao-Miao Le
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zhi-Wei Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Feng-Qing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, P. R. China
| | - Xiao-Wei Yan
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, P. R. China
| | - Li-Jun Yu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zhong-Wen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, Anhui, P. R. China
| | - Da-Xiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, Anhui, P. R. China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, Anhui, P. R. China
| | - Yan-Hua Long
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and College of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, P. R. China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, Anhui, P. R. China
| |
Collapse
|
14
|
Yu Y, Chen Z, Xie H, Feng X, Wang Y, Xu P. Overhauling the Effect of Surface Sterilization on Analysis of Endophytes in Tea Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:849658. [PMID: 35592578 PMCID: PMC9111953 DOI: 10.3389/fpls.2022.849658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Increasing evidence shows that plant Endophytes play a crucial role in the fitness and productivity of hosts. Surface sterilization is an indispensable process before high-throughput sequencing (HTS) and tissue separation of plant endophytes, but its potential impact on the composition and diversity of endophytes has rarely been investigated. In the present work, the influence of sodium hypochlorite (NaClO) on the diversity of endophytic bacteria and fungi in leaves and stems of tea plants was investigated. We found that the diversity of bacterial endophytes was significantly affected by the concentration of NaClO as well as the pretreatment time. Pretreatment with 0.5% NaClO for 8 min and 2.0% NaClO for 3 min were suitable for the tea plant leaves and stems, respectively, but the effects of NaClO on the diversity of fungal endophytes were limited according to the results from HTS. Regardless of NaClO sterilization, most of the endophytes in tissues, such as the dominant taxa, could not be Isolated by using the regular culture-dependent approaches. Collectively, our results demonstrated that the pretreatment with NaClO should be modified to precisely understand the diversity of endophytes from different tissues of tea plants and also indicate that more attention should be paid to establish specific culture-dependent protocols for the isolation of plant endophytes.
Collapse
Affiliation(s)
- Yueer Yu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Zimeng Chen
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Hengtong Xie
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
15
|
Lin S, Chen Z, Chen T, Deng W, Wan X, Zhang Z. Theanine metabolism and transport in tea plants ( Camellia sinensis L.): advances and perspectives. Crit Rev Biotechnol 2022; 43:327-341. [PMID: 35430936 DOI: 10.1080/07388551.2022.2036692] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Theanine, a tea plant-specific non-proteinogenic amino acid, is the most abundant free amino acid in tea leaves. It is also one of the most important quality components of tea because it endows the "umami" taste, relaxation-promoting, and many other health benefits of tea infusion. Its content in tea leaves is directly correlated with the quality and price of green tea. Theanine biosynthesis primarily occurs in roots and is transported to new shoots in tea plants. Recently, great advances have been made in theanine metabolism and transport in tea plants. Along with the deciphering of the genomic sequences of tea plants, new genes in theanine metabolic pathway were discovered and functionally characterized. Theanine transporters were identified and were characterized on the affinity for: theanine, substrate specificity, spatiotemporal expression, and the role in theanine root-to-shoot transport. The mechanisms underlying the regulation of theanine accumulation by: cultivars, seasons, nutrients, and environmental factors are also being rapidly uncovered. Transcription factors were identified to be critical regulators of theanine biosynthesis. In this review, we summarize the progresses in theanine: biosynthesis, catabolism, and transport processes. We also discuss the future studies on theanine in tea plants, and application of the knowledge to crops to synthesize theanine to improve the health-promoting quality of non-tea crops.
Collapse
Affiliation(s)
- Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
16
|
She G, Yu S, Li Z, Peng A, Li P, Li Y, Chang M, Liu L, Chen Q, Shi C, Sun J, Zhao J, Wan X. Characterization of CsTSI in the Biosynthesis of Theanine in Tea Plants ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:826-836. [PMID: 35029385 DOI: 10.1021/acs.jafc.1c04816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Theanine is a unique major amino acid in tea plants responsible for umami taste and mental health benefits of tea. However, theanine biosynthesis and physiological role in tea plants are not fully understood. Here, we demonstrate that tea plant theanine synthetase is encoded by a glutamine synthetase gene CsTSI. The expression pattern of CsTSI is closely correlated with theanine and glutamine levels in various tissues. CsTSI transcripts were accumulated in root tip epidermal cells, pericycle and procambial cells, where CsTSI presents as a cytosolic protein. Ectopic expression of the gene in Arabidopsis led to greater glutamine and theanine production than controls when fed with ethylamine (EA). RNAi knockdown or overexpression of CsTSI in tea plant hairy roots reduced or enhanced theanine and glutamine contents, respectively, compared with controls. The CsTSI recombinant enzymes used glutamate as an acceptor and ammonium or EA as a donor to synthesize glutamine and theanine, respectively. CsTSI expression in tea roots responded to nitrogen supply and deprivation and was correlated with theanine contents. This study provides fresh insights into the molecular basis for the biosynthesis of theanine, which may facilitate the breeding of high-theanine tea plants for improving the nutritional benefit of tea.
Collapse
Affiliation(s)
- Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shuwei Yu
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenguo Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Anqi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingying Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengying Shi
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
17
|
|
18
|
Sauer S, Dlugosch L, Kammerer DR, Stintzing FC, Simon M. The Microbiome of the Medicinal Plants Achillea millefolium L. and Hamamelis virginiana L. Front Microbiol 2021; 12:696398. [PMID: 34354692 PMCID: PMC8329415 DOI: 10.3389/fmicb.2021.696398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023] Open
Abstract
In the recent past many studies investigated the microbiome of plants including several medicinal plants (MP). Microbial communities of the associated soil, rhizosphere and the above-ground organs were included, but there is still limited information on their seasonal development, and in particular simultaneous investigations of different plant organs are lacking. Many studies predominantly addressed either the prokaryotic or fungal microbiome. A distinction of epi- and endophytic communities of above-ground plant organs has rarely been made. Therefore, we conducted a comprehensive investigation of the bacterial and fungal microbiome of the MP Achillea millefolium and studied the epi- and endophytic microbial communities of leaves, flower buds and flowers between spring and summer together with the microbiome of the associated soil at one location. Further, we assessed the core microbiome of Achillea from four different locations at distances up to 250 km in southern Germany and Switzerland. In addition, the bacterial and fungal epi- and endophytic leaf microbiome of the arborescent shrub Hamamelis virginiana and the associated soil was investigated at one location. The results show a generally decreasing diversity of both microbial communities from soil to flower of Achillea. The diversity of the bacterial and fungal endophytic leaf communities of Achillea increased from April to July, whereas that of the epiphytic leaf communities decreased. In contrast, the diversity of the fungal communities of both leaf compartments and that of epiphytic bacteria of Hamamelis increased over time indicating plant-specific differences in the temporal development of microbial communities. Both MPs exhibited distinct microbial communities with plant-specific but also common taxa. The core taxa of Achillea constituted a lower fraction of the total number of taxa than of the total abundance of taxa. The results of our study provide a basis to link interactions of the microbiome with their host plant in relation to the production of bioactive compounds.
Collapse
Affiliation(s)
- Simon Sauer
- WALA Heilmittel GmbH, Bad Boll, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | | | | | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
19
|
Tong W, Yu J, Wu Q, Hu L, Tabys D, Wang Y, Wei C, Ling T, Ali Inayat M, Bennetzen JL. Black Tea Quality is Highly Affected during Processing by its Leaf Surface Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7115-7126. [PMID: 34152762 DOI: 10.1021/acs.jafc.1c01607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbiomes can greatly affect the quality of fermented food and beverages, including tea. In this study, microbial populations were characterized during black and green tea manufacturing, revealing that tea processing steps can drive both the bacterial and fungal community structure. Tea leaves were found to mostly harbor Proteobacteria, Bacteriodetes, Firmicutes, and Actinobacteria among bacteria and Ascomycetes among fungi. During processing, tea microbial populations changed especially between sterilized and unsterilized samples. The surface sterilization of fresh leaves before processing can remove many microbes, especially the bacteria of the genera Sphingomonas and Methylobacteria, indicating that these are mostly phylloplane microbes on tea leaves. The surface sterilization removed most fungi, except the Debaryomyces. We also observed a fluctuation in the content of several tea quality-related metabolites during processing. Caffeine and theanine were found in the same quantities in green tea with or without leaf surface sterilization. However, the sterilization process dramatically decreased the content of total catechins and theanine in black tea, indicating that microbes on the surface of tea leaf may be involved in maintaining the formation of these important metabolites during black tea processing.
Collapse
Affiliation(s)
- Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jie Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230061, China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Lizhen Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Dina Tabys
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Tiejun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Mallano Ali Inayat
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jeffrey L Bennetzen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Department of Genetics, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Production of l-Theanine by Escherichia coli in the Absence of Supplemental Ethylamine. Appl Environ Microbiol 2021; 87:AEM.00031-21. [PMID: 33741612 DOI: 10.1128/aem.00031-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
l-Theanine is a nonproteinogenic amino acid present almost exclusively in tea plants and is beneficial for human health. For industrial production, l-theanine is enzymatically or chemically synthesized from glutamine/glutamate (or a glutamine/glutamate derivative) and ethylamine. Ethylamine is extremely flammable and toxic, which complicates and increases the cost of operational procedures. To solve these problems, we developed an artificial biosynthetic pathway to produce l-theanine in the absence of supplemental ethylamine. For this purpose, we identified and selected a novel transaminase (NCBI:protein accession number AAN70747) from Pseudomonas putida KT2440, which catalyzes the transamination of acetaldehyde to produce ethylamine, as well as γ-glutamylmethylamide synthetase (NCBI:protein accession number AAY37316) from Pseudomonas syringae pv. syringae B728a, which catalyzes the condensation of l-glutamate and ethylamine to produce l-theanine. Expressing these genes in Escherichia coli W3110S3GK and enhancing the production capacity of acetaldehyde and l-alanine achieved successful production of l-theanine without ethylamine supplementation. Furthermore, the deletion of ggt, which encodes γ-glutamyltranspeptidase (EC 2.3.2.2), achieved large-scale production of l-theanine by attenuating its decomposition. We show that an alanine decarboxylase-utilizing pathway represents a promising route for the fermentative production of l-theanine. Our study reports efficient methods to produce l-theanine in the absence of supplemental ethylamine.IMPORTANCE l-Theanine is widely used in food additives and dietary supplements. Industrial production of l-theanine uses the toxic and highly flammable precursor ethylamine, raising production costs. In this study, we used Escherichia coli to engineer two biosynthetic pathways that produce l-theanine from glucose and ammonia in the absence of supplemental ethylamine. This study establishes a foundation for safely and economically producing l-theanine.
Collapse
|
21
|
Saini M, Kashyap A, Bindal S, Saini K, Gupta R. Bacterial Gamma-Glutamyl Transpeptidase, an Emerging Biocatalyst: Insights Into Structure-Function Relationship and Its Biotechnological Applications. Front Microbiol 2021; 12:641251. [PMID: 33897647 PMCID: PMC8062742 DOI: 10.3389/fmicb.2021.641251] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) enzyme is ubiquitously present in all life forms and plays a variety of roles in diverse organisms. Higher eukaryotes mainly utilize GGT for glutathione degradation, and mammalian GGTs have implications in many physiological disorders also. GGTs from unicellular prokaryotes serve different physiological functions in Gram-positive and Gram-negative bacteria. In the present review, the physiological significance of bacterial GGTs has been discussed categorizing GGTs from Gram-negative bacteria like Escherichia coli as glutathione degraders and from pathogenic species like Helicobacter pylori as virulence factors. Gram-positive bacilli, however, are considered separately as poly-γ-glutamic acid (PGA) degraders. The structure-function relationship of the GGT is also discussed mainly focusing on the crystallization of bacterial GGTs along with functional characterization of conserved regions by site-directed mutagenesis that unravels molecular aspects of autoprocessing and catalysis. Only a few crystal structures have been deciphered so far. Further, different reports on heterologous expression of bacterial GGTs in E. coli and Bacillus subtilis as hosts have been presented in a table pointing toward the lack of fermentation studies for large-scale production. Physicochemical properties of bacterial GGTs have also been described, followed by a detailed discussion on various applications of bacterial GGTs in different biotechnological sectors. This review emphasizes the potential of bacterial GGTs as an industrial biocatalyst relevant to the current switch toward green chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
22
|
Feng J, Yang C, Zhao Z, Xu J, Li J, Li P. Application of Cell-Free Protein Synthesis System for the Biosynthesis of l-Theanine. ACS Synth Biol 2021; 10:620-631. [PMID: 33719397 DOI: 10.1021/acssynbio.0c00618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
l-Theanine, as an active component of the leaves of the tea plant, possesses many health benefits and broad applications. Chemical synthesis of l-theanine is possible; however, this method generates chiral compounds and needs further isolation of the pure l-isoform. Heterologous biosynthesis is an alternative strategy, but one main limitation is the toxicity of the substrate ethylamine on microbial host cells. In this study, we introduced a cell-free protein synthesis (CFPS) system for l-theanine production. The CFPS expressed l-theanine synthetase 2 from Camellia sinensis (CsTS2) could produce l-theanine at a concentration of 11.31 μM after 32 h of the synthesis reaction. In addition, three isozymes from microorganisms were expressed in CFPS for l-theanine biosynthesis. The γ-glutamylcysteine synthetase from Escherichia coli could produce l-theanine at the highest concentration of 302.96 μM after 24 h of reaction. Furthermore, CFPS was used to validate a hypothetical two-step l-theanine biosynthetic pathway consisting of the l-alanine decarboxylase from C. sinensis (CsAD) and multiple l-theanine synthases. Among them, the combination of CsAD and the l-glutamine synthetase from Pseudomonas taetrolens (PtGS) could synthesize l-theanine at the highest concentration of 13.42 μM. Then, we constructed an engineered E. coli strain overexpressed CsAD and PtGS to further confirm the l-theanine biosynthesis ability in living cells. This engineered E. coli strain could convert l-alanine and l-glutamate in the medium to l-theanine at a concentration of 3.82 mM after 72 h of fermentation. Taken together, these results demonstrated that the CFPS system can be used to produce the l-theanine through the two-step l-theanine biosynthesis pathway, indicating the potential application of CFPS for the biosynthesis of other active compounds.
Collapse
Affiliation(s)
- Junchen Feng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chen Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhehao Zhao
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Junjian Xu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ping Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
23
|
Du J, He X, Zhou Y, Zhai C, Yu D, Zhang S, Chen Q, Wan X. Gene Coexpression Network Reveals Insights into the Origin and Evolution of a Theanine-Associated Regulatory Module in Non- Camellia and Camellia Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:615-626. [PMID: 33372777 DOI: 10.1021/acs.jafc.0c06490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Theanine (thea) is one of the most important plant-derived characteristic secondary metabolites and a major healthcare product because of its beneficial biological activities, such as being an antianxiety agent, promoting memory, and lowering blood pressure. Thea mostly accumulates in Camellia plants and is especially rich in Camellia sinensis (tea plant). Although some functional genes (e.g., TS, GOGAT, and GS) attributed to thea accumulation have been separately well explored in tea plants, the evolution of a regulatory module (highly interacting gene group) related to thea metabolism remains to be elaborated. Herein, a thea-associated regulatory module (TARM) was mined by using a comprehensive analysis of a weighted gene coexpression network in Camellia and non-Camellia species. Comparative genomic analysis of 84 green plant species revealed that TARM originated from the ancestor of green plants (algae) and that TARM genes were recruited from different evolutionary nodes with the most gene duplication events at the early stage. Among the TARM genes, two core transcription factors of NAC080 and LBD38 were deduced, which may play a crucial role in regulating the biosynthesis of thea. Our findings provide the first insights into the origin and evolution of TARM and indicate a promising paradigm for identifying vital regulatory genes involved in thea metabolism.
Collapse
Affiliation(s)
- Jinke Du
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaolong He
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Yeman Zhou
- College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Chenchen Zhai
- College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
| | - De'en Yu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shihua Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
24
|
Xie H, Feng X, Wang M, Wang Y, Kumar Awasthi M, Xu P. Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights. Bioengineered 2020; 11:1001-1015. [PMID: 32881650 PMCID: PMC8291792 DOI: 10.1080/21655979.2020.1816788] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endophytic fungi and bacteria are the most ubiquitous and representative commensal members that have been studied so far in various higher plants. Within colonization and interaction with their host plants, endophytic microbiota are reportedly to modulate not only the host's growth but also holobiont resilience to abiotic and biotic stresses, providing a natural reservoir and a promising solution for sustainable agricultural development challenged by global climate change. Moreover, possessing the talent to produce a wide array of high-value natural products, plant endophytic microbiota also serve as an alternative way for novel drug discovery. In this review, tea, one of the world's three largest nonalcoholic beverages and a worldwide economic woody crop, was highlighted in the context of endophytic microbiota. We explore the recent studies regarding isolation approaches, distribution characteristics and diversity, and also biological functions of endophytic microbiota in Camellia sinensis (L.) O. Kuntze. Profoundly, the future insight into interaction mechanism between endophytic microbiota and tea plants will shed light on in-depth exploration of tea microbial resources.
Collapse
Affiliation(s)
- Hengtong Xie
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station of Zhejiang University , Hangzhou, China
| | - Mengcen Wang
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture , Hangzhou, China
| | - Yuefei Wang
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture , Hangzhou, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University , Yangling, China
| | - Ping Xu
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture , Hangzhou, China
| |
Collapse
|
25
|
Zhao J, Li P, Xia T, Wan X. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Crit Rev Biotechnol 2020; 40:667-688. [PMID: 32321331 DOI: 10.1080/07388551.2020.1752617] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The diversity and complexity of secondary metabolites in tea plants contribute substantially to the popularity of tea, by determining tea flavors and their numerous health benefits. The most significant characteristics of tea plants are that they concentrate the complex plant secondary metabolites into one leaf: flavonoids, alkaloids, theanine, volatiles, and saponins. Many fundamental questions regarding tea plant secondary metabolism remain unanswered. This includes how tea plants accumulate high levels of monomeric galloylated catechins, unlike the polymerized flavan-3-ols in most other plants, as well as how they are evolved to selectively synthesize theanine and caffeine, and how tea plants properly transport and store these cytotoxic products and then reuse them in defense. Tea plants coordinate many metabolic pathways that simultaneously take place in young tea leaves in response to both developmental and environmental cues. With the available genome sequences of tea plants and high-throughput metabolomic tools as great platforms, it is of particular interest to launch metabolic genomics studies using tea plants as a model system. Plant metabolic genomics are to investigate all aspects of plant secondary metabolism at the genetic, genome, and molecular levels. This includes plant domestication and adaptation, divergence and convergence of secondary metaboloic pathways. The biosynthesis, transport, storage, and transcriptional regulation mechanisms of all metabolites are of core interest in the plant as a whole. This review highlights relevant contexts of metabolic genomics, outstanding questions, and strategies for answering them, with aim to guide future research for genetic improvement of nutrition quality for healthier plant foods.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|